Understanding the Triaging and Fixing Processes of Long Lived Bugs

Ripon K. Saha, Sarfraz Khurshid, Dewayne E. Perry

Center for Advanced Research in Software Engineering (ARISE)
Department of Electrical and Computer Engineering
The University of Texas at Austin, USA

Abstract

Context: Bug fixing is an integral part of software development and maintenance. A large number of bugs often indi-
cate poor software quality, since buggy behavior not only causes failures that may be costly but also has a detrimental
effect on the user’s overall experience with the software product. The impact of long lived bugs can be even more
critical since experiencing the same bug version after version can be particularly frustrating for user. While there are
many studies that investigate factors affecting bug fixing time for entire bug repositories, to the best of our knowledge,
none of these studies investigates the extent and reasons of long lived bugs.

Objective: In this paper, we investigate the triaging and fixing processes of long lived bugs so that we can identify the
reasons for delay and improve the overall bug fixing process.

Methodology: We mine the bug repositories of popular open source projects, and analyze long lived bugs from five
different perspectives: their proportion, severity, assignment, reasons, as well as the nature of fixes.

Results: Our study on seven open-source projects shows that there are a considerable number of long lived bugs in
each system and over 90% of them adversely affect the user’s experience. The reasons for these long lived bugs are
diverse including long assignment time, not understanding their importance in advance etc. However, many bug-fixes
were delayed without any specific reasons. Furthermore, 40% of long lived bugs need small fixes.

Conclusion: Our overall results suggest that many long lived bugs can be fixed quickly through careful triaging and
prioritization, if developers could predict their severity, change effort, and change impact in advance. We believe our
results will help both developers and researchers better to understand factors behind delays, improve the overall bug
fixing process, and investigate analytical approaches for prioritizing bugs based on bug severity as well as expected
bug fixing effort.

Keywords: Bug tracking, bug triaging, bug survival time

1. Introduction the bug fixing tasks based on their severity and prior-
ity. Despite such a rigorous process, there are still many

Software development and maintenance is a complex bugs that live for a long time. We believe the impact

process. Although developers and testers try their best
to make their software error free, in practice software
ships with bugs. The number of bugs in software is a
significant indicator of software quality since bugs can
adversely affect users experience directly. Therefore,
developers are generally very active in finding and re-
moving bugs.

To ensure high software quality for each release, de-
velopers/managers triage bugs carefully and schedule

Email addresses: ripon@utexas.edu (Ripon K. Saha),
khurshid@ece.utexas.edu (Sarfraz Khurshid),
perry@ece.utexas.edu (Dewayne E. Perry)

Preprint submitted to Elsevier

of these long lived bugs (for our study, bugs that are
not fixed within one year after they are reported) is even
more critical since the users may experience the same
failures version after version. Therefore, it is important
to understand the extent and reasons of these long lived
bugs so that we can improve software quality.

A number of previous studies have investigated the
overall factors affecting bug fix time. Giger et al. [8]
empirically investigated the relationships between bug
report attributes and the time to fix. Zhang et al. [31]
predicted overall bug fix time in commercial projects.
Canfora et al. [6] used survival analysis to determine the
relationship between the risk of not fixing a bug within a

November 12, 2014

given time frame and specific code constructs changed
when fixing the bug. Zhang et al. [30] examined fac-
tors affecting bug fixing time along three dimensions:
bug reports, source code involved in the fix, and code
changes that are required to fix the bug.

While these studies are useful in understanding the
overall factors related to bug fix time, we know of no
study that has specifically investigated long lived bugs
to understand why they take such a long time to be fixed
and how important they are. We point out that analyz-
ing entire bug datasets using various machine learning
or data mining techniques (as done in previous work) is
not sufficient in understanding long lived bugs due to the
imbalanced dataset.! Imbalanced datasets are a major
problem in most data mining applications since machine
learning algorithms can be biased towards the majority
class due to over-prevalence [12]. We expect (and our
results also support) that the proportion of long-lived
bugs would be lot less than 50% of the total bugs, thus
resulting an imbalanced dataset. Therefore, if we au-
tomatically analyze all the bug reports using a standard
data mining technique, it is highly likely that the main
factors behind long lived bugs would get lost. In this pa-
per, we conduct an exploratory study focused solely on
long lived bugs to understand their extent and reasons
with respect to following research questions:

1. What proportion of the bugs are long lived? The
answer to this question is important since if there
are few long lived bugs, there may be little reason
to worry.

2. How important long lived bugs are in terms of
severity? It is important to understand how cru-
cial these bugs were from the perspective of both
developers and users. If they are minor or trivial
bugs, their impact would be less on overall soft-
ware quality.

3. Where is most of the time spent in the bug fix-
ing process? The answer to this question is im-
portant to identify the time consuming phases so
that developers as well as researchers can work on
improving the process involving that phase.

4. What are common reasons for long lived bugs?
To improve the bug fixing process, first we need to
understand the underlying reasons for delays. De-
lineating the common reasons of long lived bugs
will help researchers deal with the problem more
systematically.

A dataset is imbalanced if the classification classes are not ap-
proximately equally represented.

5. What is the nature of long lived bug fixes? The
answer to this question will help us in better under-
standing the bug fixing process, estimating change
efforts, and so on, which will be useful in explor-
ing potential approaches for improving overall bug
fixing process.

We study seven open source projects: JDT, CDT,
PDE, and Platform from the Eclipse product family,
written in Java, 2 and the Linux Kernel, WineHQ, and
GDB, written in C. Our key observations are summa-
rized below:

1. Despite advances in software development and
maintenance processes, there are a significant
number of bugs in each project that survive for
more than one year.

2. More than 90% of long lived bugs affect users’ nor-
mal working experiences and thus are important to
fix. Moreover, there are duplicate bug reports for
these long lived bugs, which indicate the users’ de-
mand for fixing them.

3. The average bug assignment time of these bugs
was more than one year despite the availability of
a number of automatic bug assignment tools that
could have been used. The bug fix time after the
assignment was another year on average.

4. Reasons for long lived bugs are diverse. While
problem complexity, reproducibility, and not un-
derstanding the importance of some of the bugs
in advance are the common reasons, we observed
there are many bug-fixes that got delayed without
any specific reason.

5. Unlike previous studies [30], we found that a bug
surviving for a year or more does not necessarily
mean that it requires a large fix. We found that
40% of long-lived bug fixes involved few changes
in only one file.

This paper extends our previous “long lived bugs”
paper presented at CSMR-WCRE 2014 [22] in three
directions. First, we perform the same set of experi-
ments on three additional popular projects: the Linux
Kernel, WineHQ, and GDB, which are not only written
in different programming language but also from dif-
ferent domains than our previous subject systems. Sec-
ond, we provide more details of our previous results.
Finally, our new results show that our previous findings
hold even for software projects from different domains

Zhttp://www.eclipse.org

and written in different languages. Thus this paper re-
ports more generalizable results. We believe these find-
ings will play an important role in developing new ap-
proaches for bug triaging as well as improving the over-
all bug fixing process.

2. Background

In this section, we provide necessary background for
our study that includes a brief description of bug track-
ing systems and a typical bug life cycle.

2.1. Bug Tracking System:

Generally project stakeholders maintain a bug
database for tracking all the bugs associated with their
projects. There are several online bug tracking systems
such as Bugzilla, JIRA, Mantis, etc. These systems en-
able developers/managers to manage bug database for
their projects. Different repositories may have differ-
ent data structures and follow different life cycles of
bugs. The dataset we created and used in our work was
extracted from Bugzilla, a popular online bug tracking
system. Therefore, the rest of the discussion in this pa-
per regarding the bug tracking system is only limited to
Bugzilla.

Any person having legitimate access to a project’s
bug database can post a change request through
Bugzilla. A change request could be either a bug or
an enhancement. In Bugzilla, however, both bugs and
enhancements are represented similarly and referred as
bugs with an exception that for enhancements severity
field is set to enhancement. Generally bug reporters
provide a bug summary, bug description, the suspected
product, and the component name with its severity.

Developers in a particular project can define their
own severity level. According to Eclipse Bugzilla docu-
mentation, the severity level can be one of the following
values, which actually represents the degree of potential
harm.?

Blocker: These bugs block the development
and/or testing work. There exists no workaround.

Critical: These bugs cause program crashes,
loss of data, or severe memory leaks.

Major: These bugs result major loss of function.

Normal: These are regular issues. There are some
loss of functionality under specific circumstances.

Minor: These bugs cause minor loss of functional-
ity, or other problems where an easy workaround was
present.

3http://wiki.eclipse.org/Eclipse/Bug_Tracking

New bug from a
user/developer

Bug confirmed

Ownership
changed

- Resolved .
—

Figure 1: Life Cycle of a Bug in Bugzilla

Bug is reopened, was never confirmed

Trivial: These are generally cosmetic problems
such as misspelled words or misaligned text.

The developers in WineHQ also follow the same
severity levels. However, the GDB community recog-
nizes three levels of severity: critical, normal, and mi-
nor. On the other hand, the Linux community has their
own severity level: blocking, high, normal, and low.

In addition to providing severity level, reporters also
specify the software version, the platform and operating
system where they encountered the bug so that develop-
ers can easily reproduce it. Bug reporters also can attach
files to the bug report such as screen shots, failing test
cases etc. Once a bug is posted, all other related devel-
opers can make comments regarding the bug to discuss
different issues. Therefore, a bug repository has rich set
of information that can be analyzed to gain insight about
bugs.

2.2. Bug Life Cycle

The overall bug fixing process in a system is directly
related to the bug life cycle maintained by the bug track-
ing system. Although different projects may have differ-
ent schemes for using Bugzilla, a common life cycle for
a bug is as follows: 4

Validation: At the start of each day, each
project/component team leader triages NEW bugs to ver-
ify if the bug is really a bug and if the provided infor-
mation is correct. In case of any inconsistencies, the
bug triager can correct them. The bug triager also can
request further information to validate a bug if it is nec-
essary. If there is no response within a week, the team
leader closes the bug marking RESOLVED, INVALID,

“http://wiki.eclipse.org/Development_Resources/HOWTO/Bugzilla_Use

or WONTF IX. However, the reporter can reopen the bug
anytime if she has more information.

Prioritization: In this stage, the triager first deter-
mines whether a bug is a feature request. If so, the
severity of the bug is changed to enhancement. Oth-
erwise, she checks the severity level of the bug to make
sure that it is consistent with the bug description. Then
the priority of the bug is set based on following guide-
lines: 3

P1: These bugs are a must fix for the indicated target
milestone.

P2: These bugs are very important for the indicated
target milestone. Generally developers try to resolve all
the P2 bugs.

P3: It is the default priority. If the bug triager is
uncertain about the priority of a bug or it is actually a
normal bug, she can set P3 priority. Then the assigned
developer can adjust it if appropriate.

P4 : These bugs should be fixed if time permits.

P5: These are valid bugs, but there are no plans to
fix. Also P5 priority indicates that help is wanted.

Fixing: At this point, a bug remains in the compo-
nent’s “inbox” account until a developer takes the bug,
or the team leader assigns it to them. After fixing the
bug, the developer mark it as RESOLVED-F IXED.

Verification: Once a bug is fixed, it is assigned to
another committer on the team to verify. Ideally, all
bugs should be verified before the next integration build.
Once the verifier tests that the bug is completely re-
solved, she changes the bug status to VERIFIED. Fig-
ure 1 represents all possible state transitions of a bug in
Bugzilla.

3. Study Setup

This section provides a brief description of the sub-
ject systems that we studied, and the metrics and pro-
cess we used to understand the extent and reason of long
lived bugs.

3.1. Subject Systems

We use seven open source projects for our study.
Among them, we choose four projects from the Eclipse
product family, namely, JDT, CDT, PDE, and Platform,
which are written in Java programming language. The
other three projects are the Linux Kernel, WineHQ,
and GDB, which are written in C programming lan-
guage. There are mainly three reasons for choosing

Shttp://wiki.eclipse.org/WTP/Conventions_of_bug_priority_and_severity

4

these projects. First, These projects are highly success-
ful and have been widely used in software engineer-
ing research. Second, each project has a long devel-
opment history. Third, these projects are from different
domains.

e JDT and CDT provide a fully functional Integrated
Development Environment based on the Eclipse
platform for developing Java, and C and C++ ap-
plications. &7

e The Plug-in Development Environment (PDE)
provides tools to create, develop, test, debug, build
and deploy Eclipse plug-ins, fragments, features,
update sites and RCP products. 8

* The Eclipse Platform defines the set of frameworks
and common services that collectively make up in-
frastructure required to support the use of Eclipse.’

e Linux Kernel: The kernel of the Linux operating
system.'”

* WineHQ: A compatibility layer, making it possible
to run Windows applications on POSIX compliant
operating systems.11

* GDB: A debugger for programs written in C, C++,
and many other programming languages.'?

We have created the dataset for C projects. This
dataset includes all the bug reports and their histories
from their inception to May 2014. For Java projects,
we have used Lamkanfi et al’s [16] bug dataset to ex-
tract the bug information. The Java dataset includes all
the bug reports and their histories from their inception
to March 2011 for these four projects (extracted from
Eclipse Bugzilla database). More detailed descriptions
of the dataset is presented in Table 1. In the Table, the
last column represents the number of bugs (excluding
enhancement and duplicated bugs) that got eventually
fixed, which is the actual dataset of this study.

3.2. Terms and Metrics

We make use of bug tracking and version control sys-
tem’s information to calculate metrics that we were in-
terested in. This section defines different terms and met-
rics that we use in the rest of the paper.

Shttp://projects.eclipse.org/projects/eclipse.jdt
http://www.eclipse.org/cdt/
8http://www.eclipse.org/pde/
“https://projects.eclipse.org/projects/eclipse.platform
1Ohttps://www.kernel.org/

Mhttp://www.winehq.org
2http://www.sourceware.org/gdb/

Table 1: Data Set
System #CR #Bugs # Enh. # Bug Fixed

JDT 46,308 38,520 7,788 18,873
CDT 14,871 12,854 20,17 7,260
PDE 13,677 11,958 1,719 6,854
Platform 90,691 78,120 12,571 33,738
Linux 23,618 23,387 231 5,784
WineHQ 36,691 34,490 2,201 14,338
GDB 17,038 15,562 1,476 7,667

Bug Introduction Time (77): This is the timestamp
when the buggy code is committed for the first time for
a given bug.

Bug Reporting Time (7r): This is the timestamp
when a bug is reported to the Bugzilla system by a
user/developer.

Bug Assignment Time (74): This is the timestamp
when a bug was officially assigned to the right devel-
opers through Bugzilla. If a bug is assigned to multiple
developers, we use the assignment time of the developer
who fixed the bug. If a bug is fixed by multiple devel-
opers, we use the assignment time of the developer who
committed the last changes.

Bug Severity Realization Time (Ts): This is the
timestamp when the actual severity of a given bug was
understood by the developers and thus the severity field
of that bug was changed for the last time.

Bug Fix Time (I): This is the timestamp when a
developer officially marked a bug as FIXED in Bugzilla
through the resolution field.

Bug Assignment Period (AP): This is the lapse
time between when the bug was opened and when it was
assigned to the right developer. Mathematically, AP =
Ty —Tgr

Bug Fixing Period (F'P): This is the period of time
that developers took to fix a bug. It should be noted that
it is not the actual coding time of the bug-fix. Instead, it
is the time period between the bug assignment time and
the bug fix time. Mathematically, F'P = Tr — Tx. It
should be further noted that we do not deduct the time if
a bug is temporarily closed. A bug is temporarily closed
when the developers think that the bug is fixed but ac-
tually it is not. Therefore, we do not deduct that time,
since the bug is still (at least partially) present during
the time when the bug reports was closed.

Pre-Severity Realization Period (Pre-SRP): This
is the period of time developers took to understand the
actual severity of the bug. Therefore, pre-severity real-
ization time is the time between bug reporting time and

A

(Pre-SRP | Post-SRP \
[@ @ L L 4 L]
T| TR Ts TA TF TV
(

AP I FP | VP
| [f

Figure 2: An Example Timeline of a Bug

the time when the severity was changed for the last time.
Mathematically, Pre-SRP = Ts — Tg.

Post-Severity Realization Period (Post-SRP):
This is the time developers took to fix the bug after re-
alizing the actual severity time. Mathematically, Post-
SRP =Tr —Ts.

Bug Verification Period (VP): This is the period
of time that a developer took to verify a bug after it is
marked as FIXED in Bugzilla. Mathematically, V P =
Ty —Tr.

Bug Survival Period (SP): This is the period that a
bug exists in the system. Ideally it should be the time
period between the bug introduction time (77) and bug
fixing time (I7). However, in our study it is the time
period between Tr and Tr. The timestamps of bug in-
troduction (77) and bug reporting (1'z) can be certainly
different, since a bug can remain dormant for a long
time [7]. Although there are some algorithms [14] to
identify bug introducing changes, it is difficult to map
those changes to the associated bug reports. Therefore,
we preferred bug reporting time over bug introduction
time. Furthermore, since Tx is always later than 77
(i.e., a bug is always reported after the bug introduc-
ing changes are committed), our calculated bug survival
period (S P) never overestimates actual SP. However,
we do not subtract the time period from S P when a bug
was temporarily closed. Figure 2 visually presents all
the terms and metrics in a timeline.

3.3. Identification of Faulty Source Code

Previous studies [13] showed that when developers
fix bugs they often put the bug id in their commit mes-
sage. Therefore, to get the version histories and commit
messages of these four projects, first we accessed their
git repositories. Then using JGit APIs, we extracted all
the commit messages from the histories and searched all
numbers.'3-14:15:16 Then we matched each number with
the bug IDs. To further ensure that those are indeed

Bhttp://www.eclipse.org/jgit/

14git://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
13 git://source.winehq.org/git/wine.git/
160it://sourceware.org/git/binutils-gdb. git

Table 2: Bug Fix Time

Time JDT CDT PDE Platform Linux WineHQ GDB

#Bugs [%][#Bugs [%][#Bugs [%]|#Bugs [%][#Bugs [%][#Bugs [%][#Bugs [%]
<1 day 5,009 26.54| 1,911 26.32| 2,154 31.43| 8,244 24.44| 578 9.99 673 4.69| 1,591 20.75
1-7 days | 4,788 25.37| 1,485 20.45| 1,570 22.91| 7,420 21.99| 881 15.23| 1,809 12.62| 1,470 19.17
8-30 days | 3,704 19.63| 1,230 16.94| 1293 18.86| 6,442 19.09| 1,221 21.11| 1,656 11.55| 1,358 17.71
1-6 mon. | 3,604 19.10| 1,426 19.64| 1,212 17.68| 7,101 21.05| 1,573 27.2| 2,837 19.79| 1,654 21.57
6-12 mon. 855 4.53| 567 17.81 353 5.15| 2,173 6.44| 578 9.99| 2,062 14.38| 511 6.66
>1 year 913 4.84| 641 8.83| 272 3.97| 2,358 6.99| 953 16.48| 5,301 36.97| 1,083 14.13
Total 18,873 7,260 6,854 33,738 5,784 14,338 7,667

commit 768bl07ed4b3belacf6f58e914afed£337c00932b
Date: Fri May 4 11:29:56 2012 +0200

drm/i915: disable sdvo hotplug on 1i945g/gm

v2: While at it, remove the bogus hotplug_active read,
and do not mask hotplug_active[0] before checking
whether the irg is needed, per discussion with Daniel
on IRC.

Bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=38442

Figure 3: A bug fixing commit for #38442 in Linux Kernel

bug IDs, we only accepted those commits that contain
additional information. For example, in Java projects,
the term bug (s) (case insensitive) was present. In the
Linux Kernel, we found that developers referred to the
Bugzilla URL (as shown in Figure 3), whereas in GDB
the bug was referred by the term PR. In this way, we re-
duced the chance of getting false positives, although we
might missed some true mappings.

For one of our considered projects, WineHQ, how-
ever, the above process gave no results. We thus con-
sulted with a developer from the WineHQ community
who informed us that in this community the convention
is for the bug report to refer back to the commit, rather
than the commit referring to the bug report. Indeed, in
the WineHQ Bugzilla, there is a dedicated field for a git
commit id. However, many of these fields were empty
since the field is not required. In this way, we identified
the bug fixing commits for those long-lived bugs, where
the information was available in the commit messages.
Then we used git diff to compute following metrics for
bug fixes:

Number of Changed Files: It is the number of files
that went for changes in the bug fixing commit. If a bug
was fixed in multiple commits, it is the total number of
distinct files in all commits.

Number of Hunks: A hunk is a chunk of adjacent
lines that was changed. For a bug fix spanning over mul-

tiple commits, it is total number of hunks in all commits.
This is useful to understand how many times developers
had to move here and there to fix a bug.

Code Churn: This is the total number of changed
lines. Since we use git diff itself, the changes in com-
ments were counted as well. For multiple commits, it
is the total number of changed lines in all commits. It
should be noted that if a line is changed, it is considered
as a line deletion first and then addition of another line.
Thus the value of code churn for a line change is two.

4. Study Results

In this section, we present the experimental results
which answer our research questions.

4.1. RQI: What proportion of the bugs are long lived?

The first question of any empirical study is how large
is the population that we want to study. The answer
is important since if the population is small, there may
be little reason to worry about them. In this cases, our
population of interest is long lived bugs.

The definition of long lived bugs is subjective since
the time threshold for deciding whether a bug is long
lived or short lived could vary across projects, persons,
or studies. In this research question, we analyze the sur-
vival time of all the fixed bugs in each subject system
and define the long lived bugs more concretely for our
study.

Although many of us believe that a bug could be con-
sidered as long lived if it survives more than six months,
in this study we have considered only those bugs as long
lived that survive more than one year. There are two
main reasons behind this decision. First, we wanted
to be more conservative so that we can investigate re-
ally long lived bugs. Second, the release cycle of the
subject systems that we considered vary from 2 months

N W OO
|

Survival Time (Years)

JDT —
CDT —
PDE -
Platform —
Linux —
WineHQ
GDB —

Figure 4: Suvival Time of Long Lived Bugs

to one year. More specifically, the Eclipse Founda-
tion has coordinated an annual simultaneous release for
all projects. GDB release-interval varies from 6 to 10
months. Linux Kernel community make most of the sta-
ble releases between 3 months and 1 year. Therefore, if
a bug was not fixed in one year, it is expected that the
bug propagated through at least two major releases. And
it would not be a pleasant experience for a user if s/he
experiences the same bug in subsequent major versions
of a software.

To investigate long lived bugs, we first investigate
how active developers were in fixing bugs in these sub-
ject systems. To this end, we group bugs based on
their survival period (S P, defined in Section 3.2) and
count the number of bugs in each group as shown in
Table 2. Results show that around 50%(+/-4%) of the
total (fixed) bugs in Java projects were fixed within a
week. In C projects, the bug fixing rate was slower than
that of Java projects; it took a month to fix around 50%
of total bugs (except WineHQ). This indicates that even
in open source project, developers are active in fixing
bugs. However, as the results show, 10% to 17% of bugs
in Java projects and 20% to 50% of bugs in C projects
took more than six months to be fixed.

Even after considering such a conservative definition,
we found more than 4,184 and 7,337 long lived bugs in
Java and C projects respectively. It should be noted that
all these bugs eventually got fixed. Therefore, they all
are valid bug reports. we believe these are large num-
bers and thus it is important to investigate them quanti-
tatively and qualitatively.

Figure 4 presents the survival time distribution of
long lived bugs. It shows the average (dot in the box),
median (line in the box), upper/lower quartile, and
90th/10th percentile of survival time. We limit the val-
ues of Y axis to 6 years to better represent the figure.

Table 3: Importance of Long Lived Bugs
System BIkr. Critical Major Normal Minor Trivial

JDT 1 5 49 712 119 27
CDT 2 4 61 523 37 14
PDE 0 6 20 224 13 9

Platform 6 42 221 1856 170 63
Linux 32 130 N/A 743 48 N/A
WineHQ 24 39 185 4200 632 221
GDB N/A 53 N/A 977 53 N/A

From the figure, we see that at least 25% (upper quar-
tile) of long lived bugs took more than 2.5 years to be
fixed. For GDB, it is close to 5.5 years.

Among the total number of bugs that developers
fixed, 5%-9% in Java projects and 14%-37% in C
projects took more than one year to be fixed.

4.2. RQ2: How important long lived bugs are in terms
of severity?

There are two fields in Bugzilla that indicate the im-
portance of a bug: i) severity and ii) priority. How-
ever, based on their usage, severity is more important
than priority to understand the importance, since sever-
ity represents the degree of the impact of the bug on the
operation of the system. On the other hand, priority of-
ten describes the relative work schedule of fixing a bug
set by the developers for a given milestone. For exam-
ple, if there are 10 critical bugs in a system but develop-
ers have time to fix only five bugs, they can set higher
priority to any five bugs based on some consideration
and set a relatively lower priority to others. Sometimes,
developers can set high priority to even a less severe
bug, if it is expected to fix easily than a critical bug.
Therefore, for this research question, we emphasize on
severity over priority. Our initial hypothesis was that
most of the long lived bugs are either minor or trivial,
which do not have serious effects.

4.2.1. Bug Severity

Table 3 presents the importance of long lived bugs
based on their severity.

Our results show that almost 90% of the long lived
bugs have severity level of normal or above both for
Java and C projects. Project-wise the proportion varied
from 84% to 95%. According to the Eclipse Bugzilla
documentation, only minor and trivial bugs do not
interfere with normal work or use, which means that any
bugs having severity level normal and above adversely

Table 4: Analysis of Severity for Critical and Major Bugs

System # Bugs Severity Proportion Maximum

Changed Changed
JDT 54 23 42.59% 3
CDT 65 21 32.31% 4
PDE 26 11 42.31% 3
Platform 263 115 43.73% 5
Linux 152 14 8.64% 1
WineHQ 248 68 27.42% 3
GDB 53 10 18.89% 1

affect user experiences. Taking that information into ac-
count and assuming similar interpretation applies to C
projects, we believe that the delay in the long bug fixing
process was not due to the fact that they were trivial.

Now let us a take closer look into more severe bugs:
critical and major (blocker bugs generally do
not interfere users directly). Our results show that for
Java projects, only 1% to 2% of long lived bugs were
critical, whereas 5% to 10% of long lived bugs
were major in each system. The absolute number
ranged from 4 to 42 for critical and 20 to 221 for
major bugs. For C projects, there are 463 bugs in total
that are either ma jor or above.

Considering that a critical bug causes program
crashes and/or data loss and a major bug causes ma-
jor loss of function, these numbers are high, especially
since all of them took more than one year to be fixed.

4.2.2. Severity Realization Period (SRP)

As a part of this research question, we are also in-
terested in investigating how long it takes to understand
the severity of the bugs. Our initial hypothesis was that
perhaps it took long time to realize the severity of these
important (critical or major) bugs. But once the
severity was realized it should not take long time to fix
them since they are important problems to solve.

For this analysis, we have considered only those bugs
that have severity level of major or higher because
they are the most important ones. Table 4 represents
the number of critical and major long lived bugs
in each system, the number of bugs whose severity level
was changed, and the maximum number of time sever-
ity level changed for a bug. Results show that for Java
projects the severity level of 32%-43% of such bugs was
corrected later. For C projects, the change in severity
level is only from 8% to 27%. This indicates that the
bug reporters could understand the actual severity level
of more than 50% of the bugs for Java projects and 70%-
90% of the bugs for C projects at the time of bug post-

Table 5: Time Needed for Understanding Bug Severity

System | Pre-SRT (Days) Post-SRT (Days)

Avg. Med. Max.|Avg. Med. Max
IDT 374 163 1890| 338 320 1712
CDT 80 7 590| 760 700 1442
PDE 348 388 1274| 300 34 1201

Platform | 351 164 2208| 498 410 2730
Linux 150 50 1228 644 572 1204
WineHQ | 227 55 1756| 649 560 2199
GDB 1090 756 2375| 377 230 1394

ing. Therefore, it is evident that developers took more
than one year to fix a large number of bugs even after
they realized that the bugs are very important.

Now we analyze the bugs, whose severity has cor-
rected later. Table 5 presents the average, median,
and maximum Pre-SRT and Post-SRT (defined in Sec-
tion 3.2) values. Our results show that it took almost a
year on average to realize the correct severity level of
the bug in three of the four Java projects. The only ex-
ception is CDT, where the average Pre-SRP was 80
days. The maximum Pre-SRP of each system shows
that for some bug it took several years to realize the
severity. On the other hand, for these bugs, it took an-
other year on average to be fixed. For CDT, which was
the best in terms of average Pre-SRP, Post-SRP was
more than two years. From the maximum Post-SRP,
we see that some bugs took even three to eight years
to be fixed after developers realized the actual severity
level. Therefore, our results indicate that for most long
lived bugs in Java projects, Post-S R P was high regard-
less of their Pre-SRP.

We see a varying Pre-SRT in C projects. For Linux
and WineHQ, severity levels were fixed within six
months and a year respectively. For GDB, it took more
than three years to understand the actual severity level.
However, it should be noted that the severity level of
most of the important bugs in C project was known
at the time bug posting. However, the Post-SRT was
more than a year regardless of whether the actual sever-
ity level was understood in advance or later. From the
maximum Post-SRT, we see that some ma jor or higher
severe bugs were fixed after six years.

4.2.3. Duplicate Bugs

Severity is certainly the most reliable information to
understand the importance of a bug since it is deter-
mined by the bug reporters and supported by develop-
ers. However, a large number of duplicate bugs also
may express their importance since they often indicate

Table 6: Duplicate Bugs

System #Bugs # Duplicate # Duplicate Bugs (NOD) Max

Bugs 1 2 3 4 5 >5 NOD
JDT 913 210 101 42 27 10 13 17 26
CDT 641 52 36 8 4 3 0 1 6
PDE 272 50 32 8 2 0 2 6 15
Platform 2,358 495 271 102 51 23 15 33 20
Linux 953 63 46 11 2 2 0 2 10
WineHQ 5,301 603 386 91 41 22 21 42 46
GDB 1,083 102 87 13 1 0 1 0 5

that the scope of the master bug is large and/or the af-
fected users/other developers are getting frustrated [4].
Therefore, in addition to the severity level, we also in-
vestigated the number of duplicated bugs.

Table 6 presents an overview of duplicated bugs of
long lived bugs. Results show that for 9% to 23% of
long lived bugs in Java projects, users/developers sub-
mitted multiple bug reports. For C projects, the pro-
portion of duplicate bugs varied between 6% and 11%.
From the maximum number of duplicate bugs, we see
that some bugs have more than 20 duplicated bug re-
ports in Java projects. In WineHQ, there is a bug (id
#6971), for which 46 duplicate bug reports were sub-
mitted. The middle columns present more fine grained

Table 7: Bug Assignment Time Vs. Bug Fixing Time
System |Assign. Period (AP) Fixing Period (FP)
Avg. Med. Max.[Avg. Med. Max
DT 463 374 2745| 407 376 2854
CDT 603 552 2035|330 97 1815
PDE 484 482 2728| 437 393 1622
Platform | 459 373 3326| 407 409 2854
Linux 347 275 1617| 413 363 2472
WineHQ| 489 327 3144| 606 478 2563
GDB 915 605 47321 269 78 3224

Table 8: Reassignments of Long-lived Bugs
System Reassigned Proportion Max. Reassn.

results of duplicated bugs. DT 771 84.45% 14
More than 90% of long lived bugs affect users’ nor- CDT 478 74.57% 8
mal working experiences and thus are important to PDE 174 63.97% 10

& cxp . p Platform 2066 87.61% 12
fix. However, it took a long time to fix these bugs .
.. . . Linux 437 45.86% 8
even after realizing their severity. Moreover, there)
. . WineHQ 399 6.33% 5
are multiple bug reports for these long lived bugs, GDB 367 33.89% 6
which indicate the users’ demand for fixing them. 077

4.3. RQ3: Where was most of the time spent in the bug
fixing process?

A bug fixing process majorly can be divided into
three phases in terms of activity: i) assignment phase
ii) fixing phase, and iii) verification phase. In this re-
search question, we analyze the time taken by team
leads/developers in each phase. Our initial hypothesis
was that perhaps it took a long time to assign long lived
bugs to the appropriate developers. But once the bugs
are assigned, it should not take too long to fix them.

Table 7 presents the average, median, and maximum
time of both assignment period (AP) and fixing period
(F'P) in terms of days for all long lived bugs. Our re-
sults show that it took more than 1.5 years on average
to assign the bugs to the appropriate developers in Java
projects. The median AP also shows that the data is

fairly normally distributed. The maximum AP shows
that it can take more than six years to assign sum bugs
to the correct developers. From Table 8, we can also
observe that most of the long lived bugs in Java projects
are reassigned at least once. The proportion of bugs re-
assigned ranged from 64% to 88%. More than 10% of
long lived bugs were reassigned 5 times or more.

For C projects, the information regarding the first bug
assignment was not present for all bugs. We found the
bug assignment time only for those bugs that was re-
assigned (439, 401, and 366 bugs in Linux, WineHQ,
and GDB respectively). Based on the results from those
bugs, we see that the average bug assignment time in C
projects varies from one year to three years.

Guo et al.[10] have conducted a study to investigate
the reasons for bug reassignment. They observed that
reassignments are not always harmful. In fact many re-
assignments happened to find the appropriate develop-

ers. However, they also observed that the required time
for bug fixes increased with the increase of number of
reassignments. Therefore, they concluded that exces-
sive reassignments are harmful. They delineated five
reasons for bug reassignments: finding the root cause,
determining ownership, poor bug report quality, hard to
determine proper fix, and workload balancing. There-
fore, taking the aforementioned findings into account,
our results indicate that the assignment of these long
lived bugs was complex and time consuming, support-
ing our initial hypothesis.

However, unlike our expectations, the average F'P
for all systems was quite high: around a year. By see-
ing the median F'P for CDT, we understand the data is
skewed. But for the other three subjects, it is not the
case. Also the maximum F'P shows that, like the bug
assignment, it took more than five years for some bugs
to be fixed after they assigned to the right developers.

On the other hand, for the verification period, we
found that most of the bugs were never verified, at least
according to Bugzilla data. However, if they do get ver-
ified, the verification time is pretty small: less than a
month for most of the subject systems.

Bug assignment and bug fixing are still time inten-
sive processes, despite the availability of automatic
bug assignment tools that could have been used.

4.4. RQ:4 What are common reasons for long lived
bugs?

To answer this question, we first manually analyzed
all the critical and major bug reports from JDT.
We have intentionally chosen the highly severe bugs,
since they should be taken seriously by the develop-
ers and thus, we will be able to identify the actual rea-
sons of delay. We also analyzed 50 recent (critical
or major) long lived bugs from PDE and Platform.
Since JDT and CDT are from similar domain, we did
not take any bugs from CDT. Finally, we manually an-
alyze 20 bugs of Linux kernel (10 oldest + 10 recent
long lived bugs with high severity) to check if we find
any new category. In this way, we identified a set of
125 (= 55+25+25+20) bug reports for manual analysis.

Tagging Methodology: As we discussed in Sec-
tion 2, each bug report contains a summary, descrip-
tion and a list of developers comments, which often pro-
vide rich information about the problems associated the
bug. In order to identify the underlying reasons, first, we
read the bug summary and description to understand the
nature of bugs. Second, we carefully analyze develop-
ers’ comments to understand the reasons for any delays

10

since developers often discuss different problems asso-
ciated with a given bug through comments. For most of
the cases, the actual reasons were easily identifiable.

To categorize the reasons for delays, we followed an
open-ended taxonomy. We incrementally analyzed all
the bug reports. For any given bug report, first we iden-
tified the high level reason and checked if the reason
already fits into any of the existing categories. Other-
wise, we create a new category. We have quoted several
key comment(s) for most of the categories to better un-
derstand the tagging procedure. In the few cases where
the reasons were ambiguous, we relied on contextual
information. The following summarizes a taxonomy of
common reasons for long lived bugs that we found in
the subject systems.

1) Hard to understand: Understanding/locating
buggy statements/files in a software project is hard.
Sometimes, identifying even the buggy component can
be hard. For example, there is a bug (#128563) in JDT,
where developers had hard time in understanding if it is
a VM or JDT bug. The following comments explains
the situation:

“I found something quite interesting. If you move the
classes from the two output folders into the same direc-
tory and you run from there, it works fine. We gener-
ate exactly the same bytecodes in both cases. The VM
should behave the same. Might be a VM bug.”

After two years, another developer commented—“/
believe this is our bug, we should not reference a non
accessible type in our bytecode. The fact it works at
times feel like unspecified behavior from the VM.”

2) Uncertain how to fix: Sometimes developers may
know how to solve a bug, but need to wait for mak-
ing the solution consistent/robust with other parts of the
software. The following comments in bug # 3849 rep-
resents such a scenario:

“I would like to defer this until we know how we will
implement the new Code Manipulation Infrastructure.
This is only possible if we get a better undo story. Cur-
rently we can only push undo commands on the refac-
torings undo stack if a file is save. Otherwise the next
save would flush the current undo stack which would
remove the undo object for extract method.”

3) Hard to fix: This kind of bug is hard to fix. There
were lots of group discussions for a long time regard-
ing different alternative solutions and finally the group
agreed on some specific solution.

4) Risky to fix: Sometimes, bugs are caught just be-
fore the release. Then if developers think that it would
be risky to change the relevant code, they generally de-
fer it for the next release although the bug is important.
Then it takes a long time to fix the bug. The follow-

ing developers’ comments on bug #80,000 in JDT rep-
resents such a scenario:

“Will investigate during RC2 whether there’s a low
risk fix for this.”

Two weeks later, the same developer commented:
“Sorry, too risky to touch at this point.”

5) Incomplete fix: This is considered as one of the
common problems for taking a long time to fix bugs.
Developers often miss corner cases while bug fixing and
need to re-fix again until the problem is not fully solved.
Here is a developer’s comment regarding a bug fix for
#38746 in JDT.

“The fix for this problem is not sufficiently robust.
Please see Bug 75454 for more information as to how
things can go wrong. Not only does the situation de-
scribed there happen once, but it happens 60 times on
start-up (10 minutes of start-up time).”

There are also lots of other reasons for incomplete
bug fixes. For a comprehensive set of reasons for in-
complete bug fixes, please refer to [20].

6) Importance was not realized until duplicate
bugs were reported: We found many bugs where there
were some activities around the bug for some time,
which we observed by reading developers’ comments.
After that there was no activity for a long time. Then
somebody pointed out some duplicate bugs and every-
body started talking again; the bug was fixed quickly.
The following comment on bug # 16114 in PDE repre-
sents such an example:

“this one is experienced by several users (see the du-
plicates for more info). Looks like something causes
certain fragment files on the disk to be in use and when
we try to delete the project (even with 'force’ option),
we fail. This leave us with a partially deleted project
that causes more trouble after that.”

7) Reproducibility: There are some bugs that take
a long time to reproduce, but once it is reproduced, it
is fixed quickly. For example, it took 1 year and 4
months to reproduce the bug #268833 in Platform but
took only one day to fix. This problem often happens
from low quality bug report, execution difference due to
platforms, and so on.

There are some interesting bugs, where users know
how to reproduce the bug but it happens for some spe-
cial cases and thus needs some time to reproduce. For
this kind of bug, if users submit the bug without con-
crete data, it takes a long time to reproduce the required
data that developers need to analyze the bug. Therefore,
the bug fix gets delayed although the responsible devel-
oper is ready to fix it. For example, to debug an “out of
memory” problem in JDT (# 54831), developers needed
a heap dump, which was not submitted when the bug

11

was posted. When the assigned developer asked for it,
the bug reporter (who is actually another developer of
JDT) was busy with his own work and could not submit
the heap dump on time. As a result, it took a long time
to fix the bug.

8) Schedule issue: Sometimes developers also feel
that a bug is important to fix. However, they have
more important bugs at hand that should be fixed ear-
lier. Therefore, although the other bugs are important,
they are generally deferred. For example, there is a
blocker bug (#10800) in JDT that prevented users to
put space in VM arguments. Blocker bugs are con-
sidered as the most severe bugs. However, such a severe
bug was deferred due to scheduling issues. Certainly,
other developers were not very happy about that. The
following developers’ comments illustrate the scenario
more clearly.

“Can more explanation be given as to why this issue
has been marked as LATER? Does this mean it will not
be fixed any time soon? If so, I find it very unfortunate
as this is a very serious bug and requires nasty work
arounds. If not, then my apologies...”

In reply, the responsible team leader said: “In this
case, ‘LATER’ means probably not for the final 2.0
release (tentatively scheduled for sometime in May).
Quite simply, this problem was not deemed as critical
as a lot of other problems that need to be solved for 2.0.
The debug committers have A LOT to do before 2.0. But
the beauty of an open source project is that if someone
feels strongly about a particular feature or bug, they can
make a contribution. If you would like to contribute a
fix, I would be happy to review it.”

Finally, it took more than two years to fix the bug.

9) Not aware of fix or reopened due to misunder-
standing: We are not completely certain if these bugs
are really long lived. In this category, some bugs per-
haps fixed earlier but developers have not changed the
status in Bugzilla. Therefore, the reporters or other de-
velopers were not aware of the fix. Later some other
developers just closed the bugs mentioning that proba-
bly the bugs have been already fixed. Another case is
that sometimes reporters misunderstood something and
reopened a given bug again. But then some other devel-
oper clarified the mistakes the reporter was making and
finally again marked it as FIXED and RESOLVED.

10) Infrequent use case: This kind of bug is impor-
tant to fix considering their destruction ability. How-
ever, they are not too frequent use cases. Therefore, de-
velopers just defer it for next milestone. For example,
due to the bug # 130874 in JDT, a user can lose his/her
Java code template references. However, developer de-
ferred it by making following comment.

“We should definitely fix this during 3.5. Too late for
3.4 and really not a very common case.”

11) Others: There are also other reasons for delay
in bug fixing such as expert developers are on vacation,
dependency on other bugs to be fixed, and various doc-
ument fixing.

12) As-usual delay: We have not found any specific
reasons for these bugs by analyzing developers’ com-
ments and thus we considered them as as-usual delay.
If there are some specific reasons (mentioned above) to
make delay, it is highly likely that developers will dis-
cuss it like the other bugs. However, it is also possible
that the fixes were deferred due to scheduling issues.
The following comment for bug #149316 in JDT can be
served as an example of as-usual delay.

“Thanks for the good examples, sorry for the wait.
Jixed > 20080422.”

One may think that since these bug-fixes were de-
layed without any specific reasons, they are probably
not that important or relevant. However, it should
be noted that for this investigation we analyzed only
critical or major bugs. So they are already
marked as important by the reporters or developers. Fur-
thermore, since we ourselves are users of these soft-
ware systems, we understand that many such bugs can
be frustrating. The following represent two summaries
of such bugs:

Bug # 26556 (JDT): “PDE Junit does not read plugin
info from the plugins directory.”

Bug # 43153 (Linux): “Random SATA drives on
PMPs on sata_sil24 cards not being detected at boot
since 3.2/3.4.”

We encountered an interesting finding while analyz-
ing the bug reports manually. We started our manual in-
vestigation with JDT and listed all the common reasons
from there. We have not found any new common rea-
son when analyzing the bug reports for PDE, Platform,
or the Linux Kernel. Therefore, we believe that this is
a comprehensive list of reasons for long lived bugs. It
should be noted that these reasons are not mutually ex-
clusive.

Reasons for long lived bugs are diverse. While prob-
lem complexity, problems in reproducing errors, and
not understanding the importance of some of the
bugs in advance are the common reasons, we ob-
served there are many bug-fixes that were delayed
without any specific reason.

12

Table 9: Reasons of Sampled Long Lived Bugs

Reason # Bugs Bug IDs

1)

13

113870 (PDE), 128563 (JDT), 241241
(Platform), 245008 (Platform), 247766
(PDE), 268833 (Platform), 278598 (PDE),
3022 (Linux), 5534 (Linux), 5637 (Linux),
9905 (Linux), 13484 (Linux), 38442
(Linux)

2)

3849 (JDT), 36204 (JDT), 133072 (PDE)

3)

3849 (JDT), 24951 (PDE), 36204 (JDT),
38746 (JDT), 40243 (JDT), 46407 (JDT),
67425 (JDT), 82850 (JDT), 99137 (JDT),
233643 (PDE), 233773 (Platform), 266651
(JDT), 273450 (Platform), 295200 (JDT),
38442 (Linux), 44161 (Linux),

4)

80000 (JDT), 102780 (JDT)

5)

1766 (JDT), 33035 (JDT), 36204 (JDT),
136135 (PDE), 3410 (Linux), 46171
(Linux),

6)

14

36204 (JDT), 46216 (JDT), 50735 (IDT),
109636 (JDT), 117698 (JDT), 156168
(JDT), 175226 (JDT), 224880 (Platform),
243894 (Platform), 257202 (Platform),
266651 (JDT), 267649 (Platform), 273450
(Platform), 278598 (PDE)

7)

11

1766 (JDT), 39222 (JDT), 54831 (JDT),
82850 (JDT), 83473 (JDT), 195183 (JDT),
262032 (Platform), 294650 (Platform),
298795 (Platform), 2979 (Linux), 31602
(Linux),

8)

3920 (JDT), 19251 (PDE), 46216 (JDT),
67425 (JDT), 224880 (Platform), 235572
(Platform), 277638 (Platform)

9)

12

6437 (JDT), 19248 (PDE), 28637 (JDT),
44035 (JDT), 61744 (PDE), 132333
(PDE), 158589 (PDE), 271373 (Platform),
14563 (Linux), 43981 (Linux), 45031
(Linux), 46161 (Linux)

10)

34033 (PDE), 130874 (JDT)

10

12955 (JDT), 16686 (JDT), 20919 (PDE),
24951 (PDE), 29799 (PDE), 34399 (PDE),
231936 (PDE), 290324 (PDE)

12)

34

21100 (PDE), 26556 (JDT), 38288 (PDE),
39803 (JDT), 51862 (PDE), 89347 (JDT),
95288 (JDT), 97541 (JDT), 111419 (JDT),
128303 (PDE), 129689 (PDE), 149316
(JDT), 154823 (JDT), 175133 (JDT),
181954 (JDT), 209537 (JDT), 226595
(Platform), 234623 (Platform), 235554
(Platform), 236104 (Platform), 237025
(PDE), 238943 (JDT), 258952 (Platform),
262032 (Platform), 267173 (Platform),
275910 (Platform), 277638 (Platform),
279781 (Platform), 285101 (Platform),
5637 (Linux), 11509 (Linux), 38312
(Linux), 41682 (Linux), 43153 (Linux)

Table 10: Analysis of Bug Fixes

System # Bugs #Number of Files (NOF) Med Max

1 2 3 4 5 >5 NOF NOF
JDT 223 80 41 37 10 15 40 2 47
CDT 185 50 32 19 18 8 58 3 237
PDE 105 34 13 13 12 4 29 3 211
Platform 740 349 114 72 47 36 122 2 91
Total 1253 513 200 141 87 63 249 - -
(%) - 4094 1596 1125 694 5.03 19.87 - -
Linux 171 117 28 12 4 3 7 1 19
WineHQ 609 231 203 70 37 29 39 2 51
GDB 33 0 10 2 1 0 20 7 222
Total 813 348 241 84 42 32 66 - -
(%) - 428 29.64 1033 517 394 8.12 - -

4.5. RQ5: What is the nature of bug fixes?

In this research question, we investigate the nature of
bug fixes in terms of source code changes. To do this,
first we identify the bug fixing changes in the source
code for the long lived bugs. Using the methodology
described in Section 3.3, we were able to identify fixed
files for 280, 264, 154, and 1,109 bugs in JDT, CDT,
PDE, and Platform respectively, and 171, 609, and 33
bugs in Linux, WineHQ, and GDB respectively. Then,
we compute the number of changed files, number of
hunks, and code churns for each bug-fix, as described
in Section 3.2. These metrics are often used to get a
rough idea about change effort, although understanding
the actual change effort is difficult and depends addi-
tionally on the implemented algorithm and code com-
plexity itself. Analogous to previous study results [30],
our initial hypothesis was that the required source code
changes to fix most of the long lived bugs would be
large.

4.5.1. Changes at File Level

To understand the nature of bug fixes, we first an-
alyze the source code changes in terms of number of
changed files. As we stated in our initial hypothesis, we
expected a large number of changed files for most long
lived bugs. Surprisingly, from the results in Table 10,
we see that for both Java and C projects, more than 40%
of fixes involved only one source code file. This propor-
tion varied from 27% to 47% among the Java projects,
whereas it varied from 38% to 68% in C projects (ex-
cept GDB). For only 30% of long lived bugs, the re-
quired changes spanned over more than three files in
Java projects, whereas it was only 17% for C projects.
From our results it is also noticeable that the maximum

13

number of changed files in each system is quite high.
However, when we manually investigated such changes,
we found they are often moving files from one directory
to another, or adding a test suite to test a specific or mul-
tiple bugs.

4.5.2. Number of Hunks

Now we analyzed the changes in terms of hunk size to
get more fine grained results. A large number of hunks
indicates that developers needed to modify a lot of dif-
ferent places to fix the bugs. Figure 5 presents the num-
ber of bugs for each hunk size in Java projects. Our
results show that 43% to 53% of bugs in Java projects
was fixed by changing five hunks or less. In C projects,
the proportion was even higher. 76% and 67% of bug
fixes in the Linux Kernel and WineHQ respectively in-
volved 5 hunks or less. More than 70% of long lived
bugs for JDT and Platform was fixed within 10 hunks,
whereas the numbers are 16 and 17 for PDE and CDT
respectively. The median number of hunks for all long
lived bugs is only 5 or less for all projects except GDB.
Considering that, this is an overestimated measurement
of source code changes since we have analyzed textual
diff results (so changes in comments have been also
counted), we believe the number of hunk is low. It
should be noted that we presented all the bugs that in-
volved more than 100 hunks in the graph at the end.
Therefore, there is a spike at the end of some graphs.

4.5.3. Code Churn

We investigate further low level changes (at line
level). Figure 6 presents the distribution of code
changes in terms of code churns (defined in Sec-
tion 3.2). From the figure, we see that a consider-

35

& 30 o 30 & 30
2 25 325 2 25
g 20 g 20 g 20
E 15 kS 15 E 15
810 ‘ g10 H 2 10
S & 5 £ 5

0 0 0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of hunks (JDT) Number of Hunks (CDT) Number of Hunks (Linux)

35 35 35
& 30 & 30 & 30
825 g 25 8 2
22 £ 20 2 2
215 E15 £ 15
§. 10 g10 § 10
& 5 a5 a 5

A /

20 40 60 80 20

Number of Hunks (PDE)

40

Number of Hunks (Platform)

0 20 40 60 80

Number of Hunks (WineHQ)

60 80 100 100

Figure 5: Number of Hunks Vs. Proportion of Bugs

able proportion of bugs required major changes. More
specifically, for 23% of bugs, the value of code churn
was more than 100. However, there are even a larger
proportion of bugs that required changes less that 20
lines. For example, for 8-14% of bug fixes in Java
projects, the value of code churn was from 1 to 5, for
7-12% the value of code churn was from 6 to 10, and
for 9-13% the value of code churn was from 11 to 20.
For the Linux Kernel and WineHQ, the proportion was
even higher. 40% of long lived bugs in the Linux Kernel
and 20% of bugs in WineHQ required changes in only
10 or less lines of code. Recalling Section 3.2, it should
be noted that the code churn value of one line change is
2, whereas an addition or deletion of line is 1. There-
fore, a value of code churn value of 10 may be changes
in only five lines. We understand that some smaller bug
fixes can be complex. But at the same time, we also
stress that many long lived bugs could be fixed quickly
through careful prioritization.

It should be noted that the overall bug fixing changes
in GDB seems to be larger than other projects. How-
ever, as Table 10 shows, we were able to identify the
bug fixing changes for only 33 bugs in GDB. Therefore,
it is very difficult to draw any conclusion from GDB.

4.5.4. A Qualitative Analysis

Now we present three bug fixes to discuss how a sim-
ple fix can take a long time to be fixed. To select these
example-fixes we considered the following criteria: 1)
they are from different subject systems, ii) they are im-
portant, i.e., critical or major (or high for linux kernel),
and iii) their descriptions are concise enough to present
in the paper.

14

Code Churn (LOC)

JDT }Eu——u{

I
|

WineHQ }E{

1

PDE —}
Platform —

Linux —

GDB }-

Figure 6: Code Churn of Long Lived Bugs

Bug # 38260 (SWT): This is a bug in the SWT com-
ponent of Eclipse Platform. The bug was first reported
as having a normal severity level. However, within 15
days, it was reconsidered to be critical. The fol-
lowing is the bug description provided by the reporter:
“When I use the CCombo with the dialog, the dropdown
list shown in the back of the Dialog.

1 did as following.

1. Create one sample application with a Group.

2. The parent of group is one shell.

3. I create a dialog.

4. I put my application to this dialog. and change the
Group’s parent as the dialog’s parent.

Now the above descripbed pbm occured.”

From the bug comments, we found that the bug was

--- a/bundles/org.eclipse.swt/Eclipse SWT Custom Widgets/common/org/eclipse/swt/custom/CCombo. java

+++ b/bundles/org.eclipse.swt/Eclipse SWT Custom Widgets/common/org/eclipse/swt/custom/CCombo

. java

@e -76,7 +76,7 @@ public CCombo (Composite parent, int style) {

if ((style & SWT.READ_ONLY)
if ((style & SWT.FLAT)

= 0) textStyle |= SWT.READ_ONLY;
1= 0) textStyle |= SWT.FLAT;

text = new Text (this, textStyle);
- popup = new Shell (getShell (), SWT.NO_TRIM);
+ popup = new Shell (getDisplay (), SWT.NO_TRIM | SWT.ON_TOP);

int listStyle = SWT.SINGLE | SWT.V_SCROLL;
if ((style & SWI.FLAT) != 0) listStyle
if ((style & SWI.RIGHT_TO_LEFT) != 0)

|= SWT.FLAT;

listStyle |= SWT.RIGHT_TO_LEFT;

Figure 7: Bug Fixing Changes for # 38260 in SWT Component of Platform

reproduced within three days and the actual problem
was identified within a month. However, it took more
than ten months to fix the bug. Figure 7 presents the
changed code for fixing this bug and it was only a one
line change.

Bug # 195183 (JDT): This is a major bug in

the Debug component in JDT. The bug summary and
description (condensed) are as follows: “JavaClass-
Path.performApply() uses original instead of working
copy causes NPE”
“Steps To Reproduce: I use JavaClassPath in my custom
launch config and has some code like:”
code snippet| “and as soon as performApply() is called
isDefaultClasspath() fails since it is passed in a null as
a launchconfig even though I passed in a newly created
one. This worked fine in eclipse 3.2 and it seem the cul-
prit is that we.getOriginal() is used instead of just wc.
Resulting in a NPE.”

From the bug description, we can see that the bug re-
port was very specific. The reporter clearly pointed out
that there are some problems with the getOriginal()
APL Interestingly, from the bug-fix (Figure 8), we
found that only one line was changed and the change
was the removal of the getOriginal() API. But by that
time, more than two years had passed.

Bug # 3410 (Linux Kernel): This is a bug with
high severity in the Linux Kernel. The bug summary
and description provided by the reporter are as follows:

Summary: “passive mode is not left, once entered”

Description: “Steps to reproduce:
echo “xx:xx:low_value:xx:xx:” >/proc/acpi/
thermal_zone/+/trip_points
echo “xx:xx:high_value:xx:xx:” >/proc/acpi/
thermal_zone/+/trip_points
passive mode still active, even the temperature is far
below the trip point

With this bug, there was an attempt to fix it on the
same day the bug was reported. However, the fix was
incomplete, which was identified on the next day. Al-
though there was some discussion regarding the bug

15

around that time, it remained unfixed for almost one
and half year. Figure 9 shows the second fix of the bug,
which made the first fix complete. The patch involved
changes in only two lines of code.

We believe that one year or more is too long time to
fix the bugs like these examples, especially considering
that they were considered as very important.

Unlike previous studies, we found that a bug surviv-
ing for a year or more does not necessarily mean that
it requires a large fix. We found that 40% of long-
lived bug fixes involved few changes in only one file.

5. Developers’ Survey

Since we have not found any specific reasons for a
significant proportion of long lived bugs (classified as
“as-usual delay”), and many long lived bugs involved
small fixes, we believe that many such delays could have
been avoided if developers could predict the severity
and change effort in advance. To investigate what devel-
opers think about our assumption, we conducted a sur-
vey. We sent the survey to all the developers who con-
tributed to the subject projects from year 2010. In total,
we sent the survey to 104 developers. Among them, 38
developers do not use their email address anymore.

In the survey, we briefly explained our results and
possible actions (e..g. predicting severity, change ef-
fort, prioritization, etc.), and asked developers if they
agree with us or not. We also asked what actions can
be taken to minimize the number of long lived bugs, if
they think otherwise. We got responses from five devel-
opers. Three developers agreed that tool support to pre-
dict severity and change effort may be helpful. Further-
more, some of them think that understanding the impact
of change is even more critical and often a major reason
for delay in making bug fixing commits. One developer
asked us if it is really possible to develop such tools in-
stead of answering our survey. Another developer said

-—— a/org.eclipse. jdt.debug.ui/ui/org/eclipse/jdt/debug/ui/launchConfigurations/JavaClasspathTab. java
+++ b/org.eclipse.jdt.debug.ui/ui/org/eclipse/jdt/debug/ui/launchConfigurations/JavaClasspathTab. java
@e -272,7 +272,7 @R public class JavaClasspathTab extends AbstractJavaClasspathTab {

public void performApply (ILaunchConfigurationWorkingCopy configuration) {

if (isDirty()) {
IRuntimeClasspathEntry[] classpath
+ boolean def =
if (def) {

getCurrentClasspath();
- boolean def = isDefaultClasspath(classpath, configuration.getOriginal());

isDefaultClasspath (classpath, configuration);

configuration.setAttribute (IJavaLaunchConfigurationConstants.ATTR_DEFAULT_CLASSPATH,

(String)null);

configuration.setAttribute (IJavaLaunchConfigurationConstants.ATTR_CLASSPATH,

(String)null);

Figure 8: Bug Fixing Changes for # 195183 in Debug Component of JDT

--— a/drivers/acpi/processor_thermal.c
+++ b/drivers/acpi/processor_thermal.c

@@ -102,8 +102,8 @@ static int cpu_has_cpufreqg(unsigned int cpu)

struct cpufreqg policy policy;

if ('acpi_thermal_cpufreq_is_init || cpufreq_get_policy (&policy, cpu)

- return —-ENODEV;
- return 0;

+ return 0;

+ return 1;

Figure 9: Bug Fixing Changes for # 3410 in Linux Kernel

that duplicate bug report detection or improving bug re-
port quality can be more useful.

6. Threats to Validity

This section discusses the validity and generalizabil-
ity of our findings. In particular, we discuss Construct
Validity, Internal Validity, and External Validity.

Construct Validity: We used two artifacts: bug re-
ports from the bug tracking system and source code
changes from the version history, which are generally
well understood. We have used also well known met-
rics in our data analysis such as various time periods,
the number of changed files, the number of hunks, code
churns, which are straightforward to compute. Both
the used dataset and version histories are also publicly
available, which enable the replication of this study.
Therefore, we argue for a strong construct validity.

Internal Validity: In our study, we relied on the in-
formation from the bug tracking system and version his-
tories. However, the information in these systems may
not be completely accurate. For example, a change re-
quest can be actually an enhancement but it could be
misclassified as a bug [11]; the severity level associated
with some bugs may not reflect the actual severity lev-
els. Furthermore, a developer may commit a bug fixing
change a long time after she actually fixed the bug. Sim-
ilarly, a tester may change the bug status from FIXED
to VERIFIED along time after she actually verified the
bug. Although itis very difficult to completely eliminate
these threats, we performed extensive manual investiga-

16

tions and qualitative analyses, and provided many con-
crete examples throughout the paper to minimize these
threats.

To delineate the common reasons of long lived bugs,
we manually analyzed bug reports. There might have
been some unintentional misinterpretations during the
manual verification due to the lack of domain knowl-
edge or the lack of useful contextual knowledge. How-
ever, we held extensive discussions to minimize this
threat.

We used traditional heuristics to find mappings be-
tween bug fixing changes and associated bug reports.
Although, in this way, we missed many bug fixing
changes, the precision of our result is very high, which
is important for our study. ReLink [29] is a more ad-
vanced algorithm that improves the recall quite a bit for
finding the mappings. However, it also sacrifices some
precision. In future, we would like to use ReLink to see
how it affects our results.

The phenomena studied had yearly major releases.
Systems with more frequent release cycles may well ex-
hibit different phenomena, although there will still be
long lived bugs. The number of release cycles and the
lapse times for long lived bugs in this context are likely
to be different.

External Validity: We have used seven subject sys-
tems in our experiment and all of them are open source
projects. Although, they are very popular projects, our
findings may not be generalizable to other open source
projects or industrial projects. However, the Java dataset
that we used has more than 165,000 bug reports, and the

C dataset we created contains more than 77,000 bug re-
ports, which is large. Furthermore, the consistent find-
ings from both Java and C projects make our results
more generalizable for large open source projects. How-
ever, additional confidence could be achieved by adding
more subject systems (both open source and industrial).

7. Related Work

The study of software bugs/faults has been an ac-
tive research area for nearly two decades. Perry and
Stieg [21] were among the first to analyze software
faults in a large evolving software system. Since then,
researchers analyzed various software artifacts relevant
to bugs (e.g. bug report, bug fixing changes) to under-
stand and to improve different steps (e.g. bug reporting,
triaging, localizing, fixing) of the bug fixing processes.

Thung et al. [26] investigated when a bug should be
reported. Bettenburg et al. [3] studied the qualities of a
good bug report. In another study, Bettenburg et al. [4]
investigated the extents and reasons of duplicated bug
reports. They presented empirical evidences that du-
plicate bug reports are not necessarily bad. They often
provide additional information, which is important for
automatic bug triaging, bug assignment, and localiza-
tion. Guo et al. [9] characterized and predicted which
bugs get fixed. They noted that in addition to the impor-
tance of bugs, there are several other factors that affect
whether a bug would get fixede.g., the reputation of bug
reporters, influence of seniority, personal relations and
trust, etc. In another study [10], the same authors inves-
tigated the reasons for bug reassignment (described in
more detail in Section 4.3). Lamkanfi et al. [15] and
Tian et al. [27] predicted the severity and priority of
bugs respectively. Anvik et al. [2] and Shokripour et
al. [25] proposed approaches for automatic bug assign-
ment. Saha et al. [23] and Zhou et al. [32] proposed
different approaches for automatic bug localization. To
complement these studies, in this paper, we focused on
long lived bugs to understand their characteristics and
reasons.

The work closest to ours is the study of bug-fix time
prediction, since these studies also identify the factors
that are correlated to bug fixing time. Weiss et al. [28]
considered the text (summary and description) in the
bug report as the prime factor and used that to pre-
dict bug fix time. Panjer [19] observed that comment-
ing activity, bug severity, product, component, and ver-
sion are the most influential factors in predicting bug
fix time. Giger et al. [8] found that the assigned de-
veloper, the bug reporter, and the month when the bug
was reported have the strongest influence on the bug

17

fixing time. Zhang et al. [31] also found the same
results for commercial projects. Anbalagan et al. [1]
found a strong relationship between bug fixing time and
the number of people participating in the bug report.
Marks et al. [17] observed different results for different
projects. They found that bug fixing time is important
for Mozilla project, whereas, bug severity is the key for
Eclipse.

While the aforementioned studies vary in terms of
analysis and techniques used, some of the common ap-
proaches used in these studies are that researchers used
various machine learning or data mining techniques to
analyze the whole bug dataset in identifying the over-
all factors affecting bug fixing time. Bhattacharya and
Neamtiu [5] pointed out that most attributes used by
prior work do not correlate with bug-fix time when an-
alyzed in isolation, and thus they emphasized on find-
ing new attributes that correlate with bug-fix time in
isolation. We stress that it is also important to ana-
lyze various kinds of bug-fixes in isolation to gain bet-
ter insight about specific group of bugs. For example,
Shihab et al. [24] studied and predicted reopened bugs,
Park et al. [20] investigated supplementary bug-fixes,
and Ngyuen et al. [18] analyzed recurring bug-fixes. In
this study, we analyzed long lived bugs to advance em-
pirical knowledge further regarding long-term delays in
the bug fixing process.

There is another group of studies that investigated
the actual source code changes for bug fixes to study
bug fixing time. Canfora et al. [6] found relationships
between different program constructs and bug survival
time. For example, exception handling leads to low bug
survival time. Zhang et al. [30] found that bug fixing
time increases with the increase of code churns. In our
study, we have also analyzed the source code changes
for long lived bug-fix and showed that many long lived
bugs involved only few changes in one file.

8. Conclusion

Bug fixing is a fundamental and critical activity in
the software development and maintenance phases since
buggy behavior may cause not only costly failures but
also can affect user’s overall experiences with the soft-
ware product. In this paper, we showed that although the
software development and maintenance processes have
advanced a lot, there are still a significant number of
bugs in each project that survive for more than a year.
More than 90% of these long lived bugs may have af-
fected users’ normal working experience. The average
bug assignment time was more than one year and the
bug fix time after the assignment was another year on

average. When we analyzed the bug descriptions and
the developers’ comments around these bugs, we found
that the reasons for long lived bugs are diverse. While
problem complexity, problems in reproducing, and not
understanding the importance of some of the long lived
bugs in advance are the common reasons, we observed
there are many bugs that were delayed without any spe-
cific reasons. Finally, by investigating the actual source
code changes for these long lived bugs, we noted that
a bug surviving for a year or more does not necessarily
mean that it requires a large fix. In fact, we found 40%
of long-lived bug fixes that involved few changes in only
one file. Most importantly, all of the findings are con-
sistent across the projects that we considered regardless
of domains or programming languages.

In summary, our results indicate that the overall bug
fixing time of many, if not all, long lived bugs can be re-
duced through careful prioritization, and by predicting
their severity, change effort, and change impact. Our
findings also indicate that although there are a number
of tools for supporting bug triaging and fixing (e.g. au-
tomatic bug assignment, bug fix time prediction), we ap-
pear to realize very few benefits from them. There may
be two possible reasons: i) developers are not aware that
these tools exist, or ii) the tools do not meet developers
needs or expectations. In the future, we plan to conduct
a developers survey to understand the reasons for this
phenomenon. We believe all of these findings together
will play an important role in developing new and more
effective approaches for bug triaging as well as improv-
ing the overall bug fixing process.

Acknowledgement: We thank Ahmed Lamkanfi at
the University of Antwerp for extending their bug Java
dataset significantly for our study, and Julia Lawall at
Inria/LIP6/UPMC/Sorbonne University, France, for her
help creating C dataset. This research was supported in
part by NSF Grants CCF-0820251 and CCF-0845628.

[1] P. Anbalagan and M. Vouk. On predicting the time taken to
correct bug reports in open source projects. In Proceeding of
the International Conference on Software Maintenance, pages
523-526, 20009.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug?
In Proceeding of the International Conference on Software En-
gineering, pages 361-370. ACM, 2006.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In Proceeding
of the International Symposium on the Foundations of Software
Engineering, pages 308-318. ACM, 2008.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Dupli-
cate bug reports considered harmful...really? In Proceeding of
the International Conference on Software Maintenance, pages
337-345, 2008.

P. Bhattacharya and I. Neamtiu. Bug-fix time prediction models:
can we do better? In Proceeding of the Working Conference on
Mining Software Repositories, pages 207-210. ACM, 2011.

(2]

[3]

[4]

[5]

18

[6]

[7]

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

(23]

G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta. How
long does a bug survive? an empirical study. In Proceeding of
the International Conference on Software Maintenance, pages
191-200. IEEE Computer Society, 2011.

T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan. An em-
pirical study of dormant bugs. In Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, pages 82-91.
ACM, 2014.

E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of
bugs. In Proceeding of the International Workshop on Rec-
ommendation Systems for Software Engineering, pages 52-56.
ACM, 2010.

P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Char-
acterizing and predicting which bugs get fixed: an empirical
study of microsoft windows. In Software Engineering, 2010
ACMY/IEEE 32nd International Conference on, volume 1, pages
495-504. IEEE, 2010.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Not
my bug! and other reasons for software bug report reassign-
ments. In Proceedings of the ACM 2011 conference on Com-
puter supported cooperative work, pages 395-404. ACM, 2011.
K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature:
How misclassification impacts bug prediction. In Proceedings
of the 2013 International Conference on Software Engineering,
pages 392-401. IEEE Press, 2013.

N. Japkowicz. Learning from imbalanced data sets: A compar-
ison of various strategies. In Proceeding of the AAAi Workshop
on Learning from Imbalanced Data Sets, pages 10-15. AAAI,
2000.

S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying soft-
ware changes: Clean or buggy? IEEE Transaction on Software
Engineering, 34(2):181-196, Mar. 2008.

S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead. Au-
tomatic identification of bug-introducing changes. In Proceed-
ing of the Automated Software Engineering, pages 81-90. IEEE,
2006.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting
the severity of a reported bug. In Proceeding of the Working
Conference on Mining Software Repositories, pages 1-10, 2010.
A. Lamkanfi, J. Pérez, and S. Demeyer. The eclipse and mozilla
defect tracking dataset: a genuine dataset for mining bug infor-
mation. In Proceeding of the Working Conference on Mining
Software Repositories, pages 203-206. IEEE Press, 2013.

L. Marks, Y. Zou, and A. E. Hassan. Studying the fix-time
for bugs in large open source projects. In Proceeding of the
Promise, pages 11:1-11:8. ACM, 2011.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and
T. N. Nguyen. Recurring bug fixes in object-oriented programs.
In Proceeding of the International Conference on Software En-
gineering, pages 315-324, 2010.

L. D. Panjer. Predicting eclipse bug lifetimes. In Proceeding of
the Working Conference on Mining Software Repositories, pages
29-32. IEEE Computer Society, 2007.

J. Park, M. Kim, B. Ray, and D.-H. Bae. An empirical study of
supplementary bug fixes. In Proceeding of the Working Confer-
ence on Mining Software Repositories, pages 40-49, 2012.

D. E. Perry and C. S. Stieg. Software faults in evolving a large,
real-time system: A case study. In Proceeding of the ESEC,
pages 48-67, 1993.

R. K. Saha, S. Khurshid, and D. E. Perry. An empirical study of
long lived bugs. In Proceeding of the IEEE CSMR-18/WCRE-21
Software Evolution Week, pages 144-153. IEEE, 2014.

R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improv-
ing bug localization using structured information retrieval. In
Proceeding of the Automated Software Engineering, pages 345—

[24]

[25]

[26]

[27]

(28]

355,2013.

E. Shihab, A. Thara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K.-i. Matsumoto. Studying re-opened bugs
in open source software. Empirical Software Engineering,
18(5):1005-1042, 2013.

R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
complicated? simple term filtering and weighting for location-
based bug report assignment recommendation. In Proceeding of
the Working Conference on Mining Software Repositories, pages
2-11,2013.

F. Thung, D. Lo, L. Jiang, Lucia, F. Rahman, and P. Devanbu.
‘When would this bug get reported? In Proceeding of the Inter-
national Conference on Software Maintenance, pages 420-429,
2012.

Y. Tian, D. Lo, and C. Sun. Drone: Predicting priority of re-
ported bugs by multi-factor analysis. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on, pages
200-209. IEEE, 2013.

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long
will it take to fix this bug? In Proceeding of the Working Con-

19

[29]

[30]

[31]

[32]

ference on Mining Software Repositories, pages 1-8, 2007.

R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering
links between bugs and changes. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 15-25. ACM,
2011.

F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical
study on factors impacting bug fixing time. In Proceeding of
the International Conference on Software Maintenance, pages
225-234. IEEE Computer Society, 2012.

H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time:
an empirical study of commercial software projects. In Proceed-
ing of the International Conference on Software Engineering,
pages 1042—1051. IEEE Press, 2013.

J. Zhou, H. Zhang, and D. Lo. Where should the bugs be
fixed? - more accurate information retrieval-based bug local-
ization based on bug reports. In Proceeding of the International
Conference on Software Engineering, pages 14-24, 2012.

