IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO.9, SEPTEMBER 2000

817

Current Trends in Exception Handling

Dewayne E. Perry, Member, IEEE Computer Society, Alexander Romanovsky, and
Anand Tripathi, Member, IEEE

1 INTRODUCTION

HE importance of exception handling is well-recognized
by system designers and software engineers. Exception
handing is very often the most important part of the system
because it deals with abnormal situations. The goal of
exception handling mechanisms is to make programs
robust and reliable. However, for a variety of reasons, not
the least among which is the fact that more than half of the
code is often devoted to exception detection and handling,
many failures are caused by incomplete or incorrect
handling of these abnormal situations. Analysis of accidents
in computer controlled systems has shown that very often
their causes tend to be in improper dealing with exceptional
situations (see, for example, [1], [2]). The requirements for
correct system behavior during exception handling are in
some sense even higher than for the system operating in a
normal mode. Even the programs that are generally
considered to be highly robust, such as operating systems,
can be significantly error prone, as discussed in the paper
by Koopman and DeVale. The implication is that exception
handling needs are more pervasive than what many people
may think, and that little can be assumed to work correctly.
In the 1970s, research on exception handling was
conducted mainly in the context of language design. Now
the situation is different: exception handling issues are
being studied and researched in the context of a variety of
disciplines, such as system structuring, fault-tolerant
computing, dependability, system specification, software
engineering, object-oriented systems, programming lan-
guage design, real-time systems, CSCW, process and
workflow systems, etc. Many of these disciplines have
faced unique requirements in developing exception hand-
ling models.

Different application-domains, programming languages,
and computation models have generally led to variants of
exception handling models and mechanisms, making it
difficult at times to transfer knowledge from one domain to
another. Researchers working in different areas very often
have no opportunity to exchange their ideas and results.

e D.E. Perry is with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712.
E-mail: perry@ece.utexas.edu.

o A. Romanovsky is with the Department of Computing Science, University
of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
E-mail: alexander.romanovsky@newcastle.ac.uk.

o A. Tripathi is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MIN 55455.
E-mail: tripathi@cs.umn.edu.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111496.

<+

There is hardly any conference or journal in which topics
related to exception handling are not discussed. However,
the research efforts tend to be scattered and not recognized
by a wide audience as an important direction on its own. In
a way, this research is considered to be subsidiary to that on
languages, system structuring, dependability, and system
specification. This special issue has been motivated by the
need to bring together the important strands of research
and practice in various disciplines.

We started our work on this issue nearly two years ago.
We received 39 submissions by February 1999. After an
extensive review process, involving help from more than
110 reviewers, we selected nine high quality papers to
appear in this special issue. These papers represent the
important research directions and issues in exception
handling in a broad range of disciplines, such as operating
systems, programming languages, workflow systems,
spreadsheet programs, requirements specifications, etc.
The uniqueness of this special issue is reflected by this
broad range of areas of computer science covered by the
papers in this special issue. We did not make any attempts
to impose a unified understanding or terminology, and this
issue, obviously, shows different perspectives on exception
handling problems in the various disciplines. We hope that
the main objective of this special issue of bringing together
the important strands of research and practice in regard to
exception handling in various disciplines of computer
science has been achieved, and that it will help in
developing a common understanding and cross fertilization
in this research.

2 THE ARTICLES

This special issue is published in two parts. The first part
includes papers which focus on traditional issues related to
programming languages, program design testing, OS level
issues, and empirical studies.

In the paper "Advanced Exception Handling Mechan-
isms," Peter Buhr and Russell Mok address issues related to
exception handling in concurrent programming languages
supporting coroutines and tasks. This paper examines
interactions between exception handling mechanisms and
other language mechanisms in concurrent systems. Tradi-
tionally, exception handling mechanisms in sequential
programming languages have been based on control flow
models, such as termination, resumption, replacement, etc.
Buhr and Mok examine both termination as well as
resumption models in the context of uC++ language. They
present a unified framework for supporting both these

0098-5589/00/$10.00 © 2000 IEEE

818 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.26, NO.9, SEPTEMBER 2000

models. They show how exception handlers can be
partitioned to support both these models.

The paper by Philip Koopman and John DeVale, "The
Exception Handling Effectiveness of POSIX Operating
Systems," will be of interest to readers involved in studying,
developing and using operating systems. The Ballista
testing system has been developed and used by the authors
to analyze the behavior of 15 widely used POSIX imple-
mentations in situations when exceptional input parameter
values are passed in POSIX function and system calls. It has
been found that these implementations correctly report an
error code in only 55—76 percent of such exceptional calls.
The paper thoroughly analyzes different types of excep-
tional system behavior and the prevalent sources of
robustness failures caused by them. One of the highly
commendable Ballista characteristics is its openness: there is
a site on which one can test any of these implementations
via the Internet. The paper discusses one of the first results
of the extensive testing of several off-the-shelf implementa-
tions of an operating system which demonstrates to which
extent one can rely on such systems and emphasizes again
the significance of rigorous exceptional system behavior
specification.

Saurabh Sinha and Mary Jean Harrold in "Analysis and
Testing of Programs with Exception-Handling Constructs”
are concerned about the use of analysis techniques such as
control flow, data flow, and control dependence in Java and
C++ programs where the effects of exception occurrences
and exception handling must be accounted for. Since these
analysis techniques are used in a large variety of software
engineering tasks, there is a need to find representations for
programs where explicit exceptions are raised and handled,
and then to define algorithms that use these representations
to perform these kinds of analyses. To support the need for
such work, the authors have included the results of three
empirical studies to illustrate the frequency of exception use
in a set of Java programs, the relatively low frequency in
which type inferencing is needed for throw statements, and
the effects of exceptions on control dependence analysis.

"Exception Handling in Java—Meaning and Compiler
Correctness," by Egon Boerger and Wolfram Schulte
describes a rigorous framework for language and platform
independent design and analysis of exception handling
mechanisms and their implementations. They model the
Java exception mechanism and a stripped down version of
the Java Virtual Machine (JVM) as Abstract State Machines.
The two models are related to each other by a functional
description of the compilation from Java exception handling
to JVM code. They then show that the design of these pieces
of Java/JVM is semantically correct. They view exception
handling as a runtime problem, and as such, needs different
techniques to show semantic correctness. The authors’ use
of these techniques also supports the claim that practi-
tioners can document their designs and justify that design’s
appropriateness in a rigorous way.

Roy Maxion and Robert Olszewski in their paper,
"Eliminating Exception-Handling Errors with Dependabil-
ity Cases: A Comparative, Empirical Study," report a well
thought-out experiment—testing the hypothesis that

robustness for exception failures can be improved
through the use of various coverage enhancing techniques:
N-version programming, group collaboration, and depend-
ability cases. The results demonstrate that although all
techniques show improvements over control conditions in
increasing robustness to exception failures, dependability
cases proved the most efficient in balancing cost and
effectiveness (the authors carefully discuss assumptions
and conditions under which the experiments are run and
this conclusion is drawn). The concept of dependability
cases, introduced by the authors, relies on a methodology
based on structural taxonomy and memory aids for helping
software designers to improve exception handling cover-
age. The results obtained are amazing and worrying at the
same time: even though a simple, non-real-world task was
used, a huge number of mistakes and exceptions were
found. This can be seen as another warning against
expecting anything better in the real world without taking
measures to improve exception handling.

ACKNOWLEDGMENTS

We would like to thank the authors of all submitted papers
for their interest in our special issue. The support and
cooperation from the former IEEE Transactions on Software
Engineering Editor-in-Chief A. Kemmerer and the IEEE staff
has helped us a lot in the preparation of this issue. Finally,
we wish to thank all reviewers whose time and efforts have
made this issue possible: A. Acharya, M. Aksit, L. Alvisi,
A. Appel,]. Arlat, A. Arora, B. Balzer, P. Banerjee, R. Barga,
S. Baruah, F. Bastani, I. Bate, L. Bellissard, B. Bershad,
E. Bertino, G. Bolcer, A. Borgida, C. Bron, T. Budd,
A. Carzaniga, E. Chi, S. Chiba, P. Ciancarini, G. Cugola,
R. Cytron, P. Dasgupta, A. Datta, R. de Lemos,
F. Di Giandomenico, E. Di Nitto, C. Dony, S. Easterbrook,
C. Ellis, P. Ezhilchelvan, P. Felber, T. Finholt, I. Forgacs,
J. Gannon, V. Garg, D. Georgakopoulos, L. George,
D. Hamlet, D.K. Hammer, B. Harper, M.]J. Harrold,
L. Hatton, M. Heimdahl, T. Herman, M. Hidehiko, Y. Hur,
M. Jones, G. Kaiser, P. Kammer, M. Kandemir, K. Kim,
S. Kirani, J. Knudsen, A. Koenig, M. Koutny, D. Lea, L. Lee,
F. Leymann, D. Locke, D. Long, M. Lyu, J. Magee,
J. McHugh, R. Miller, B. Moo, J. Moore, D. Mosse,
K.-I. Murata, A. Nocolau, G. Nutt, R. Olsson, L. Osterweil,
M. Pezze,]. Rieke, N. Ramsey, A. Ricciari, D. Richardson,
J. Riedl, C. M.F. Rubira, A. Saeed, R. Schlicting, K. Schwan,
S. Shekhar, A. Shith, J. Simeon, A. Singh, M. Sloman,
A. Somani, J. Srivastava, A. Stoyenko, L. Strigini,
B. Stroustrup, S. Sutton, P. Tarr, AM. Tyrrell, R. van
Renesse, J. Voas, R. Voyles, P. Wadler, Y.-M. Wang,
L. Welch, A. Wellings, 5. Wheater, J. Wu, P.-C. Yew, and
M. Young.

REFERENCES

[1] J.L. Lions (chairman), “Ariane 5 Flight 501 Failure: Report by the
Inquiry Board,” European Space Agency, Paris, July 19, 1996.

[2] “Report on AT&T U.S. Long-Distance Network Outage in January
15, 1990,” Software Eng. Notes, vol. 15, no. 2, p. 12, 1990.

PERRY ET AL.

Dewayne E. Perry is currently the Motorola
Regents Chair of Software Engineering at the
University of Texas at Austin (UT Austin). The
first half of his computing career was spent as a
professional programmer, with the latter part
combining both research (as a visiting faculty
member in computer science at Carnegie-
Mellon University) and consulting in software
architecture and design. The last 16 years were
spent doing software engineering research at
Bell Laboratories in Murray Hill, New Jersey. His appointment at UT
Austin began January 2000.

His research interests (in the context of software system evolution)
are empirical studies, formal models of the software processes, process
and product support environments, software architecture, and the
practical use of formal specifications and techniques. He is particularly
interested in the role architecture plays in the coordination of multisite
software development, as well as its role in capitalizing on company
software assets in the context of product lines.

His educational interests at UT include building a great software
engineering program, both at the graduate and undergraduate levels,
creating a software engineering research center, and focusing on the
empirical aspects of software engineering to create a mature and
rigorous empirical software engineering discipline. He is a coeditor-in-
Chief of Wiley’s Software Process: improvement and Practice; a former
associate editor of the IEEE Transactions on Software Engineering; a
member of the ACM SIGSOFT and the IEEE Computer Society; and has
served as organizing chair, program chair, and program committee
member on various software engineering conferences.

Alexander Romanovsky received the MSc
degree in applied mathematics from Moscow
State University in 1976 and the PhD degree in
computer science from St. Petersburg State
Technical University in 1988. He was with St.
Petersburg State Technical University from 1984
until 1996, doing research and teaching. In 1991,
he worked as a visiting researcher at ABB Ltd.
Computer Architecture Lab Research Center,
Switzerland. In 1993, he was a visiting research-
er at Istitutodi Elaborazione della Informazione,
In 1993-94, he was a postdoctoral fellow at the

CNR, Pisa,
Department of Computing Science, University of Newcastle upon Tyne,
UK. From 1992-1998, he was involved in the Predictably Dependable
Computing Systems (PDCS) ESPRIT Basic Research Action and the
Design for Validation (DeVa) ESPRIT Basic Project. From 1998-2000,
he worked on the Diversity in Safety Critical Software (DISCS) EPSRC/

Italy.

UK Project. He is currently a senior research associate with the
Department of Computing Science, University of Newcastle upon Tyne,
working on the Dependable Systems of Systems (DSoS) EC IST RTD
Project. His research interests include software fault tolerance, software
diversity, concurrent programming, concurrent object-oriented and
object-based languages, real time systems, exception handling, operat-
ing systems, software engineering, and distributed systems. He has
coauthored more than 120 scientific papers, book chapters, reports, and
a patent in these and related areas.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2000 819

Anand Tripathi obtained his BTech degree in
electrical engineering from the Indian Institute of
Technology, Bombay, 1972. He received the MS
and PhD degrees in electrical engineering from
the University of Texas at Austin, in 1978 and
1980, respectively. From 1981 through 1984, he
was a senior principal research scientist at
Honeywell Computer Science Center in Minnea-
polis. There he led research and development
projects in distributed operating systems with a
focus on fauIt tolerance and distributed object management. He also
was involved in the development of TDC-2000, a distributed process
control system developed by Honeywell. He joined the University of
Minnesota in 1984. While at the University of Minnesota from 1985 to
1989, he led the design and development of a middleware system called
Nexus for distributed object-based computing. From 1995 to 1997, he
also served as the program director for the Computer Systems Software
program at the U.S. National Science Foundation. Currently, he is an
associate professor in the Departmentof Computer Science Engineering
at the University of Minnesota. He has published more than 60 research
papers in various journals and conferences in the areas of distributed
systems, object-oriented systems and languages, and fault-tolerant
computing. His current research focus is on system level mechanisms
for building robust and secure distributed applications using mobile
agents. He is a member of the IEEE, the editorial board of IEEE
Concurrency, and the editor for the education column of IEEE
Concurrency. He is also currently serving as an IEEE distinguished
visitor.

