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1 THE ARTICLES

THE second part of this special issue on Current Trends in
Exception Handling includes four papers which pri-

marily deal with exception handling in human-centered
systems such as workflow, requirements specification, and
new interactive programming models such as spreadsheets.
These research contributions demonstrate that exceptions
are not restricted to programming languages, but occur in
many, if not most, real-world situations. These papers also
reflect that exceptions can be deviations from normal
conditions and may not necessarily imply errors. This is
similar to Goodenough's observations in his classic paper in
the 1970s [1].

These papers lead us to observe that anything that has an
algorithmic flow, whether it be workflow or a design
process or a program, has a pervasive exception handling
need. Programming may be the ultimate in an algorithm, so
many of the problems encountered there have analogies in
other areas. Moreover, the computation model presented by
programming languages tends to be relatively more simple
in regard to handling of exceptions in contrast to dealing
with such problems in large-scale systems such as en-
terprise-wide workflow. In those environments, it is not
simply exception handling language constructs that are
needed, but a methodology on how to use exception
handling.

The programming model of spreadsheet systems raises
many unique issues related to exception handling. This is a
widely used model of programming by end users through
the use of many commercial products. In the paper
ªException Handling in the Spreadsheet Paradigm,º Mar-
garet Burnett, Anurag Agrawal, and Pieter van Zee discuss
these issues and present an approach for handling excep-
tions in this programming paradigm. Many spreadsheet
programs can be quite large and complex and, therefore,
both reliability as well maintainability of such programs
becomes an issue when exception handling is introduced.
The authors present their experience with and analysis of
the error value models for spreadsheet programs.

Achieving a high level of fault tolerance is one of the
main concerns in developing modern workflow systems

due to many factors: Distributed environment, long dura-
tion of activities, and complexity of the software involved
are among them. The paper ªException Handling in
Workflow Management Systemsº by Clause Hagen and
Gustavo Alonso describes an advanced fault tolerance
mechanism for incorporating both transactions and excep-
tion handling into such systems. The approach is unique for
workflow systems as it treats workflow support as a
programming environment and relies on general research
on developing fault-tolerant software. The authors use
fundamental research on linguistic issues of exception
handling and propose simple ways of applying these
concepts to transactional workflow management. The
modeling language incorporates special features for error
detection and handling which are conceptually similar to
exception handling features found in programming lan-
guages. Another important way in which this approach is
new is how it combines transaction atomicity and exception
handling. A validation technique is developed to make it
possible to assess the correctness of workflow specification
in situations when exceptions are raised and handled.

In the paper ªHandling of Irregularities in Human
Centered Systems: A Unified Framework for Data Pro-
cesses,º Takahiro Murata and Alex Borgida address
exception handling problems in human-centered systems.
In such systems, exception handling is required for dealing
with errors, as well as deviations, in data as well as
processes, from their normal constraints. The paper focuses
on exception handling in enterprise workflow systems.
Generally, in enterprise systems, process models are used
for describing the dynamic nature of activities of humans
and semi-automated system entities. Most often, such
models do not capture many unanticipated deviations.
Sometimes such deviations have to be corrected and other
times they are to be tolerated. This paper presents a unified
model for handling errors and deviations, which are treated
as exception conditions resulting from violations of some
specified constraints. When permitting deviations to persist,
it relies on runtime checks for assessing their consequences.

Axel van Lamsweerde and Emmanuel Letier address the
issues of ªHandling Obstacles in Goal-Oriented Require-
ments Engineering.º The requirements elicitation process
often results in goals, requirements, and assumptions about
the desired system that are too idealized and that do not take
into account the various kinds of problems that can occur.
Not anticipating exceptional behaviors results in unrealistic,
unachievable, or incomplete requirements specifications.
This, in turn, leads to systems that are not robust enough and
which may fail at critical times, perhaps with critical
consequences. The authors present formal techniques for
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reasoning about obstacles: For generating obstacles from
goal formulations and for generating resolutions once the
obstacles have been identified. A key principle in this paper
is that exceptions should be considered when engineering
the requirements while there is still a great deal of freedom to
resolve them in satisfactory ways.
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