
A Case Study in Root Cause Defect Analysis

Marek Leszak Dewayne E. Perry Dieter Stoll
Lucent Technologies Electrical and Computer Engineering Lucent Technologies

The University of Texas at Austin
Thurn-und-Taxis-Str. 10 Austin TX 787 12 Thurn-und-Taxis-Str. 10

+1 512 471-2050

mleszak@lucent.com www.ece.utexas.edu/-perry/ dieterstoll @lucent .com

Optical Networking Group

9041 1 Nuemberg, Germany

Optical Networking Group

9041 1 Nuemberg, Germany
+49 91 1 526-3382 perry @ece.utexas.edu +49 91 1 526-2624

ABSTRACT
There are three interdependent factors that drive our software
development processes: interval, quality and cost. As market
Dressures continue to demand new features ever more months.

network, consisting of circuit packs, ASICs, software units,
and a craft terminal. Total head count for this release was
180 people and the development project lasted for 19

rapidly, the challenge is to meet those demands while
increasing, or at least not sacrificing, quality. One advantage
of defect prevention as an upstream quality improvement
practice is the beneficial effect it can have on interval: higher
quality early in the process results in fewer defects to be
found and repaired in the later parts of the process, thus
causing an indirect interval reduction.

The NE software is developed in teams of 5-10 people. A
typical (large) NE configuration can consist of many
different hardware board types and up to 150 different
software components. A software team is responsible for a
collection of functionally related components, which
altogether form an architectural unit, called 'subsystem'
within this paper. The overall size of the NE software

We report a retrospective root cause defect analysis study of
the defect Modification Requests (MRs) discovered while

product is & o h d 900 K-NCSL (non-commentary source '

lines), 51 % being newly developed software. . ,
building, testing, and deploying a release of a transmission This release has been a very important and critical one network element product. We subsequently introduced this especially for the European market. Management concern analysis methodology into new development projects as an
in-process measurement collection requirement for each for process improvement project retrospective activities, one of them being the root cause major defect MR. defect analysis (RCA) project. Several improvement projects

-

We present the experimental design of our case study
discussing the novel approach we have taken to defect and
root cause classification and the mechanisms we have used

towards, for example, better effort estimation, more effcient
development, and predictable and higher quality (measured
in number of defect MRs) have been initiated recently.

for randomly selecting the MRs to analyze and collecting the
analyses via a web interface. We then present the results of
our analyses of the MRs and describe the defects and root
causes that we found, and delineate the countermeasures
created to either prevent those defects and their root causes
or detect them at the earliest possible point in the
development process.

We conclude with lessons learned from the case study and
resulting ongoing improvement activities.

KEYWORDS
root cause analysis, defect prevention, process improvement,
quality assurance, modification management

1 Introduction

1.1 RCA project overview
The product in our study is a network element (NE) that is a
flexibly configurable transmission system in an optical

Pernrission to make digital or hard copies of all or part ofthis work for
personal or classroom use is ganted without fee provided that copies
are not made or distributed for prolit or commcrcial advantage and that
copies bear this iioticc and thc full citation on the first page. To copy
othenvise, to republish, to post on serveis or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE 2000 Limerick Ireland
Copyright ACM 2000 1-581 13-206-9/00/6...$5.00

The team has been constituted as cross-functional team:
members represenr the NE software and hardware
subsystems, as well as the independent integration &
certification department and quality support group. We also
have been supported by members of the Bell Laboratories
software productions research department who brought
extensive experiences from other similar studies (e.g. [123)
into our team. The mission of the RCA project was

analyze sample defect MRs; find systematic root causes
of defects
analyze major customer-reported MRs during the mainte-
nance release (so-called post-GA MRs, GA = general
availability of the product)
propose improvement actions, as input for current devel-
opment projects, in order to reduce number of critical
defects (severity 1&2 MRs) and to reduce rework cost,
e.g. MR fix effort.

1.2 Limitations
This study has focused on defect analysis and determining
the underlying root causes of those defects. There are more
general perspectives that one might take (for example, what
went well and what went wrong) but they are out of scope
for this study. Moreover, correlations with other product

428

mailto:mleszak@lucent.com
mailto:ece.utexas.edu

metrics have not been considered either, though it would be
very interesting to analyze, for example, defect distributions
in relation to test effort and the number of defect M R s per
component (an associated analysis on the same project,
studying quality related inter-dependent process and product
measurements, is described in another paper [14].) We have
focused our effort analysis on the reproduction, investigation
and repair of the defect MRs, not on the retest effort that
makes up a significant part of the rework effort.

Due to time pressures resulting from limitations on team
member availability, we were not able to implement the
formal analysis training and testing to establish a defined
level of inter-rater reliability. However, there are two
mitigating factors. First, the analysts looking at the MRs
were members of the team putting together and reviewing
the analysis instrument. This participation resulted in project
relevant aspects being included in the questionnaire. We
argue that this participation also resulted in a shared
understanding of the components of the analysis. Second, we
did implement informal consistency checks during the
analysis process. Where inconsistencies were found, the
analysts made subsequent corrections to the defect analyses.
Thus, we are relatively confident in the consistent ratings of
the resulting data.

1.3 Relation to other Work
Prior work on software faults has generally been reported on
initial developments and focused on the software faults
themselves rather than their underlying causes. The work of
Endress [5], one of the earliest papers to analyze software
faults, based his error classification on the primary activities
of designing and implementing algorithms in an operating
system. Thayer, Lipow and Nelson [15] provide an extensive
categorization of faults based on several large projects.
Schneidewind and Hoffman [131 categorize faults according
to their occurrence in the development life-cycle. Ostrand
and Weyuker [8] introduced a novel attributed categorization
scheme delineating fault category, type, presence and use.
Finally Basili and Pemcone [l] provided an analysis of a
medium scale system.

Our current study is based in part on earlier work by Perry
and Evangelist [10,11] on interface faults which, while
cognizant of the earlier fault categorization work listed
above derived its list of interface faults from the fault data
rather than using a pre-existing categorization. It is based
also on the work by Perry and Stieg [12] --- a study of one of
the releases of one of Lucent's very large switching systems.
The fault categorization used in this study was based in part
on the published categorizations and part on the experience
of the developers in the reported project.

The work here is similar in intent but differs in
implementation details. First, the defect categories are an
improvement on the original categories in that they are
separated into three classes for better human factors reasons,
breaking up a large set of defects to be selected from into
three reasonable sized sets of defects. Second, the effort
estimation scales are uniform here where they were different
there; further we added investigation effort here. Third, we
expanded the root causes over what we had in the original

study. This expansion was done in conjunction with the
knowledgeable developers from the project and reflects both
the current state of their project and their processes. Fourth,
and our most novel aspect from a research point of view, we
allowed for multiple root causes to be defined as well as for
no root causes (i.e., a simple mistake with no underlying,

cause). And finally, rather than surveying the entire
set of defect MRs, we have randomly selected a statistically

_significant sample from each of the subsystems for detailed
analysis.

Card's "Learning from out Mistakes with Defect Causal
Analysis" [3] provides a generic process which is congruent
with the process followed here.

There are several strands of related work that are similar to
ours but which did not have a direct influence on our
approach. Chillarege, et. al. in their paper "Orthogonal
Defect Classification" [4] focuses on defect types and defect
triggers as a means of feedback to the development process.
In spirit, this is much the same as our approach except that
their method is used throughout the entire development
process for immediate feedback where ours is essentially a
retrospective and 'end of development' feedback process.

More recent work on defect and root cause analysis by
Weider Yu et. al. [16,17] has followed a process similar to
ours, but using different defect and root cause classification
schemes. They have not focused explicitly on the effort
related to the defects. However, the general shape of their
results are similar to ours.

In a larger context, our methodology applies key aspects of
the defect prevention process area of the CMM [9] and is
similar to the one described in [51.
1.4 Organization of the Paper
We first discuss our methodology for the root cause analysis
study in section 2. After presenting our defect classification
scheme and its interesting new aspects in section 2.1, we
discuss the defect selection procedure and our method for
deriving countermeasures and actions for improvement in
section 2.2 and 2.3. We then present our data analysis
focusing first on how we prepared the data (3.1), then on the
results of our general analyses of the defects, effort and root
causes (3.2). and finally on the selection of critical root
causes to be either prevented or found earlier (3.3). We
conclude in section 4 with lessons learned, defining the most
promising countermeasures and outlining resulting ongoing
improvement activities, and describing our future plans.

2 RCA Methodology

2.1 MR Classification Scheme
We designed and implemented a web interface tool for RCA
which provides an on-line representation of the MR
classification scheme. The purpose of this tool and its
associated form is to be accessible easily and to provide a
simple means of data collection with appropriate online
human factors support. The form has the appropriate census
and MR data extracted from the MR database. Beyond that
there are the following subsections to the analysis form:

429

MR classification: phase detection information MR classification: real defect classification
An important fact needed if we are to find defects earlier is We divided the defects into three classes of defects:
when the defect was in fact found. The analyst may choose implementation, interface and extemal. Within each of these
any one of 10 process phases as the phase in which the defect classes there are a set of appropriate defects types, depicted
is found. In addition, the analyst may indicate why the defect in table 1 .
was not found earlier.

Implementation

1: data desigdusage

2: 'resource allocatiodusage

3: exception handling

4: algorithm

5: functionality

6: performance

7: language pitfalls

8: other

Table 1: Classification of defect types
~~~~~~ 

Interface 

9: data desigdusage 

10: functionality desigdusage 

1 1 :  communication protocol 

12: process coordination 

13: unexpected interactions 

14: change coordination 

15: other 

The third factor in the defect classification is the defect 
nature: incorrect, incomplete, other. These were to be 
applied wherever they were appropriate. Their use was to 
reduce the number of explicit defect types. The other part of 
the defect classification focused on reclassifying the severity 
if that was necessary and reporting the amount of effort to 
reproduce the defect, to investigate it, and to repair it. We 
used a uniform scale for these effort reports: zero (meaning 
negligible effort), less than one day, one to five days (i.e., up 
to a week), five to twenty days (one to four weeks), and more 
than 20 days (more than a month). 

MR classification: real defect location 
The real defect location specified either a document 
identifier, or whether it was software or hardware. 
'Real' location characterizes the fact that in real projects 
some defects are not fixed by correcting the 'real' error- 
causing component, but rather by a so-called 'work-around' 
somewhere else. 

MR classification: defect triggers 
Our approach to defect triggers (root causes) is rather novel. 
There are a number of dimensions that may in fact be at the 
root of each of the defects - that is, there may be several 
underlying causes rather than just one. We therefore 
provided a set of four root cause classes: phase-related, 
human-related, project-related, and review-related. These 
four classes span a four-dimensional root cause space, i.e. 
each individual defect root cause is uniquely characterized 
by specifying a value in each of the four root cause 
dimensions. 

the phase triggers are the standard development phases 
or documents: requirements, architecture, high level 
design, component spec/design, component implementa- 

External 

17: test environment (tooldinfrastructure) I 
18: test environment (test caseslsuites) I 

~~ 

19: concurrent work (other releases) I 
~- ~ 

20: previous (inherited from prev. release)- I 
21: other 

tion and load building. The phase related root causes 
could be qualified by the nature of the trigger: incorrect, 
incomplete, ambiguous, changedrevisedevolved, not 
aligned with customer needs, and not applicable (the 
default). 
The human related triggers are: change coordination, 
lack of domain knowledge, lack of system knowledge, 
lack of tools knowledge, lack of process knowledge, indi- 
vidual mistake, introduced with other repair, communica- 
tions problem, missing awareness of need for 
documentation, and the default, not applicable. The 
"individual mistake" trigger is similar to the "Execution/ 
oversight" category of Yu et a1 [17]. It reflects the fact 
that sometimes you just make mistakes. 
The project triggers are: time pressure, management mis- 
take, caused by other product, and not applicable (again 
the default). 
The review triggers are: no or incomplete review, not 
enough preparation, inadequate participation, and not 
applicable. (Note that a review is a formal moderator- 
controlled inspection of a document or code artifact. Our 
review process is described in [71.) 
other triggers: And, of course, there is the escape "other" 
allowing a different trigger to be specified. 

MR classification: barrier analysis 
Finally, the analyst may suggest measures for ensuring 
earlier defect detection andor for preventing or avoiding the 
defect altogether. 

2.2 MR Selection Procedure for Root Cause Analysis 
As is usual in these kinds of studies, there is a problem with 
the magnitude of the amount of work that would have to be 
done to analyze all the relevant MRs to get a complete 

430 



picture of the defects and their causes. One way of reducing 
the amount of work is to randomly select a significant subset 
of the MRs to represent the whole set and carefully analyze 
that subset. Thus our selection procedure was as follows: 

define a set of MRs per subsystem (not per team), such 
that a subteam analyzes selected MRs per subsystem 
for each set of MRs per subsystem: 
* filter out inappropriate MRs 
* split into n MR subsets, such that each MR in a certain 

* from the MR subset Si, select further a (typically much 

1) one part (say 5 - 10) is selected manually by the sub- 
team analyzing Si’, based on own selection criteria like 
“this MR hurt us a lot”, long lifetime, overly complex 
problem solution, etc. 
2)  the second part is a random sample of Si of order 40 
MRs. In case Si is not ‘significantly larger’ than 40, all 
MRs in Si are selected. 
Explicitly not excluded are severity 3 or 4 MRs (being 
not customer-visible ), no-change MRs (false positives), 
and documentation MRs. 

2.4 Methodology to derive Countermeasures & Improve- 
ment Actions 
Our methodology entails four steps. 

subset “Si” belong to exactly one subsystem 

smaller) subset Si’ such that 

1. Selection of most significant MR subset 
Critical for proposing countermeasures is to focus on a 
reasonable subset of all defects. 

To arrive at such a set we apply a filtering mechanism. The 
filter cannot be defined beforehand, but is the outcome of a 
first analysis step. In this first step the goal is to identify 
selection criteria which filter those MRs that have together a 
significant part of rework effort and which to a large extend 
are found late in the development process. This way we 
arrive at a first subset of MRs that will be analyzed in more 
detail. 

As second criterion for finding important defects we look 
into Post-CA MRs and search there for dominant 
contributions. If the defects that are found to be important 
differ in their characteristics from the first set, we get a 
second set of MRs for detailed study. These results provide 
the statistical input to the team for the selection of 
countermeasures that were suggested for each MR during its 
analysis. 

2. Prioritization of Countermeasures 
The RCA action team brainstormed proposals and weighted 
each proposal with overall consensus, according to three 
factors: statistical weight as percentage of total effort, 
effectiveness of the suggested countermeasure and estimated 
cost of its implementation, on a scale of 0 to 1. The product 
of the values is taken to get a first ranking of 
countermeasures. Finally this ranking is taken as basic, but 
not fully binding, input to select the countermeasures to 
tackle. Typically 

countermeasures with weight >OS should be selected 

the number of countermeasures should be ‘small’ e.g. 
<20, to remain manageable w.r.t. organizational changes 

3. Definition of Improvement Actions 
We conducted a two-day workshop with the analysts in 
which we focussed on the selected subset of defects and root 
causes to determine the appropriate actions to the defined 
and prioritized countermeasures. The results are summarized 
in section 4.1. 

4. Deployment of Improvement Actions 
Results were presented to our R&D Management Leadership 
Team and the development teams. Key improvements 
proposed have been approved and their implementation 
initiated, see details in section 4.1. 

3 Data and Analysis 
We first discuss the issue of preparing the data for analysis, 
then present our general analysis results and conclude with a 
discussion of how we selected the critical root causes as a 
focus for more detailed analysis and group discussion. 

Before continuing we briefly clarify the terminology we use 
in our MR handling process. The following types of MRs are 
distinguished: 

initialization MR: used to add an artifact for the first time 
to the configuration management repository. Once an 
MR of this kind is closed, other MRs, of type enhance- 
ment or defect, may be created on the associated artifact. 
enhancement MR: used to add new functionality as part 
of a new release, i.e. as planned evolution of an existing 
system. 
defect MR. used to correct any fault in specification, 
design, or implementation. For each problem detected, a 
new MR is issued. If several artifacts are affected by the 
correction, this is handled by MR spawns. In this paper, 
we consider always the problem-related MRs, not their 
spawned sub-MRs. 

3.1 Data Preparation 
Data screening for the analysis proceeded in two steps. 

1. Consistency checking. A comparison of results between 
different subsystems was conducted. The rationale being 
the elimination of misunderstandings of terms and veri- 
fication of results. In particular the analysts have been 
asked to provide reasons for atypical behavior or to cor- 
rect the classification if it was due to a misinterpretation 
of terms. 

from those settled analysis data the MRs which have not 
been selected randomly. From the rest of the MRs we 
split off so-called no-analysis MRs which were errone- 
ously classified as defects but in fact were initial MRs or 
enhancement MRs. The remaining MRs constitute a 
basis of 427 MRs belonging to 13 subsystems (Post-GA 
MRs counted as separate subsystem). 

Each subsystem was represented with at least 8% of its MRs. 
Typically 20%-40% of the MRs were analyzed. Taking also 
the total number of MRs per subsystem we had a multiplicity 

2.  Preparation of a representative sample. We separated 

43 1 



countermeasures. 

3.2 General Analysis Results 
Our statistical analysis is mainly 
descriptive in nature. Thus the 
bulk of evaluation consists in 
graphical or tabular aggregation 
of the results of our 
investigations and is done using 
the “S” software tool [2] in an 
exploratory way. Most results, 
depicted in figures 1 - 6,  are 
presented using Pareto charts. 

From the distribution shown in 
figure 1 we can derive several 
general results: 

1. extemal defects are negligi- 
ble, except for type “inher- 
ited from previous release”. 

I 

2. interface defects consume 

14: change coord. 
17: test envir.:tools 
19: concurrent work 
7: language pitfalls 

15:interf.:other 
I 6: dev.envir. 

18: test envir.:test cases 
0: choose one 

21 : externabther 
20: previous (inherited) 

11 : comm.protoco1 
3: exception handl. 
12: process coord. 

1: impl.:data design 
8: impl.:other 

9: interf.:data design 
lo: interf.:functionality 

6: performance 
13: unexpected interact. 

2: resource alloc. 
5: impl.:functionality 

4: algorithm 

0 10 20 30 0 

# of MRs in YO 
Figure 1:  Distribution of defect types. 

factor depending on the subsystem that each MR was 
weighted with during the analysis. E.g. each MR belonging 
to a sample that was represented with 20% of its MRs was 
counted as 5 MRs with all the characteristics the particular 
sample MR had like severity, defect type, etc. These 
weighted MRs were used throughout the following analysis, 
to extrapolate from the random sample to the total set of 
MRS. 

Extra MRs that have been analyzed in addition to the random 
sample MRs were negligible in number except for one 
subsystem. The MRs of this subsystem have been included 
in the comparison between subsystems as separate group of 
MFts. The remaining extra MRs have not been considered in 
the statistical analysis but only in the manual evaluation of 

0: not applicable 
1: System definition 

2: HW design 
3: IMS 

4: SW design 
5: SW integration 

6: System integration 
7 System test 

8: Reproducibility 
9: Deliveries 

1 0  Prior to project start 

0 10 30 50 0 10 30 50 

# of M R s  in % Estimated effort in % 

Figure 2: Distribution of phase where defect detected 

about 25% of effort, the 
largest amount being caused 
by unexpected interactions, 
followed by functionality 
and data design. 

3. implementation defects con- 
sume 75% of all effort and 

are dominated by defects of type algorithm and of type 
functionality. These defects will be studied in more 
detail below. 

Interesting is the mismatch between number and effort 
which is most significant for defects of type previous, 
unexpected interaction, performance, and data design. This 
is reflected in the estimated effort (in person days) per MR of 
those defects. On the average we find 4.6 days for extemal, 
6.2 for interface, 4.7 for implementation defects. Outliers are 
data design (at the low end) with 1.9 days and (at the high 
end) inherited defects 32.8, unexpected interactions 11.1 and 

10 20 30 

Estimated effort in % 

performance defects 9.3. 

As depicted in figure 2, system integration 
the distribution for defect detection, while 

6: Testing 
7 Load building 

1: Requirements (by PMIM) 
0: not applicable 

2: Architecture (by SE) 
3: High level design (SF) 

4: Component spec./design 
5: Component implementation 

0 10 20 30 40 

# of MRs in % 

I 1  represents 50% of 
the elimination of 

0 10 20 30 

Estimated effort in % 

rigure 3:Distribution of phase where defect originated 

432 



4: Lack of tools kn. 
5: Lack of process kn. 

1: Change coordination 
7: Introduced with other repair 

8: Communication problems 
9 Missing awareness ... 

2: Lack of domain kn. 
0: not applicable 

3: Lack of system kn. 
6: Individual mistake 

-3 

0 5 10 20 30 a 5 i o  15 20 

# of MRs in % Estimated effort in % 

Figure 4: Distribution of human root causes 

those defects taking up almost 60% of effort. As expected 
the data show a significant variation in effort per MR. 
Defects found in SW design and SW integration require less 
effort than those found in system integration and test. The 
estimated effort per MR (in person-days) as extracted from 
those figures are 3 days during SW design and integration, 6 
days during system integration and system test and 9 days 
after delivery. 

As shown in figure 3, defects are injected into the system 
predominantly (71 %) within the component oriented phases 
of component specification, design and implementation. As 
an interesting outcome of the analysis we observe that 
defects from the requirements phase do not consume on the 
average tremendously more fix effort to be eliminated than 
others. Rather architectural mistakes tum out to require 
much more effort. It turns out that the required effort is for 
defects originating from requirements 6.5 days, from 
architecture 10 days, from high level design 5.8 days and 
from component spec./design 5 days. 

An important study decision was to allow for several root 
causes to be specified during analysis of each MR. The 
intuition is that there may well be several factors 
contributing to the occurrence of a defect. Thus, in addition 
to phase, we have allowed human, project, and review root 
causes to be specified. These four-dimensional root cause 
classifications give indications as to what played a role in a 
defects occurrence. A useful way of looking at the data is to 
take the inverse percentages as an indication how many 
defects remain unaffected if the particular root cause were 
eliminated. 

Viewing the data this way, we see from figure 4 that 
eliminating individual mistakes would have no effect on 67% 
of all defects, eliminating lack of system and domain 
knowledge would have no effect on 69%. If all 
communication related problems were to be solved, 87% of 
all defects remained unaffected. 

For the selection of project root causes, while time pressure 
was chosen to be one affecting factor in 40% of all defects, 
mostly project root causes were not considered relevant. 

Review-related root causes have been considered in 73% of 
all MRs and inadequate reviews have been specified as 
important in 48% of all MRs.  Thus in 66% of all defects 
where review root causes have been considered at all, review 
deficiencies have been diagnosed. 

3 3  Selection of critical Root Causes, to be improved or 
eliminated 
As first step in figuring out dominant contributions, the 
distributions of MRs according to their defect type were 
studied with the result that defects of type algorithm, and of 
type functionality (defect class ‘implementation’) dominated 
by far all other defect types. ‘Functionality defect’ refers to 
missing or wrong functionality (w.r.t. requirements) in a 
design or code artifact whereas ‘algorithm defect’ refers to 
an inadequate (efficiency) or wrong (correctness) 
algorithmic realization In terms of numbers those defects 
represent 34% and 21%, respectively, of the defect 
population and 35% and 19% of the fix effort. The remaining 
defects are distributed over 16 other defect types. 

Of particular interest are the Post-GA defects because they 
are typically detected by a customer. Of all Post-GA MRs 
14% are classified as type algorithm and 68% of type 
functionality. This re-enforces our interest in those two 
defect types as deserving further detailed studies. 

Specific Analysis of MRs with Defect Type 
’Algorithm’ or ’Functionality’ 
MRs of defect class “implementation” and defect type 
“algorithm” or “functionality” have been correlated with the 
phase when they have been detected: 

all MRs 14% 24% 49% 

algorithm 3% 14% 71% 

functionality 13% 23% 47% 

all otherMRs 23% 32% 33% 

The table shows that of both defect types, more than 60% of 
the defects are detected late in the process, namely in system 
integration and system test. Since the average is 60% this 
also shows that the remaining 40% of all MRs is typically 
earlier detected. In particular, algorithm defects exceed the 
average finding in system integration by almost 50% and the 
finding of other MRs by 100%. Besides the pure numbers, 
late detection is a second strong argument for looking into 
the root causes of these particular defect types. To this end 
the correlations with various root causes were investigated. 

The correlation with the phase when the defect was 

433 



reporting review root causes. For 
functionality the amounts are 30% 
inadequate reviews with a total of 
67% reporting review root causes. 

Algorithm 
9: Missing awareness for 

need of communication 
8: Communication problems 

b 7: Introduced with other repair 

6: Individual mistake 

5: Lack of process kn. 

4: Lack of tools kn. 

3: Lack of system kn. 

2: Lack of domain kn. 

1: Change coordination 

0: not applicable 

0 10 20 30 40 50 0 10 20 30 40 

# of MRs in % Estimated effort in % 

Figure 5: Human root causes found f o r  defects of type algorithm and 
functionality, related to  weighted mean number of MRs. [Three bars are displayed 
for  each root cause. They show the respective results for all analyzed MRs and for  the 
subsets of MRs classified as “algorithm” or “functionality” defects. The human root 
cause description starts off at the center-bar of the group of three bars.] 

introduced 

all MRs 

algorithm 

functionality 

I I i 

WI 
15% 25% 44% 

shows no unexpected behavior. As one would assume, 
algorithm defects are introduced during design, specification 
and implementation, deviating significantly from the average 
distribution of defect defection. Functionality defects occur 
in rates close to the average behavior. 

The correlation with human root causes (figure 5) shows 
significant contribution from lack of domain and system 
knowledge, and of individual mistakes. Not unexpectedly the 
contribution from lack of domain knowledge is smaller in 
case of functionality defects. 

With respect to the correlation with review root causes we 
observe that of all MRs of defect type algorithm 75% are 
afflicted with inadequate reviews with a total of 84% 

Contrasted with an average of 48% 
inadequate reviews on the basis of a 
reporting rate of 73%, we may infer 
that in particular algorithm defects 
escape earlier detection due to 
review deficiencies. 

From all project root causes that 
have been available for selection, 
only time pressure constitutes a 
major part. On the average 40% of 
all defects are related to time 
pressure whereas this amount is 
70% for defects of type algorithm 
and 17% for type functionality. 

The analysis thus far indicates that 
important areas to look for 
improvements are reviews, domain 
and system knowledge, and test 
strategies (e.g. defined vs. achieved 
test coverage) because of late 
detection of defects. Means of 
prevention and earlier detection - 
provided by the MR analysts - are 
further evaluated manually to arrive 
at concrete counter measures. 

Specific Analysis of Post-GA MRs 
Although we intended to get a subset of MRs from a detailed 
analysis of Post-GA MRs, the outcome may be summarized 
very briefly. In fact we observe that defects of type algorithm 
and functionality again dominate by far all other defects. 
Thus having arrived at this subset already nothing must be 
added to cover defect causes that become visible to the 
customer. With respect to finding countermeasures this 
sample adds, however, the question why so many defects 
have been classified as “introduced by another repair”. 

4 Conclusion 
We have described the origins of our study, delineated the 
process of our retrospective root cause analysis, and 
provided some of the analyses we performed on the data as 
illustrations and support for our subsequent improvement 
decisions. The primary novelty in our approach is the 
replacement of a one-dimensional root cause classification 
(that allows only for a single unique root cause to be 
selected) by a four-dimensional root cause space. The four 
dimensions are spanned by human, review, project, and life- 
cycle phase root cause classes. Unique root cause selection 
thus requires specification of a value in each of the four 
directions. This choice reflects the general richness that 
underlies most of the faults that occur in the building and 
evolution of large complex software systems. The rest of our 
contributions are incremental to the approach in 1121. 

4.1 Countermeasures and Improvement Actions 
Our strategy was to find and deploy an effective set of 

, 

434 



improvement actions, so that for future development projects 

the overall number of defect MRs is significantly reduced 
the defects are detected earlier in the lifecycle 
the mean effort to fix a defect is reduced 
the actions are really effective, i.e. focussing on system- 
atic errors which result in a small number of process 
changes, promising at the same time to affect multiple 
defect root causes 

In the countermeasure definition meeting the team decided 
to select 10 focus areas on the basis of the statistical data 
evaluation. The areas chosen from the effort distribution over 
the phase defects have been introduced, are component 
specification and design, component implementation and 
architecture. Note that this selection covers all algorithm 
defects and 73% functionality defects which were found to 
dominate all other defect types. Review root causes were 
selected as one single category. From the human root cause 
data the team selected ‘individual mistake’, ‘lack of system 
knowledge’ combined with ‘lack of domain knowledge’ as 
one area, and selected ‘introduced with other repair’ and 
‘communication problems’ together with ‘missing 
awareness for need of communication’ as another area. The 
reason for selecting categories with small contributions was 
the insight that only human and review root causes can be 
addressed by countermeasures directly. Finally the team 
added the categories ‘subcontracted software components’ 
and ‘project management’, due to specific proposals for 
means of prevention found in the analysis data. Within these 
categories a set of countermeasures was distilled from the 
suggestions provided by the analysts during the analysis. The 
same procedure was followed to arrive at a set of measures 
for earlier detection of defects found in phases system 
integration, system test, and maintenance. All 
countermeasures thus assembled have been weighted to 
arrive at a ranking. 
As ranking criteria the team decided to use three inputs 

Savings potential per RC area, represented by portion of 
total bugfix effort (this the maximum effort that can be 
saved by avoiding defects of this particular category), 
effectiveness per countermeasure, i.e. estimated percent- 
age of MRs of this RC area which can maximally be 
influenced by a Countermeasure, 
cost per countermeasure, i.e. estimated additional cost to 
implement the countermeasure. In order to combine the 
cost measured in 1000 US-$ with the other ranking crite- 
ria we mapped cost ranges onto factors in the interval 
[0,1] in the following way: 
[0,6[ -> 1.0 
[6,30[ ->0.8 
[30,130[ -> 0.6 
[130,600[ -> 0.4 
[600, [ ->0.2 

The following main countermeasures (CM) and associated 
improvement projectdactivities (Up) have been defined, with 
increasing potential benefit in the ordered list below. All 
proposed IPS have been started and are ongoing. Note also 
that countermeasures are defined even in areas where SW 

development is already comparatively mature. Since our 
organization satisfies CMM level 3 criteria in several key 
process areas, we understand the improvement activities as 
one of the means that allow us to reach level 3 fully. 
Potential savings, effectiveness and cost (SEIC) shown in 
brackets. 

CM1: component specification & design documentation 
extend ensure required contents especially include com- 
pliance to non-functional and performance requirements 
(32% 120% 10.8) 

IP: improve requirements management and systems 
engineering process w.r.t. traceability process, capturing 
non-functional SW requirements. 

IP: introduce performance engineering (i.e. performance 
modeling, budgeting, and measurements). 

CM2: component implementation 
increase usage of static & dynamic code analysis tools 
(coding standards checking, memory leak detection, code 
coverage analysis) (40% I 15% 10.8) 
better unit tests (higher test coverage, complete test spec- 
ification, systematic case selection, better host test envi- 
ronment, test bed, test automation) (40% / 35% 10.4) 

IP: code analysis tools and unit test tools usage as standard 
procedure in development process, fully integrated with load 
build environment. (Note: other product improvements on 
implementation level, e.g. cleanroom software engineering, 
sophisticated coding standard based on pre-lpost-conditions 
etc. have not been tackled: this would mean a major 
paradigm shift - considered too risky for ongoing 
development of releases within the same product line in a 
highly competitive market.) 

CM3: system & domain knowledge 
extend training offers and attendance on architecture and 
application domain, improve systems design skills 
(38% 135% 10.6) 

I P  enhanced training program, assigned training coordinator 

CM4: document & code reviews 
analyze review culture and performance, improve review 
process (66% 130% 10.8) 

IP: include total effort for reviews in realistic planning, 
ensure sufficient review participation, increase awareness for 
review importance by e.g. better training, establish review 
process control: strict entry conditions, scheduling, timing. 
An review improvement project has been started in 
cooperation with Fraunhofer Institute for Experimental 
Software Engineering (IESE). First analysis results appeared 
in [7]. 

CM5: project management 
increase process compliance, i.e. completeness of exit 
conditions of systems and software development process 
(100% I 30% I 0.5) 

P: study correlation of component measurements (size, 
defects, complexity) and process compliance (see significant 
results in [14]). 
IP: Implement database system for all project-related data, 

435 



supporting project tracking and reporting early warnings on 
process issues. 

4.2 Lessons learned 
Bugfix costs do not grow exponentially by phase, but 
rather linearly. (Note, however, that we don’t consider re- 
testing effort which would have added a significant 
amount to total rework costs.) 
The majority of defects do not originate in early phases 
Within the same project, the defect attribute distribution 
per SW subsystem revealed large differences. (To our 
knowledge this has not been reported in other studies.) 

The number of defects per subsystem found in system test 
ranged from 0% to 55%, the respective range is 5% to 95% 
for defects found in system test and system integration 
together. Although intriguing, we learned that these numbers 
cannot simply be attributed to differences in the quality of 
SW artifacts. To a significant extent they are due to 
architecture caused differences of subsystems. Thus, some 
have been targets of requirement changes, others could reuse 
existing functionality, others have higher operation profiles 
due to belonging to a lower architectural layer, etc.. 
Although interesting, the data available did not permit a 
detailed comparison along these lines which therefore is left 
for future studies. In particular it would be interesting to 
disentangle the architectural aspect from the team cultural 
one, e.g. how unit testing or reviews are done, because it 
would permit identification and promotion of best practices. 
An interesting side-result of the comparison is the fact that 
post-GA defects are to a much larger extent (30%) than on 
average (5%) caused by another repair which may be traced 
back to a project’s ’end-game’ pressure. 

4. There is a significant influence of human factors on 
defect injection 

Our study extended similar ones with regard to human 
factors for defect infection, and it made them more explicit. 
We recognized that this was in fact a particularly important 
attribute. It allowed us to separate randomly inserted defects 
due to unavoidable (human) mistakes and systematically 
introduced defects due to mismatches in required and 
available technical and/or soft skills. In software engineering 
work the “human factor” should receive higher focus. 

5. RCA has a low and tolerable effort, relative to its 
apparent benefits 

Two technical insights that we think are worthwhile 
mentioning, as well. In spite of starting the activity several 
months after project completion, and that the defects to be 
analyzed were on the average about a year old, the mean 
time for analysis was just 19 minutes. Thus such activities 
are even cheaper if they are performed during the project 

when the detailed knowledge about defects can be recalled 
easily. In-process RCA is a cost effective mean to identify 
deficiencies and improvement areas. When combined with 
statistical analysis, which of course is only possible in rather 
large development projects, conclusions about 
countermeasure selection can be made sound and put on a 
solid basis with regard to costs and potential benefits. 

4.3 Current State and Future?Plans 
We plan to deploy RCA as continuous activity within all 
future development projects. Since RCA has been a post- 
mortem project activity so far, our RCA concept has been 
generalized to be applied as in-process RCA, i.e. during the 
development project. Concept extensions, already 
implemented in a successor release to the one under study in 
this paper, include 

MR selection criteria - which MRs need to be analyzed to 
find root causes 
adapt MR analysis input tool - interfaces to our configu- 
ration management tools is being built 
improved RCA analysis scheme, e.g. adding a test root 
cause area 

As future aspects, we plan for 

installation of a permanent defect prevention / RCA team 
evaluation of cost-benefit of RCA, by comparing quality 
gain vs. RCA costs of different product releases beforel 
after RCA introduction. Gain will be measured by post- 
GA MRs, both absolute number and defect density until 
one year after GA. 

In-process RCA is an important step towards full integration 
of the RCA methodology into the standard development 
process. It makes sense to require the additional RCA 
information from the bug fixer, prior to MR resolution. The 
RCA team should assess the individual proposals and 
provide feedback for organization change and process 
change at regular intervals, e.g. after each development 
phase or each major project milestone /3]. 

Since most engineers can then get involved in RCA 
activities, an extensive training on defect prevention and 
RCA should be performed, one essential step to make RCA a 
collaborative, continuous, and best-in-class improvement 
activity. 

ACKNOWLEDGMENTS 
We gratefully acknowledge the continuous commitment and 
support of our R&D Director Warren Koontz to the RCA 
project. The qualified contributions of the many RCA team 
members is also largely appreciated. 

436 



REFERENCES 
1. V. R. Basili and B.T. Perricone: Software Errors and 

Complexity: An Empirical Investigation, CACM 27: 1 

2. R. A. Becker, J. M. Chambers and A.R. Wilks: The new 
S Language. Chapman and Hall, 1988 

3. D. N. Card: Learning from our Mistakes with Defect 
Causal Analysis. IEEE Software 1/1998, p. 56-63 

4. R. Chillarege et al: Orthogonal Defect Classification - A 
Concept for In-Process Measurements. IEEE Transac- 
tions on SW Engineering, vol. 18( 1 l), 1 U1992 

5. A. Endress: An Analysis of Errors and Their Causes in 
Systems Programs. IEEE TSE, SE-1:2 (June 1975), 140- 
149. 

6. C. Kaplan, R. Clark and V. Tang: Secrets of Software 
Quality - 40 Innovations from IBM. McGraw-Hill, 1995 
(Defect Prevention Process in chapter 15) 

7. 0. Laitenberger, M. Leszak, D. Stoll and K. El-Amam: 
Causal Analysis of Review Success Factors in an Indus- 
trial Setting. 6th International Symposium on Software 
Metrics, West Palm Beach, Florida 11/1999 

8. T. 3. Ostrand and E.J. Weyuker: Collecting and Catego- 
rizing Software Error Data in an Industrial Environment, 
The Journal of Systems and Software, 4 (1984), 289-300. 

9. M. C. Paulk, B. Curtis and M. B. Chrisis: Capability 
Maturity Model for Software (CMM) Version 1.1. SEI 
Report, CMU/SEI-93-TR, 1993 (RCA requirements in 
key process area “defect prevention”, CMM level5) 

(January 1984), 42-52. 

10. D. E. Perry and W. M. Evangelist: An Empirical Study of 
Software Interface Faults. Proc. of the International Sym- 
posium on New Directions in Computing, IEEE CS, 
August 1985, Trondheim Norway, 32-38. 

11. D. E. Perry and M. Evangelist: An Empirical Study of 
Software Interface Faults - An Update. Proc. of the 20th 
Hawaii Int. Conf. on System Sciences, 1987, 113-126. 

12. ID. E. Perry and C. S. Stieg: Software Faults in a Large 
Real-Time System: A Case Study. 4th European SW 
Engineering Conf., Garmisch-Partenkirchen, 10/1993 

13. N. F. Schneidewind and H.M. Hoffmann: An Experiment 
in Software Error Data Collection and Analysis. IEEE 
TSE, S E 5 3  (May 1979), 276-286. 

14. D. Stoll, M. Leszak and T. Heck: Measuring Process and 
Product Characteristics of Software Components - A 
Case Study. 3rd Conf. on Quality Engineering in Soft- 
ware Technology (Conquest-99), Nuremberg, 27-29 
Sept. 1999. ISBN3-00-004774-3 

15. T. A. Thayer, M. Pipow, and E.C. Nelson: Software Reli- 
ability - a Study of Large Project Reality. TRW Series of 
Software Technology, Vol2, North Holland, 1978 

16. W.D. Yu, A. Barshefsky and S.T. Huang: An Empirical 
Study of Software Faults Preventable at a Personal Level 
in a Very Large Software Development Environment. 
Bell Labs Technical Journal, 2:3 (Summer 1997), 221- 
232 

17. W.D. Yu: A Software Prevention Approach in Coding 
and Root Cause Analysis. Bell Labs Technical Journal, 
vol. 3, no. 2, April-June 1998,3-21 

437 


