
Current Trends in Exception Handling
Dewayne E. Perry, Member, IEEE, Alexander Romanovsky, and Anand Tripathi, Member, IEEE

æ

1 THE ARTICLES

THE second part of this special issue on Current Trends in
Exception Handling includes four papers which pri-

marily deal with exception handling in human-centered
systems such as workflow, requirements specification, and
new interactive programming models such as spreadsheets.
These research contributions demonstrate that exceptions
are not restricted to programming languages, but occur in
many, if not most, real-world situations. These papers also
reflect that exceptions can be deviations from normal
conditions and may not necessarily imply errors. This is
similar to Goodenough's observations in his classic paper in
the 1970s [1].

These papers lead us to observe that anything that has an
algorithmic flow, whether it be workflow or a design
process or a program, has a pervasive exception handling
need. Programming may be the ultimate in an algorithm, so
many of the problems encountered there have analogies in
other areas. Moreover, the computation model presented by
programming languages tends to be relatively more simple
in regard to handling of exceptions in contrast to dealing
with such problems in large-scale systems such as en-
terprise-wide workflow. In those environments, it is not
simply exception handling language constructs that are
needed, but a methodology on how to use exception
handling.

The programming model of spreadsheet systems raises
many unique issues related to exception handling. This is a
widely used model of programming by end users through
the use of many commercial products. In the paper
ªException Handling in the Spreadsheet Paradigm,º Mar-
garet Burnett, Anurag Agrawal, and Pieter van Zee discuss
these issues and present an approach for handling excep-
tions in this programming paradigm. Many spreadsheet
programs can be quite large and complex and, therefore,
both reliability as well maintainability of such programs
becomes an issue when exception handling is introduced.
The authors present their experience with and analysis of
the error value models for spreadsheet programs.

Achieving a high level of fault tolerance is one of the
main concerns in developing modern workflow systems

due to many factors: Distributed environment, long dura-
tion of activities, and complexity of the software involved
are among them. The paper ªException Handling in
Workflow Management Systemsº by Clause Hagen and
Gustavo Alonso describes an advanced fault tolerance
mechanism for incorporating both transactions and excep-
tion handling into such systems. The approach is unique for
workflow systems as it treats workflow support as a
programming environment and relies on general research
on developing fault-tolerant software. The authors use
fundamental research on linguistic issues of exception
handling and propose simple ways of applying these
concepts to transactional workflow management. The
modeling language incorporates special features for error
detection and handling which are conceptually similar to
exception handling features found in programming lan-
guages. Another important way in which this approach is
new is how it combines transaction atomicity and exception
handling. A validation technique is developed to make it
possible to assess the correctness of workflow specification
in situations when exceptions are raised and handled.

In the paper ªHandling of Irregularities in Human
Centered Systems: A Unified Framework for Data Pro-
cesses,º Takahiro Murata and Alex Borgida address
exception handling problems in human-centered systems.
In such systems, exception handling is required for dealing
with errors, as well as deviations, in data as well as
processes, from their normal constraints. The paper focuses
on exception handling in enterprise workflow systems.
Generally, in enterprise systems, process models are used
for describing the dynamic nature of activities of humans
and semi-automated system entities. Most often, such
models do not capture many unanticipated deviations.
Sometimes such deviations have to be corrected and other
times they are to be tolerated. This paper presents a unified
model for handling errors and deviations, which are treated
as exception conditions resulting from violations of some
specified constraints. When permitting deviations to persist,
it relies on runtime checks for assessing their consequences.

Axel van Lamsweerde and Emmanuel Letier address the
issues of ªHandling Obstacles in Goal-Oriented Require-
ments Engineering.º The requirements elicitation process
often results in goals, requirements, and assumptions about
the desired system that are too idealized and that do not take
into account the various kinds of problems that can occur.
Not anticipating exceptional behaviors results in unrealistic,
unachievable, or incomplete requirements specifications.
This, in turn, leads to systems that are not robust enough and
which may fail at critical times, perhaps with critical
consequences. The authors present formal techniques for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000 921

. D.E. Perry is with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712.
E-mail: perry@ece.utexas.edu.

. A. Romanovsky is with the Department of Computing Science, University
of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
E-mail: alexander.romanovsky@newcastle.ac.uk.

. A. Tripathi is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.
E-mail: tripathi@cs.umn.edu.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112189.

0098-5589/00/$10.00 ß 2000 IEEE

reasoning about obstacles: For generating obstacles from
goal formulations and for generating resolutions once the
obstacles have been identified. A key principle in this paper
is that exceptions should be considered when engineering
the requirements while there is still a great deal of freedom to
resolve them in satisfactory ways.

REFERENCES

[1] J.B. Goodenough, ªException Handling: Issues and a Proposed
Notation,º Comm. ACM, vol. 18, no. 12, pp. 683-693, 1975.

Dewayne E. Perry is currently the Motorola
Regents Chair of Software Engineering at the
University of Texas at Austin (UT Austin). The
first half of his computing career was spent as a
professional programmer, with the latter part
combining both research (as a visiting faculty
member in computer science at Carnegie-Mellon
University) and consulting in software architec-
ture and design. The last 16 years were spent
doing software engineering research at Bell

Laboratories in Murray Hill, New Jersey. His appointment at UT Austin
began in January 2000.

His research interests (in the context of software system evolution)
are empirical studies, formal models of the software processes, process
and product support environments, software architecture, and the
practical use of formal specifications and techniques. He is particularly
interested in the role architecture plays in the coordination of multisite
software development, as well as its role in capitalizing on company
software assets in the context of product lines.

His educational interests at UT include building a great software
engineering program, both at the graduate and undergraduate levels,
creating a software engineering research center, and focusing on the
empirical aspects of software engineering to create a mature and
rigorous empirical software engineering discipline. He is a co-editor-in-
Chief of Wiley's Software Process: Improvement and Practice; a former
associate editor of the IEEE Transactions on Software Engineering; a
member of the ACM SIGSOFT and the IEEE Computer Society; and has
served as organizing chair, program chair, and program committee
member on various software engineering conferences.

Alexander Romanovsky received the MSc
degree in applied mathematics from Moscow
State University in 1976 and the PhD degree in
computer science from St. Petersburg State
Technical University in 1988. He was with
St. Petersburg State Technical University from
1984 until 1996, doing research and teaching. In
1991, he worked as a visiting researcher at ABB
Ltd. Computer Architecture Lab Research Cen-
ter, Switzerland. In 1993, he was a visiting

researcher at Istituto di Elaborazione della Informazione, CNR, Pisa,
Italy. In 1993-1994, he was a postdoctoral fellow in the Department of
Computing Science, University of Newcastle upon Tyne, United King-
dom. From 1992-1998, he was involved in the Predictably Dependable
Computing Systems (PDCS) ESPRIT Basic Research Action and the
Design for Validation (DeVa) ESPRIT Basic Project. From 1998-2000,
he worked on the Diversity in Safety Critical Software (DISCS) EPSRC/
UK Project. He is currently a senior research associate with the
Department of Computing Science, University of Newcastle upon Tyne,
working on the Dependable Systems of Systems (DSoS) EC IST RTD
Project. His research interests include software fault tolerance, software
diversity, concurrent programming, concurrent object-oriented and
object-based languages, real time systems, exception handling, operat-
ing systems, software engineering, and distributed systems. He has
coauthored more than 120 scientific papers, book chapters, reports, and
a patent in these and related areas.

Anand Tripathi obtained his BTech degree in
electrical engineering from the Indian Institute of
Technology, Bombay, 1972. He received the MS
and PhD degrees in electrical engineering from
the University of Texas at Austin in 1978 and
1980, respectively. From 1981 through 1984, he
was a senior principal research scientist at the
Honeywell Computer Science Center in Minnea-
polis. There he led research and development
projects in distributed operating systems with a

focus on fault tolerance and distributed object management. He also
was involved in the development of TDC-2000, a distributed process
control system developed by Honeywell. He joined the University of
Minnesota in 1984. While at the University of Minnesota from 1985 to
1989, he led the design and development of a middleware system called
Nexus for distributed object-based computing. From 1995 to 1997, he
also served as the program director for the Computer Systems Software
program at the US National Science Foundation. Currently, he is an
associate professor in the Departmentof Computer Science and
Engineering at the University of Minnesota. He has published more
than 60 research papers in various journals and conferences in the
areas of distributed systems, object-oriented systems and languages,
and fault-tolerant computing. His current research focus is on system
level mechanisms for building robust and secure distributed applications
using mobile agents. He is a member of the IEEE, the editorial board of
IEEE Concurrency, and the editor for the education column of IEEE
Concurrency. He is also currently serving as an IEEE distinguished
visitor.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 10, OCTOBER 2000

