Are These Bugs Really “Normal™?

Ripon K. Saha* Julia Lawallf

Sarfraz Khurshid*

Dewayne E. Perry*

*The University of Texas at Austin, USA
tInria/LIP6/UPMC/Sorbonne University, France
ripon@utexas.edu, Julia.Lawall @lip6.fr, {khurshid, perry}@ece.utexas.edu

Abstract—Understanding the severity of reported bugs is
important in both research and practice. In particular, a number
of recently proposed software engineering techniques predict bug
severity, bug report quality, and bug-fix time, according to this
information. Many bug tracking systems provide a field “sever-
ity” offering options such as ‘“severe”, “normal”, and “minor”,
with “normal” as the default. However, there is a widespread
perception that for many bug reports the label “normal” may
not reflect the actual severity, because reporters may overlook
setting the severity or may not feel confident enough to do so.
In many cases, researchers ignore ‘“normal” bug reports, and
thus overlook a large percentage of the reports provided. On
the other hand, treating them all together risks mixing reports
that have very diverse properties. In this study, we investigate
the extent to which ‘“normal” bug reports actually have the
“normal” severity. We find that many Normal bug reports in
practice are not normal. Furthermore, this misclassification can
have a significant impact on the accuracy of tools that rely on
bug report severity information.

Keywords—Bug Severity, Bug Tracking System, Mining Soft-
ware Repositories

I. INTRODUCTION

Bug tracking systems are among the most frequently used
resources for research in mining software repositories [1]—
[8]. They are also often used in developing new techniques
for automated software engineering such as automatic bug
triaging [9], bug assignment [10], bug-fix time prediction [11],
[12], severity prediction [13], bug prioritization [14], and bug
localization [15], [16]. A critical element of much of this work
is understanding the importance of the bug reports found in
these bug tracking systems. As this information is difficult to
accurately infer, and may depend on the priorities and point of
view of the bug reporter, studies typically rely on the “severity”
label provided in the bug report [17]. While the labels vary
by project, they typically amount to some variant of Severe,
Normal, and Minor.

In many bug tracking systems, Normal is provided as the
default. This may raise questions about the validity of a Normal
severity label. Indeed, the person who files a bug report may be
an ordinary user who has no expertise in the implementation
of the affected software, or even no technical expertise at all.
Such a person may find it difficult to accurately assess the
severity of a bug. Thus, the bug reporter might not fill in
the severity field, leaving it at its default Normal value. As
a result, studies that use the severity field to investigate if
there exists any relationship between bug severity and factors
such as bug-fix time, amount of discussion etc. are open to
criticism that the results found in the Normal case may be
invalid, as Normal may not reflect the actual severity. Simply

excluding the Normal reports, however, may distort the results
in the opposite direction, if the Normal reports represent a
large percentage of the available data.

These issues have been highlighted in a number of research
studies. For example, in their two studies of severity predica-
tion, Lamkanfi et al. [13], [18] excluded all the normal bugs
stating: “In our case, the normal severity is deliberately not
taken into account. First of all because they represent the grey
zone, hence might confuse the classifier. But more importantly,
because in the cases we investigated this “normal” severity
was the default option for selecting the severity when reporting
a bug and we suspected that many reporters just did not
bother to consciously asses the bug severity”. Similarly, Tian et
al. [19] excluded Normal bugs stating: “Following the work of
Lamkanfi et al., we do not consider the severity label normal
as this is the default option”. Along the same lines, in the
submission of our previous work on “long lived bugs” [17],
when we drew our conclusions that most long lived bugs
were important and adversely affected users’ normal working
experience, all three reviewers expressed concerns:

Reviewer 1: “since you used data from the severity field, 1
would suggest to discuss the fact that the level of this field
could be somewhat subjective.”

Reviewer 2: “In most cases, ‘Normal’ is the ‘default’ value of
the severity, thus most of the users reporting a bug leave the
default value since they simply don’t know or are not interested
in precisely defining the value.”

Reviewer 3: “Firstly we have to agree with the finding that
eclipse severity is meaningful. If it is then you can cite other
work that shows it to be meaningful, otherwise this claim does
not hold up.”

A researcher is thus faced with a dilemma: either include
information that may be unreliable, or discard potentially
valuable information. To the best our knowledge no study has
investigated either the amount of noise in the severity data or
the amount of value in this information.

In this paper, to better understand how severity information
can be used, we investigate the following hypotheses, summa-
rizing the apparent current consensus, as reflected by the above
citations:

H1: Normal bugs do not reflect the actual severity level.

H2: Bug reporters do not bother to change the default (Normal)
severity level.

Furthermore, we investigate the reasons for these problems
and their impact in a representative software-engineering ap-
plication. Our analysis is carried out in the context of four

systems from the Eclipse product family. These are open
source systems, that have publicly available bug databases,
and that have been used in a number of previous software
engineering studies [13], [17]-[19]. Our findings indicate that:

e Around 80% of the bugs reported in the studied soft-
ware projects are classified as Normal. Excluding them
from any automatic software engineering techniques
could substantially distort the results.

e A manual reclassification of 500 Normal bugs in the
studied software projects by pairs of students showed
that 65% of the Normal bugs are not normal. Indeed,
almost 25% of the Normal bugs are severe. These
results support Hypothesis 1.

e Contradicting Hypothesis 2, we find the main reason
for misclassifications in the Normal bugs is not that
it is default severity level. Rather, this field is very
subjective and thus users may follow different criteria.
Indeed, the pairs of students provided different opinion
for more than half of the Normal bugs. We provide a
taxonomy of the most common rationales used in these
dissimilar assessments.

e We find that the presence or absence of Normal bugs
in training and test sets can significantly affect the
actual and measured effectiveness of automatic soft-
ware engineering techniques that rely on bug sever-
ity information. In our experiment with a basic big
severity predictor, we find that misclassification in the
training data can reduce the accuracy of the severity
prediction considerably. On the other hand, a tool
accuracy excluding Normal bugs from both training
and testing data is likely to be an overestimation if
the tool is intended to be used on unlabeled data
containing Normal bugs.

We conclude that while the classification of Normal reports is
not very accurate, excluding them from software engineering
studies can significantly distort the results.

The rest of this paper is organized as follows. Section II de-
scribes bug tracking systems and the various relevant features
that they provide. Section III presents our research questions
and our dataset. Sections IV through VII consider our research
questions. Finally, Section VIII analyzes threats to validity,
Section IX presents related work, and Section X concludes.

II. BACKGROUND

We first briefly present the notion of a bug tracking system,
and the levels of severity that such systems commonly use.

A. Bug Tracking System

Generally project stakeholders maintain a bug database for
tracking the bugs found in their projects. A bug database may
collect bug reports from developers, testers, or ordinary users,
according to the policies of the project. Widely used online bug
tracking systems include Bugzilla, JIRA, and Mantis.! Differ-
ent bug tracking systems may have different data structures and

Uhttp://www.bugzilla.org, https://www.atlassian.com/software/jira,
https://www.mantisbt.org

TABLE 1. BUG SEVERITY VALUES USED BY ECLIPSE

Severity | Definition
Blocker Blocks development and/or testing work. No workaround exists.
Critical Crashes, loss of data, severe memory leak.

Major Major loss of function.
Normal Regular issue, some loss of functionality under specific circum-
stances.

Minor Minor loss of function, or other problem where easy workaround
is present.
Trivial Cosmetic problem such as misspelled words or misaligned text.

Enhancement | Request for enhancement.

follow different life cycles of bugs. In this paper, we focus on
data extracted from Bugzilla.

Any person who has a Bugzilla account for a given project
can post a change request. A change request could be either a
bug report or a request for a feature enhancement. In Bugzilla,
both are represented similarly and are referred to as “bugs,”
with the exception that for a feature enhancement, the severity
field is set to “enhancement”. Generally, the bug reporter
provides a bug summary, a bug description, the names of the
suspected product and component, and an indication of the
bug’s severity. The bug reporter also specifies the software
version, the platform and operating system where the bug was
encountered, so that developers can easily reproduce the bug.

B. Bug Severity

Each project that uses Bugzilla can define its own severity
levels. Since we study the projects from Eclipse product family,
we discuss the severity levels defined by Eclipse community.
According to Eclipse Bugzilla documentation,” the severity
level can be one of the following: Blocker, Critical, Major,
Normal, Minor, Trivial, or Enhancement. These values are
intended to describe the impact of the reported bug on the
operation of the software. The definitions of these values
provided by the Eclipse documentation are given in Table I.

At the start of bug fixing process, each project or compo-
nent team leader triages NEW bug reports to determine whether
the bug is really a bug and if the provided information is
correct. In case of any inconsistencies, the bug triager can
correct them or request more information from the person
who originated the report. For example, during triaging, a bug
may be moved to another component/product or the triager can
adjust the severity level. The developer who fixes a bug can
also adjust the severity level if the given severity level seems
inappropriate. If the severity field is changed, the Bugzilla
report contains the history of the assigned values.

III. STUDY SETUP
A. Research Questions
Our study investigates the following research questions:

RQ1. What proportion of the bugs are Normal in the bug
repository?

Motivation: The first question of any empirical study is
how large is the population that we want to study. Indeed, if
the population is small, there may be little reason to worry

Zhttp://wiki.eclipse.org/Eclipse/Bug_Tracking

about it. For this study, our population of interest is the set of
bug reports having the severity level Normal.

RQ2. What proportion of bug reports classified as Normal
are actually ‘“normal”?

Motivation: This is one of the main research questions of
our study. The fewer bug reports classified as Normal that are
actually “normal,” the more effect this will have on the validity
of any study that depends in some way on the bug report
severity classification. The answer to this research question
also addresses Hypothesis 1: Normal bugs may not represent
the actual severity level.

RQ3. What are the main sources of misclassifications?

Motivation: To reduce misclassifications, first we need to
understand the underlying reasons behind it. Delineating the
common reasons for misclassifications will help researchers or
practitioners deal with the problem more systematically. The
answer to this research question also addresses Hypothesis 2:
Developers may not even bother to change the default severity
level.

RQ4. Does misclassification or exclusion of Normal bugs
affect previous study results?

Motivation: We investigate whether the noise in Normal
bugs has any impact on some previous results. If there is no
impact, we would have little reason to worry about the issue.

B. Subject Systems

Our study focuses on four open-source projects, JDT,?
CDT,* PDE,’ and Platform.,® from the Eclipse product fam-
ily. JDT and CDT provide a fully functional Integrated De-
velopment Environment based on the Eclipse platform for
developing Java applications and for developing C and C++
applications, respectively. The Plug-in Development Environ-
ment (PDE) provides tools to create, develop, test, debug,
build and deploy Eclipse plug-ins, fragments, features, update
sites and Rich Client Platform (RCP) products. Finally, the
Eclipse Platform defines the set of frameworks and common
services that make up infrastructure required to support the use
of Eclipse. These projects are widely used in the real world,
and have also been extensively used in software engineering
research [13], [17], [18]. Furthermore, although these projects
belong to the same product family, they are from various
domains.

We have used Lamkanfi et al’s [20] bug dataset, obtained
from the Eclipse Bugzilla database,” to obtain the bug infor-
mation associated with these projects. This dataset includes all
the bug reports and their histories from the project inception
to March 2011 for these four projects. Table II describes the
dataset in more detail.

IV. PROPORTION OF NORMAL BUGS

In this section, we investigate our first research question:
What proportion of bugs have Normal severity level?

3http://www.eclipse.org/jdt/

“https://eclipse.org/cdt/

Shttp://www.eclipse.org/pde/
Ohttps://projects.eclipse.org/projects/eclipse.platform
"https://bugs.eclipse.org/bugs/

TABLE II DATA SET
System Change Requests # Bugs # Enh ts # Bug Fixed
JDT 46,308 38,520 7,788 18,873
CDT 14,871 12,854 2,017 7,260
PDE 13677 11,958 1,719 6,854
Platform 90,691 78,120 12,571 33,738
Total 165,547 141,452 24,095 66,725
TABLE III. PROPORTION OF BUGS BY SEVERITY

System Blocker Critical Major Normal Minor Trivial — Total

JIDT 116 572 1,647 14,856 1,090 592 18,873

06% 3.0% 87% 78.7% 58% 3.1% 100%

CDT 83 155 698 5,946 288 90 7,260

1.1% 21% 9.6% 819% 4.0% 12% 100%

PDE 64 220 567 5,631 246 126 6,854

09% 32% 83%
Platform 424 1,306 3,535
1.3% 3.9% 10.5%

822% 3.6% 1.8% 100%
26,289 1,245 939 33,738
779% 3.7% 2.8% 100%

A. Methodology

A straightforward methodology would be to just compare
the number of reports labelled Normal with the total number
of reports. However, a bug tracking system may contain
many invalid and duplicate bug reports, as well as feature
requests or enhancements. There are also some bug reports
that developers think are not worth fixing. In Bugzilla, the
status and resolution fields together keep track of the current
status of each bug. More specifically, the status field holds
at most one of the values: UNCONFIRMED, CONFIRMED,
IN_PROGESS, RESOLVED, and VERIFIED. The resolution
field holds at most one of the values: FIXED, INVALID,
WONTFIX, DUPLICATE, and WORKSFORME. To investigate
the bug severity in our dataset, we wanted to get all the
unique and valid bug reports. Therefore, we took only those
bug reports whose status field was set to either RESOLVED or
VERIFIED and the resolution field was set to F IXED. We note
that, as our bug reports date from 2011 at the latest, almost
all of the reports have either been classified as uninteresting
(INVALID, WONTFIX, DUPLICATE, or WORKSFORME) or
have been fixed. We also removed all the reports marked as
enhancements. We use the resulting set of reports in this and
all of the subsequent research questions. Then we counted all
the bugs for each severity level.

B. Results

Table III provides detailed results regarding severity. For
all of the considered systems, Normal is the dominant severity
category, with 78-82% of the bug reports. The next most
dominant category is Major, representing only 8-10% of the
reports. Blocker bugs are rarest, at around 1%. The proportion
of other types of bugs (Critical, Minor, and Trivial) are between
2% and 4% in most cases. Our results suggest that any software
engineering research based on bug severity that ignores Normal
bugs faces a severe threat to validity, since a large percentage
of bug reports would likely not be taken into account.

V. ACTUAL SEVERITY OF “NORMAL”-LABELED BUGS

In the previous section, we saw that a large proportion of
bugs are classified as Normal. However, we do not yet know
if these Normal bugs are really normal according the Eclipse
Bugzilla definition. In this section, we investigate the second

TABLE IV. STUDENTS QUALIFICATIONS

Description Mean Median Min Max
Coding Experience (in Years) 6.1 5.0 3.0 130
Experience in Java (in Years) 5.0 4.0 20 11.0
Experience with Eclipse (in Years) 4.6 35 20 110
Industrial Experience (in Months) 10.0 9.0 20 240

research question: What proportion of bugs having Normal
severity level is actually normal?

A. Methodology

Since to the best of our knowledge, there is no clean dataset
of bug reports that have actual severity levels, classifying
bug reports using automated machine learning techniques
would likely be inaccurate. Therefore, we conduct a manual
investigation of their actual severity. Our methodology takes
into account the fact that bug severity is subjective, as well as
the high cost of doing such an analysis.

1) Design: The severity field represents the impact of a
given bug on the operation of the software, and thus it may be
subjective. Indeed, even the Eclipse documentation mentions
that the bug reporter’s perspective on the severity can depend
on how the bug reporter wants to use the software. Therefore,
to get reliable results, we have each bug report assessed by
multiple users. In such a study, the cost depends on two factors:
1) the number of bug reports to be assessed, and 2) how many
assessments are made.

To keep our experimental cost reasonable, we made two
decisions. First, we randomly selected a sample of 500 bug
reports having the Normal severity label, representing 125 bug
reports from each project, from within the last five years of
our dataset, i.e., from 2006 to 2011. Second, we recruited
a group of assessors, such that each report would have at
least two assessors. If the two assessors had different opinion
about a given bug report, we analyzed both the report and the
assessments to make a decision.

2) Users/Assessors Selection: All the assessors in our
study are either graduate or undergraduate students of the
University of Texas at Austin. We sent a general email to
all the students in the senior “Software Engineering” class
and to some graduate students in the software engineering
track of the Electrical and Computer Engineering department.
Good programming knowledge and substantial experience in
working with the Eclipse IDE were requirements to participate
in the study. Based on these criteria, we selected 6 graduate
students and 4 senior undergraduate students. Among them, 9
students have work experience in industry either as an intern
or as a full-time programmer. Table IV provides the students’
qualifications in more detail.

3) Procedure: Our study was divided into two sessions:
training and assessment. In the training session, we conducted
a 30-minute tutorial. The tutorial included:

1) Providing students a brief overview of our study,

2) Explaining a real Eclipse bug report and giving a brief
overview of Bugzilla,

3) Showing how to submit a bug report in Eclipse, to
show that Normal is the default severity level during
submission,

4) Explaining the definition of each severity level from
the Eclipse documentation (Table I),

5) Showing a representative example in each severity
level to deepen their understanding about bug sever-
ity,

6) Explaining the structure of the expected feedback.

We divided the 500 hundred bug reports into five sets of
100 bug reports each. Sets 1-4 had 100 bug reports from the
same project and Set 5 had 25 bug reports from each of the
four projects. This strategy allowed most of the students to
focus on a single project. We then assigned the students to
five groups, pairing a graduate student with an undergraduate,
when possible. The group members were not informed of
each other’s identity. Then we assigned each set of bug
reports to a group randomly. The students were given 10
days to complete the assessments. We recommended to the
students that they carefully read each part of the bug report,
including at least the bug summary, the bug description, and
the developers’ comments, to make their decision. All of the
students completed their task. After the study, each student
was rewarded with a $50 Amazon Gift Card.

4) Feedback: We designed a Google form to receive stu-
dents’ feedback.® Our form contains: 1) the bug id, 2) the
actual severity of the bug, 3) the specific reason for the
decision (free text), 4) the parts (summary, description, and
comments) of the bug report that helped make decision, and
5) the assessor’s name. All of the fields were required to submit
a response. However, students could provide a “Not Sure”
response for the actual severity if they really were not sure
about it.

B. Results

We got 1000 responses from the students, comprising two
responses for each bug report. Among these, there were only
16 responses where students were undecided and thus chose
“Not Sure”. For only one bug report, from the Platform project,
both responses were “Not Sure” due to there being insufficient
information in the bug report. We investigated all these 16 bug
reports and were able to assign a severity level for 15 cases.
However, we were not able to assign any severity level to the
bug report where both responses were not “Not Sure”. We
eliminated this bug report, leaving the responses for 499 bug
reports for analysis.

Among the 500 bug reports, there were only 164 reports,
i.e., 33%, for which both students gave the same severity
level. To refine the results, we focus on the difference between
Normal and the other severity levels. Specifically, like other
work [13], [18], we merged the Blocker, Critical, and Major
categories into a new higher-level category called Severe,
and the Minor and Trivial categories into a new higher-level
category called Non-Severe (NS). We refer to two responses
that are in the same higher-level category as similar. After
merging the categories, as shown in Table V, we obtain 210
similar responses, amounting to 42% of the reports, leaving
289 where the students are in disagreement. For Platform, the
proportion of similar responses is only 35%. The highest rate
of agreement (50%) is found for CDT. These results confirm
that severity is highly subjective.

8http://goo.gl/XP03JZ

TABLE V. SIMILARITY OF STUDENTS’ RESPONSE

System Same Responses Different Responses Proportion of Agreement
JDT 52 73 2%
CDT 62 63 50%
PDE 53 72 42%
Platform 43 81 35%
Total 210 289 42%
TABLE VL DISTRIBUTION OF NORMAL BUGS IN THE BEST CASE
AND THE WORST CASE
System | Best Case Worst Case
[Sev. Norm. NS Enh. [Sev. Norm. NS Enh.
JDT 14 48 48 15 50 40 20 15
11% 38% 38% 12% | 40% 32% 16% 12%
CDT 14 66 21 24 45 52 4 24
11% 53% 17% 19% | 36% 42% 3% 19%
PDE 5 46 45 29 40 31 25 29
4% 37% 36% 23% | 32% 25% 20% 23%
Platform | 4 38 54 28 36 36 24 28
3% 30% 43% 22% | 29% 29% 19% 22%
Total 37 198 168 96 171 159 73 96
7% 40% 34% 19% | 34% 32% 15% 19%

Given the high rate of dissimilarity among the severity
levels provided by the students, we cannot use the results
directly to obtain the proportion of Normal bug reports that
are actually normal. Instead, we consider the results from three
perspectives: best case, worst case, and optimal. For the best
case, i.e., the most optimistic view of the state of the software,
we take the lowest level of severity between the two students’
responses. For example, if one student categorized a bug as
Major and another categorized it as Normal, we would consider
the actual severity to be Normal. On the other hand, for the
worst case, I.e., the most pessimistic view of the state of the
software, we take the highest level of severity between the
two responses. Finally, for optimal case, we investigated all
the 289 bug reports where students’ responses differed and
tried to come to a consensus. We read all the bug reports
(summary, description, and comments) and students’ responses
(assigned severity level and specific reason for assigning that
level). Then, we made a decision by either taking one of the
students’ responses that we agreed with, which was possible
in most cases, or assigned a different severity level.

Tables VI and VII present the proportion of Normal reports
that are classified by the students into the different high-level
categories for the best, worst, and optimal cases. In all cases,
the Enhancement columns are the same; since enhancements
are not bugs, in both tables we use the optimal-case results.
From the results, we can see that the proportion of Severe,
Normal, and Non-Severe bugs could vary between 7%-34%,
32%-40%, and 15%-34% respectively, depending on how
the results are calculated. More specifically, from Table VII,
representing the optimal classification, we see that the actual
proportion of Normal bugs among those originally labelled
Normal is only 35%, and that 19% of the reports originally
labelled as Normal are not reports of bugs at all. Furthermore,
among the bugs originally labelled Normal, 24% are Severe
and 22% are Non-Severe. For JDT, the proportion of Severe
bugs is even higher, 33%. Among the 109 reports that are
Non-Severe, 84 are Minor and only 25 are Trivial. Therefore,
our overall results suggest that the dataset of Normal bugs has
serious noise, validating Hypothesis 1: Normal bugs may not
represent the actual severity level.

TABLE VIIL. DISTRIBUTION OF NORMAL BUGS WITH THE OPTIMISTIC

STRATEGY

System | Same Response Different Response Total

[Sev. Norm. NS Enh.[Sev. Norm. NS Enh.[Sev. Norm. NS Enh.
IDT 13 19 20 0 |28 21 9 15 |41 40 29 15
10% 15% 16% 0% |22% 17% 7% 12%|33% 32% 23% 12%
CDT 12 32 3 15 |22 27 6 9 |34 58 9 24
10% 26% 2% 12%|18% 22% 5% 7% |27% 46% 1% 19%

PDE 4 16 25 8 |12 30 9 21 |16 46 34 29
3% 13% 20% 6% [10% 24% 1% 17%|13% 37% 27% 23%
Platform(3 13 20 7 |26 17 17 21 |29 30 37 28
2% 10% 16% 6% |21% 14% 14% 17%|23% 24% 30% 22%
Total 32 80 68 30 (88 95 41 66 (120 174 109 96
6% 16% 14% 6% |18% 19% 8% 13%|24% 35% 22% 19%
TABLE VIII. DIFFERENT RESPONSES MATRIX
Blocker 0
Critical 2 2
Major 1 0 16
Normal 6 3 43 67
Minor 1 2 4 19 54
Trivial 2 0 1 2 27 29
Enhancement 4 1 I 6 19 1T 13]
Not Sure | Blocker | Critical | Major | Normal | Minor | Trivial]

VI. SOURCES OF MISCLASSIFICATION

In the previous section, we showed that 65% of Normal
bugs are not actually normal according to the definition of
Eclipse severity levels. There may be numerous reasons for
these misclassifications, from “leaving the severity field at its
default value” to “too subjective to decide”. In this section, we
answer RQ3: What are the main sources of misclassifications?

A. Methodology

To understand the reasons for misclassifications, first we
investigate the main severity levels that confused developers.
Then we read all the bug reports where students’ responses
differed by high-level category (Severe, Normal, or Non-
Severe). In almost all of the cases, it was possible to determine
why the student chose a particular severity level by reading the
reasons the student provided.

To categorize the common reasons for different responses,
we followed an open-ended taxonomy. We incrementally an-
alyzed all the bug reports. For any given bug report, first
we identified the high-level reason for the difference, and
then we checked whether the reason fits into any of the
existing categories. If it did not, we created a new category.
We provide concrete examples for each category below, to
better understand the categorization procedure. To select the
examples we considered the following two criteria: i) the
examples should cover the range of subject systems, and ii)
the summary or description in the bug report should be concise
enough to present in the paper.

B. Results

Table VIII shows the number of bug reports for each pair of
dissimilar responses. For example, the value in the rightmost
cell indicates that for 13 bug reports, one student’s response
is Trivial but the other’s response is Enhancement. From the
results we see that students were mostly confused between
the Critical and Normal, Major and Normal, and Minor and
Normal severity levels. Interestingly, Normal bugs are present

in each confusion pair. Therefore, it is evident that even after
careful assessment users can be confused between Normal and
other categories. The following summarizes our taxonomy of
common reasons for the different responses.

1) Focusing on different aspects of a bug report: There may
be several aspects of a bug described in a bug report. Different
persons can focus on different aspects of a bug, which can
cause them to map the bug to different severity levels. Let us
discuss the following example:

Platform # 210946, Description: A caught Throwable is
not written to the Eclipse log. It is just written on the console.

One student thought that this bug is Severe since it involves
losing data from the Eclipse log. Their rationale was that since
information is normally written to both the console and the log,
the user may close the console and rely only on the log file.
Such a user would not even realize that some data was missing.
On the other hand, the other student assigned a severity level
Minor thinking that there is an easy workaround, since the
Throwable is at least written on the console.

2) Same aspect but different perception: In some bug
reports both students focused on the same aspect of the bug but
their perception of it was different. A representative example
is:

CDT # 332915, Summary: [tracepoint] Refreshing the
Trace Control view blocks the Ul thread.

Bug Description: We've noticed that when heavily using
the tracepoint interface, deadlocks can happen due to the
UI thread being blocked. Once [sic] case is that the refresh
operation of the Trace Control view is done within a Query,
which locks the UI thread.

One student responded, “One feature enabled ends up
impeding another feature - even though both features work
in isolation.” Thus, she categorized the bug as Severe. On the
other hand, the second student responded, “GUI and refresh
are on the same thread”. Thus, it is a regular issue and assigned
a Normal severity.

3) Different acceptance or tolerance level: Sometimes
users may have the same perception about the problem but
a different level of tolerance to deal with it. For example:

Platform # 172321, Summary/Commands] [GTK] Han-
dler activation in editor when a dialog is closed is delayed

One student thought that this is a “loss of functionality
(delay time of feature) only on linux platform” and thus tagged
it as Normal. The other student responded, “delay issue for
activating handler is a major issue to me”. So he chose Major.

4) Impact: Some bugs can seem to fall into the category
Minor if we strictly follow the definitions of severity levels.
However, the impact of the bug can be annoying enough to
make the bug Normal or even Severe. For example:

JDT # 231887, Summary: [actions] cannot refresh
working sets through Package Explorer

Bug Description: Steps To Reproduce: 1. Import some
Java projects and put them into some working sets. Change the
Top Level Elements in the Package Explorer to Working Sets 2.
Externally modify some of the files from different working sets

3. Select the working sets in the Package Explorer, right-click,
and choose Refresh. Nothing happens. (Verify by opening files
that have been modified - instead of opening the file, you get
the “This file is out of sync” editor) 4. If you expand all the
working sets and refresh the individual projects, it works.

From the bug summary and description we can see that
the user has provided a workaround to bypass the problem.
However, every time the user changes something, he needs
to refresh each project related to the working set, which is
annoying. As a result, one student marked the bug as Severe
saying that it hinders the workflow. However, the other student
responded, “Easy workaround. Not so much important bug.”
We also noticed these dissimilar responses when keyboard
shortcuts do not work properly (e.g., Platform # 262593).
Again, there is in principle an easy workaround, using menu
commands, but some users may be so used to keyboard-
shortcuts that they do not feel comfortable going through the
menu, causing them to view the bug as Severe.

5) Different cost of the same bug: development perspective
vs. release perspective: This is the most frequent category in
our sample, especially for those dissimilar responses, where
students are confused between Critical and another category.
In our study, in most cases, when a report indicates a program
crash, e.g., due to a null pointer exception, the students marked
it Critical, which is appropriate according to the definition of
the severity levels. Examples include:

JDT # 325523, Summary: NPE when deleting resource
PDE # 275921, Summary: NPE with update classpath

However, in some cases, the students analyzed the bug
from a developer’s perspective and marked it as Normal. For
example, they said that this was an easy fix or occured in
infrequent cases. The reason is that when an exception is
thrown in the software development and testing phases, this
can be considered as normal since this is a common mistake
that developers can fix quickly. However, if a stable version
crashes for a given task and the user needs to wait for the next
update to get it resolved, the effect is a lot costlier than the
development scenario.

6) Bug vs. Enhancement: We have noted that the con-
figuration of Bugzilla used by the Eclipse projects does not
provide reporters a special field for distinguishing bugs and
enhancements. Instead, Enhancement is just one of the possible
severity options. However, if a reporter thinks that a requested
enhancement is very important, they may mark it as Major, if it
is less important they may mark it as Normal, etc. Furthermore,
it may be subjective whether a given issue is a bug or an
enhancement. Let us discuss some examples:

Platform # 185067, Summary: [KeyBindings] New Keys
pref page: cannot sort ‘User’ column

PDE # 330943, Description: [plug-in registry] View ini-
tialization takes too much time

In the first example, the issue reporter is asking for sort
functionality to be added to the “new keys” preference page.
Since what is asked for is a new feature, it is an enhancement,
not a bug, even if the reporter finds it inconvenient or incon-
sistent that the feature is not currently available. In the second
example, there is no error in “View initialization.” Instead,

the reporter is requesting that the performance be improved.
However, in our assessment, one response for each bug was
Minor, since the students thought that these issues would not
affect users much.

C. Discussion for Hypothesis 2

In this section, we investigate the existing Hypothesis 2,
whether “leaving the severity field at its default value” is the
main reason for severity misclassification. We try to understand
this hypothesis in two ways. First, we analyze our findings
from the manual investigation and the proportion of obviously
non-normal bugs that are still tagged as Normal. Second, since
the severity field is not static, i.e., it can be changed anytime by
bug triggers and developers, we investigate how much severity
changes in the entire dataset of fixed bugs.

Findings of manual investigation: All the 500 bug reports
in our manual investigation are marked as Normal in the
Eclipse Bugzilla. Although we found that almost 65% of these
bugs are not actually normal, a careful investigation into the
students’ responses reveal that most differences in their opinion
happened due to the subjective nature of assessment. There are
indeed quite a few things to consider during the assessment,
such as minor or major loss of functionality, frequent or
infrequent use cases, impact of the bug, whether a workaround
exist or not, the inconvenience of the workaround, etc. Each of
these factors is itself subjective. Therefore, the combination of
all of the decisions is even more complex. However, when
we investigated all the dissimilar responses, we found that
for most bug reports, although both students’ responses are
to some extent valid, it is possible to isolate the appropriate
category through a more careful evaluation. However, this can
be time consuming and thus the reporter probably selects a
category that overall makes more sense. Furthermore, very
small number of bug reports that are considered to be Blocker
(only 3 out of 500) and Trivial (only 25 out 500) by our optimal
strategy suggests that subjectiveness of the severity definition
is the more dominant reason than “leaving the severity field at
its default value”.

Severity changes: Table IX presents the number of bugs in
each subject system that were submitted as Normal but where
developers changed the bug report to some other severity level
(listed in the top row of the table). These results show that,
on average, for 7% of the Normal bugs, developers changed
the severity level. Although the proportion is not that high,
the absolute number is considerable, showing that developers
are willing to change the severity when it seems warranted.
Furthermore, we perform a simple automatic analysis on all
the fixed bug reports to get an idea about the proportion of
bugs that should be Trivial but are categorized as Normal. To
this end, we investigate all the Trivial bugs in our sample,
and make a list of keywords to characterize them. We found
that one of the following three keywords: typo, spell, and
documentation appear frequently in Trivial bugs but not in
other categories. Then we perform a text search in the bug
summary and description of all the fixed Normal bugs in the
dataset. We found only 1% of such bug reports. Therefore,
overall all the results suggest that, in most cases, Normal bugs
are not due to the carelessness of reporter, rather due to the
subjectiveness of the classification process.

TABLE IX. SEVERITY CHANGES FOR NORMAL BUGS

System Blocker Critical Major Normal Minor Trivial Total Proportion

JDT 20 163 496 72 202 116 1,069 7%
CDT 10 21 144 15 14 7 211 4%
PDE 6 59 141 15 23 13 257 5%
Platform 77 386 1,090 122 188 180 2,043 8%
Total 113 629 1,871 224 427 316 3,580 7%

VII. MISCLASSIFICATION OR EXCLUSION OF NORMAL
BuGs: DO THEY MATTER?

In this section, we answer RQ4: Does misclassification or
exclusion of Normal bugs affect previous study results?

A. Methodology

As we already noted, many previous studies use the bug
severity field as a feature in various automated software
engineering techniques such as bug-fix time prediction, mod-
eling bug report quality, severity prediction, etc. A number
of previous studies have ignored Normal bug reports based
on the assumption that Normal does not correctly reflect the
severity level. In this study, we have confirmed this assumption.
However, if a tool has not been trained on Normal bugs, then it
may subsequently give meaningless results on Normal input.
Such a tool is thus unusable in a real-world setting unless
accurate severity information is already available. Therefore,
we investigate two phenomena: 1) whether there is any effect
of misclassification on previous study results, and 2) whether
there is any impact on the results if the Normal bugs are
eliminated from the study.

To investigate the impact of these phenomena, we chose
bug severity prediction as a representative application. Gen-
erally a bug severity prediction algorithm takes a set of bug
reports known to be from various categories (e.g., Severe and
Non-Severe) as training data and uses the properties inferred
from this training data to predict the severity of bug reports in
a test set. Lamkanfi et al. [13] showed that taking into account
bug summaries is sufficient to get accurate results. Since our
objective is to investigate the effect of misclassification or
exclusion of Normal bugs on the accuracy, not to propose new
techniques for bug severity prediction, we have just imple-
mented a simple approach. Our bug severity prediction system
takes a set of bug summaries labelled with severity as a training
set and predicts the severity of an input report represented
by its summary. Our predictions are coarse-grained: Severe,
Normal, and Non-Severe. We use Mallet’s implementation
of Naive Bayes out-of-the-box as our underlying classifier.
Then we measure the accuracy in terms of proportion of
correctly classified items. More specifically, the accuracy of
our classifier is m/n % 100% if it classifies m instances
correctly out of n instances. For a comprehensive description
of bug severity prediction, please refer to [13], [18], [19].

Training and Test Set Creation: We distinguish between
a clean dataset, in which we have good confidence that the
severity labels are accurate, and a noisy dataset, in which
it is not known whether the severity labels are accurate or
not. Either kind of dataset furthermore may or may not
contain Normal bugs. This leads to four training sets, TR ;jcqn.,
TRyoisy, TRciean—Normal, and TR .isy—Normal, having
various permutations of these properties. We train our severity

prediction algorithm on each of these training sets, resulting in
four instances of the tool. To assess the impact of noisy data
and of excluding Normal bugs, we then test each of these tool
instances on a clean test set, 7F, and compare the accuracy
of the resulting predictions with the known labels.

A challenge in our experimental methodology is obtaining
sufficient clean data. Indeed, our training and test sets must
respect a number of constraints. First, the training set and the
test set should be disjoint. Furthermore, in all of the training
sets (clean or otherwise) and in the test set, there should be the
same number of bugs at each severity level, to avoid bias to
the majority category [21]. Finally, Lamkanfi et al. [13] have
found that a training set of 500 bug reports in each category
gives stable results.

In addressing our previous research questions, we have
manually investigated only 500 bug reports, and among them
120, 174, and 109 are classified as Severe, Normal, and Non-
Severe, respectively. Using this dataset, and respecting the
constraint that there should be the same number of bugs at
each severity level, we can obtain a data set of at most only
slightly over 300 elements. Concretely, we take the 100 most
recent reports in each severity level resulting in a dataset of
300 elements. As this does not satisfy the requirement of 500
reports in each category, we cannot use this as a training set.
Thus, we use it as the test set, TF.

For the training sets, we need a low-cost way to obtain
more data with reliable severity labels. For this, we focus on
the bug reports in which the severity information has been
changed at least once. This may not result in a completely
clean set, but it should be acceptable, since developers have
reviewed those bug reports and adjusted their severity level.
Starting from the year 2006, we take the first 500 bug reports
having this property in each severity category. The resulting set
of 1500 reports makes up TR jeqn. To create TR, 045y, we fol-
low the same procedure, without the requirement of a change in
the severity information. Then, from TR jcqn and TRy, 46y, We
obtain TR cjeqn—Normal and TR, 05y —Normal, respectively,
by removing the Normal reports. As we have taken the training
data TR from the start of the time period and the test data TE
from the end of the time period, they are likely disjoint. We
have furthermore verified this in practice.

Finally, we note that all of the datasets contain bug reports
from all four subject systems since they are part of the same
bug tracking system.

B. Results

Table X shows the impact of misclassification on the
perceived accuracy of the severity predictor trained on the
full clean dataset TR.j.q,. In the results, each row is the
number of predicted result for a given category. For example,
the first row represents the 100 actual Severe bugs in TE. Of
these, 57 are predicted to be Severe, 26 are predicted to be
Normal, and 17 are predicted to be Non-Severe. Based on the
actual severity level of bug reports in TF, the accuracy of our
classifier is 49%. However, if we consider all the bug reports in
TF to be Normal, as they are classified in bug repository, then
the accuracy of the classifier is only 29%, which is certainly
inaccurate.

TABLE X. ACCURACY FOR SEVERITY PREDICTION CLASSIFIER

TRAINED FROM TR jcan

Severe Normal Non-Severe
Severe 57 26 7 e
Normal 35 38 27 Accuracy: 49%
Non-Severe | 22 27 51

Accuracy: 29% if we consider all the bug reports in T'E to be Normal, as indicated in
the bug repository.

TABLE XI. ACCURACY FOR SEVERITY PREDICTION CLASSIFIER

TRAINED FROM TR jeqn— Normal

Severe Normal Non-Severe
Severe 75 . 25
Normal 45 . 55
Non-Severe| 33 . 67

Accuracy: 47%

Accuracy: 71% if we exclude Normal bugs from TE

We next perform the same experiment, but where all
Normal bugs have been removed from the clean training set,
producing TR jeqn—Normal. Since there is no Normal data in
the training dataset, no bugs in the test set T'F will be classified
as Normal (as shown in Table XI). As a result, the accuracy
of the resulting classifier is only 47%. However, if we also
exclude Normal bugs from T'F, as done in previous studies, the
accuracy increases to 71%. Therefore, the accuracy reported
in the existing literature is likely to be an overestimation if the
tool is intended to be used on unlabeled data that may contain
Normal bugs.

Next, we repeat both experiments for the case of noisy
training data. First, we consider TR,,;sy, containing all cat-
egories of bugs. Table XII shows that we obtain an accuracy
of 41% for TFE with this training data. This value is 8% less
than that obtained when we trained our classifier with TR jcqn-
Therefore, misclassification in the training data can reduce the
accuracy of the severity prediction considerably.

Next, we consider TR, 445y —Normal, in which the reports
labelled Normal have been removed. As compared to the
use of the clean training set TR j.qn, —Normal, the accuracy
only slightly declines, from 47% to 45% (Table XIII), which
is less than the decline between the results obtained using
TR iean and TR, 046y Furthermore, as compared t0 TRy, 045y,
the accuracy actually improves, from 41% to 45%. This result
indicates that the most noise is in Normal bugs. Finally,
the reported accuracy again increases greatly if our test set
does not include Normal bugs, reaching 67%. But knowing
in advance whether a bug is Normal is not a reasonable
assumption for the input of a bug severity prediction tool.

Therefore, our overall results suggest that both misclassifi-
cation and exclusion of Normal bugs may significantly affect
any results based on bug severity.

TABLE XII. ACCURACY FOR SEVERITY PREDICTION CLASSIFIER

TRAINED FROM T'Rypisy

Severe Normal Non-Severe
Severe 34 49 17
Normal 36 40 24
Non-Severe |22 29 49

Accuracy: 41%

TABLE XIII. ACCURACY FOR SEVERITY PREDICTION CLASSIFIER

TRAINED FROM T'Ry,0isy —Normal

Severe Normal Non-Severe
Severe 63 . 37
Normal 5) 48 Accuracy: 45%
Non-Severe | 29 . 71

Accuracy: 67% if we exclude Normal bugs from TFE

VIII. THREATS TO VALIDITY

Construct Validity: The set of bug reports is the only
artifact used in our study; bug reports are generally well
understood. We have also used well known metrics in our
data analysis such as proportion and classification accuracy,
which are straightforward to compute. Our dataset is also
publicly available, which enables the replication of this study.
Therefore, we argue for a strong construct validity.

Internal validity: Students may not be representative of
real users. Still the students involved in the study had experi-
ence in using Eclipse, but no experience in its development.
Thus, we argue that they have the same amount of information
available as the least informed bug-report writers.

All the bug reports used in our study are extracted from
Bugzilla. There are many other bug tracking systems such as
Jira, Mantis, etc. Since the severity levels may vary across
projects and bug tracking systems, we may get different results
for the bug reports in other bug tracking system.

To assess the severity of bugs, the students manually
analyzed bug reports. To delineate the common reasons for
misclassification, we also manually analyzed bug reports and
students’ responses. There might have been some unintentional
misinterpretations during the manual verification due to the
lack of domain knowledge or the lack of useful contextual
knowledge. However, we held extensive discussions to mini-
mize this threat.

To construct a clean training set, we selected bug reports
whose severity had been changed at least once. Although
we did not manually check that these bug reports have the
actual level of severity, we believe the dataset should be fairly
accurate since either bug triagers or developers examined those
bug reports and adjusted the severity level accordingy.

External Validity: Eclipse may not be representative of
all software. Still, it has been used in a number of studies,
and so the conclusions drawn from it are at least applicable to
those studies. Furthermore, we find similar results across the
different Eclipse sub-projects.

Since manual investigation of bug reports by multiple users
is expensive, we investigated only 500 bug reports. We plan to
conduct a more large-scale manual investigation in the future.
However, the sample size of 500 is sufficient (i.e, this sample
size has an appropriate level of power) to detect all but the
smallest effects [22]. For our manual investigation, we had
each bug report assessed by two students. More assessments
may further increase the confidence in the results. However, we
separately investigated all the dissimilar responses. Therefore,
this threat should have little impact on our results.

IX. RELATED WORK

Our work is related to the study of bug reports, and more
specifically bug severity. We review some recent work that
has relied on this information in various contexts. Our work
specifically investigates a source of bias or noise in bug reports.
We review some work that has investigated other such issues.

Bug reports are one of the main artifacts in software
maintenance research. They have been used to understand
various phenomena about software bugs and to design au-
tomated tools to help developers in various activities in the
bug fixing process. Bettenburg et al. [8] investigated what
kind of information developers think is the most helpful in
a bug report. They also investigated the extents and reasons of
duplicated bug reports [7]. Bortis et al. [9] proposed to tag
bug reports automatically to help developers with bug triaging.
Tian et al. [14] proposed a machine-learning based approach
for assigning a priority to each bug report. Anvik et al. [10]
and Shokripour et al. [23] proposed approaches for automatic
assignment of bug reports to the developers. Saha et al. [15]
and Zhou et al. [16] proposed approaches for automatic bug
localization. Huo et al. [24] investigated the role of experts
and non-experts knowledge in bug reports and its implication
on the results of bug localization tools.

Bug Severity is one of the key features of a bug report,
to understand the bug’s importance. Researchers have used
this attribute in numerous software engineering problems.
Menzies and Marcus [25] and Lamkanfi et al. [13], [18]
proposed a text mining and machine learning based approach
to predict bug severity. Tian et al. [19] also predicted bug
severity, but proposed an information-retrieval based approach.
Bhattacharya et al. [26] proposed a graph-based approach to
estimate bug severity. Hooimeijer and Weimer [27] used bug
severity to investigate and model bug report quality. They
concluded that self-reported severity is an important factor in
the model’s performance. Giger et al. [11] and Zhang et al. [12]
used bug severity (with several other bug report features) to
predict bug-fix time. Saha et al. [17] used the severity field to
understand the importance of long lived bugs.

Bias or noise in a bug-relevant datasets is a well-known
problem in software engineering research. Bird et al. [28]
investigated the potential biases in defect datasets in terms of
bug features and commit features. They evaluated a popular
defect prediction algorithm and showed that bug feature bias
(e.g., unequal proportion of bug reports in terms of bug severity
and developers’ reputation) affects the performance of the
algorithm. Later Nguyen et al. [29] confirmed that the bias
in the bug-fix dataset exists not only in open-source projects
but also in the datasets of commercial projects. Kim et al. [30]
proposed an algorithm to detect such noisy instances in bug
datasets so that they can be eliminated. However, the objective
of these studies was not to investigate noise in bug severity.
Rahman et al. [31] showed than consideration of the sample
size of a dataset is equally important as bias in dataset.
Antoniol et al. [32] showed that not all the bug reports in
bug tracking systems are actually bugs. Later, based on a
comprehensive manual investigation on 7,000 issue reports,
Herzig et al. [2] reported that one-third of the bugs in the
issue tracking systems are not actually bugs and this misclas-
sification affects bug prediction algorithms. Along the same
line, Kochhar et al. [33] investigated the potential biases in the

dataset of mappings between bug reports and corresponding
fixed files, and described their impact on bug localization.

X. CONCLUSION

In this paper, we have studied the mislabeling of Normal
bugs, and the impact that this mislabeling can have on tools
that rely on bug severity. Based on the studied software
projects, we confirm the hypothesis that the labeled Normal
bugs are often not normal according to the bug repository
criteria. Furthermore, we find that the inclusion or exclusion
of these reports, as well as their consideration as Normal bugs
or according to their actual severity can have a major impact
on the accuracy of tools that rely on bug severity values. This
raises a real dilemma for the software engineering researcher.
Normal reports are very prevalent, around 80% of the reports
in our study, but cannot be relied on and are damaging to tool
evaluation results.

A partial solution is to create a clean dataset. Our results
show that a bug severity prediction tool gives better results
when trained on clean data than when trained on noisy data.
We have proposed two approaches to creating a clean dataset:
manual inspection and selecting only reports where the severity
has been changed after the original submission of the report.
The former, however, is time-consuming, and the latter is more
approximate. The wide use of bug reports by the software
engineering community thus suggests that the community may
want to invest resources into creating larger clean datasets.

We have also observed that misclassification of bugs and
enhancements is a severe problem, which also may affect
many studies. It appears that distinguishing enhancements
from bugs through the severity field is not effective, because
it does not allow the user to express the urgency of the
enhancement request. Users could be less tempted to create
noisy data if bug tracking systems such as Bugzilla would
provide a dedicated field to separate bugs from enhancements
(improvements and new features). Our future work includes
manually validating more Normal bug reports to create a
large-scale clean dataset, and improving the state-of-the-art of
severity prediction algorithms.

Acknowledgments: We would like to thank the students
who participated in the bug severity labeling study.

REFERENCES

[1] P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Not my bug!
and other reasons for software bug report reassignments,” in CSCW.

ACM, 2011, pp. 395-404.

K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in /CSE. IEEE Press, 2013,
pp. 392-401.

T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in MSR. ACM, 2014, pp. 82-91.

E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open
source software,” Empirical Software Engineering, vol. 18, no. 5, pp.
1005-1042, 2013.

G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long does
a bug survive? an empirical study,” in /ICSM. IEEE Computer Society,
2011, pp. 191-200.

F. Zhang, F. Khombh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in /ICSM. IEEE Computer Society,
2012, pp. 225-234.

[2]

[3]

[4]

[5]

10

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful...really?” in ICSM, 2008, pp. 337-345.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in ESEC/FSE. ACM,
2008, pp. 308-318.

G. Bortis and A. van der Hoek, “Porchlight: A tag-based approach to
bug triaging,” in /CSE. 1EEE, 2013, pp. 342-351.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
ICSE. ACM, 2006, pp. 361-370.

E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” in
RSSE. ACM, 2010, pp. 52-56.

H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an
empirical study of commercial software projects,” in /CSE. IEEE Press,
2013, pp. 1042-1051.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR, 2010, pp. 1-10.

Y. Tian, D. Lo, and C. Sun, “Drone: Predicting priority of reported bugs
by multi-factor analysis,” in /CSM. 1EEE, 2013, pp. 200-209.

R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in ASE, 2013, pp.
345-355.

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? -
more accurate information retrieval-based bug localization based on bug
reports,” in ICSE, 2012, pp. 14-24.

R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long
lived bugs,” in CSMR/WCRE. 1EEE, 2014, pp. 144-153.

A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR. 1EEE, 2011, pp. 249-258.

Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,” in
WCRE. IEEE, 2012, pp. 215-224.

A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla defect
tracking dataset: a genuine dataset for mining bug information,” in MSR.
IEEE Press, 2013, pp. 203-206.

N. Japkowicz, “Learning from imbalanced data sets: A comparison of
various strategies,” in Proceeding of the AAAi Workshop on Learning
from Imbalanced Data Sets. AAAi, 2000, pp. 10-15.

R. Rosenthal and R. L. Rosnow, Essentials of behavioral research:
Methods and data analysis. McGraw-Hill New York, 1991, vol. 2.

R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in MSR, 2013, pp. 2—-11.

D. Huo, T. Ding, C. McMillan, and M. Gethers, “An empirical study
of the effects of expert knowledge on bug reports,” in /ICSME. 1EEE,
2014, pp. 1-10.

T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in /ICSM. 1EEE, 2008, pp. 346-355.

P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in /CSE. IEEE
Press, 2012, pp. 419-429.

P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE.
ACM, 2007, pp. 34-43.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
ESEC/FSE. ACM, 2009, pp. 121-130.

T. H. Nguyen, B. Adams, and A. E. Hassan, “A case study of bias in
bug-fix datasets,” in WCRE. IEEE, 2010, pp. 259-268.

S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in /ICSE. 1EEE, 2011, pp. 481-490.

F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in FSE. ACM, 2013, pp. 147-157.

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in CASCON. ACM, 2008, p. 23.

P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localization:
Do they matter?” in ASE. ACM, 2014, pp. 803-814.

