
Invited Industry Presentations (IIP)

François Coallier Linda M. Northrop Dewayne Perry
Bell Canada Software Engineering Institute Software Engineering Institute

francois.coallier@bell.ca Carnegie Mellon University University of Texas at Austin
lmn@sei.cmu.edu perry@ece.utexas.edu

Abstract
The Invited Industry Presentations (IIP) feature leading
practitioners who present and discuss problems, critical
issues, and best practices of the industrial software
landscape. The topics of the ICSE 2001 IIP track include
empirical studies of global software development,
organizational models for distributing work over many
sites, challenges faced by at start-up companies, remedies
for the software performance and reliability bottleneck,
technology drivers for e-business, mobile phone systems
and web services, methodologies for enterprise
component technologies, options analysis for
reengineering, and architecture-driven usability
solutions.

1. Global Software Development
The Bell Labs Collaboratory

Speakers: David Atkins1, Mark Handel2, James
Herbsleb1, Audris Mockus1, Dewayne Perry3*, Graham
Wills1

Affiliations: 1Bell Laboratories Lucent Technologies,
2University of Michigan, 3University of Texas at Austin,
USA

Abstract: Software development is a global enterprise for
many large corporations. Searching for talent across
national boundaries, and integrating groups thrown
together by mergers and acquisitions are but two of the
many forces conspiring to change the organizational
context of software development (e.g., [1]).

For the past three years, a group of researchers from
Bell Labs and the University of Michigan have been
working to understand and address global development
issues. The project has four concurrent threads of
activity:

Empirical studies of global development. The
problems of global development are varied. We
conducted over 200 structured interviews at 14 sites on
three continents, with people at all levels in the

organization from developers to executives. In addition
to the obvious problems of time zone, limited bandwidth
connectivity, language and culture differences, we found
the chief victim of global development to be speed [4].
Changes that cross sites take much longer than changes
that are all at a single site. The difference appears not to
be due to the size or complexity of cross-site changes, but
rather to communication and coordination issues.

Most pressing among these communication and
coordination issues [3] are 1) what we are calling issue
resolution paralysis, induced by the inability to identify
the right person, initiate communication, and have an
effective interchange, and 2) a complete lack of informal
“corridor talk” among people at different sites, which
results in a surprisingly powerful impediment to the flow
of information.

Collaboration tools for awareness and
communication. In order to address these problems, we
have developed several tools for collaborating over
distance in software development. The tools include
• Experience Browser, which allows the user to
explore data in the change management system through a
visual interface to find people experienced if various parts
of the code.
• Rear View Mirror, an instant messaging tool that
supports persistent team chat rooms, a lightweight tool for
informal conversation.
• CalendarBot, a web-based multi-user calendar tool
that helps keep everyone informed of items such as travel
and vacation plans.

All of these tools are currently in use within Lucent.
Organizational models for distributing work over

sites. There are many possible ways to distribute
development work over sites (see [2, 5]). For example,
one might
• develop different subsystems at different sites,
• execute different process steps at different sites,
• develop a core product at a single site, and customize
for different markets and customers at satellite sites,
• locate different maintenance releases at different
sites.

0-7695-1050-7/01 $10.00 © 2001 IEEE
681

These techniques require different mechanisms for
coordinating the work, and differ in the circumstances in
which they are most likely to be effective.

Best practices for global development. We have
observed a number of practices that have been quite
effective in improving communication. Among them are
practices about
• establishing trust across sites by being even more
responsive to remote colleagues than to local ones
• setting up liaisons at each site to facilitate cross-site
communication
• establishing etiquette for answering e-mail and voice
mail messages in a timely way
• planning for travel early in the relationship between
sites – everything will work better after people have met.

Our future work will focus on continuing to
introduce tools and models to practice, and to measure the
results with analyses of MR data and survey results.

References

1. Carmel, E., Global Software Teams. 1999, Upper Saddle
River, NJ: Prentice-Hall.
2. Grinter, R. E., J. D. Herbsleb, and D. E. Perry. The
Geography of Coordination: Dealing with Distance in R&D
Work. in GROUP '99. 1999. Phoenix, AZ
3. Herbsleb, J. D. and R. E. Grinter. Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited. in 21st ICSE 1999) Los Angeles, CA: ACM Press
85-95.
4. Herbsleb, J. D., et al. An Empirical Study of Global
Software Development: Distance and Speed. in ICSE. 2001.
Toronto, Canada: IEEE Press
5. Mockus, A. and D. M. Weiss. Globalization by Chunking:
A Quantitative Approach. IEEE Software January - March, ,
2001.

* Work done while at Bell Labs.

Session Chair: Dewayne Perry, University of Texas at
Austin, USA

2. Does more necessarily mean better?
The Software Performance and Reliability
Bottleneck

Speaker: Mantis Cheng

Affiliation: ACD Systems, Canada

Abstract: Processor speed has been increasing
dramatically for the past 20 years. On the other hand,

software is getting bulkier and slower. Many popular
software applications have a lot of 'bells and whistles';
most users know less than 5% of all supported features.
Users don't see performance improvement as processor
speed increases. We are no better off than we were 15
years ago.

As a discipline, software engineering is young and
full of promise. However, with current software practices,
if we asked software engineers to design cars, we would
have to restart our cars every mile (unreliable), fill up our
tanks every hour (inefficient), and upgrade our engine
control software every week (feature-laden).

What's wrong with the software industry? What have
we not taught our graduates about software design? Is
there a much deeper problem in our software engineering
culture? In order to produce better software, does it
always mean that we need to add more and more
features? To release a product ahead of the competition,
should the users be the beta-testers? This endless cycle of
field upgrades must stop.

Let us discuss why we need a deeper appreciation of
software performance and reliability. What are the
bottlenecks? What are the remedies?

Session Chair: Dewayne Perry, University of Texas at
Austin, USA

3. Software Engineering in a Startup

Speaker: Aleta Ricciardi

Affiliation: Valaran Corporation, USA

Abstract: Startups face enormous demands that affect the
rigor with which they might adhere to software
engineering and quality plans. Investors are impatient to
see product, existing competitors have momentum and
presence that must be countered, the processes and
quality metrics are being defined along with, if not
behind, product specification and development, and the
development organization can often double within one or
two weeks. Processes cannot assume a status quo, or
even a predictably changing environment.

This talk will present lessons from the trenches:
process definition, knowledge capture, product delivery,
educating QA, company structure, and some interesting
possibly hereticalobservations.

Session Chair: Dewayne Perry, University of Texas at
Austin, USA

0-7695-1050-7/01 $10.00 © 2001 IEEE

682

