
ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 78

Workshop on Multi-Dimensional Separation of Concerns in Software
Engineering

P e r i T a r r , Wi l l i am H a r r i s o n , H a r o l d O s s h e r (IBM T. I. Watson Research Center, USA)
Anthony Finkelstein (Universi ty College London, UK)

Bashar Nuseibeh (Imperial College, UK)
Dewayne P e r r y (Universi ty o f Texas at Austin, U S A)

Workshop Web site: http:/ /www.research.ibm.com/hyperspace/workshops/icse2000

ABSTRACT
Separation of concerns has been central to software engineering
for decades, yet its many advantages are still not fully realized. A
key reason is that traditional modularization mechanisms do not
allow simultaneous decomposition according to multiple kinds of
(overlapping and interacting) concerns. This workshop was in-
tended to bring together researchers working on more advanced
moclularization mechanisms, and practitioners who have experi-
enced the need for them, as a step towards a common understand-
ing of the issues, problems and research challenges.

Keywords
Separation of concerns, decomposition, composition

1 SEPARATION OF CONCERNS
Separation of concerns [17] is at the core of software engineering,
and has been for decades. In its most general form, it refers to the
ability to identify, encapsulate, and manipulate only those parts of
software that are relevant to a particular concept, goal, or purpose.
Concerns are the primary motivation for organizing and decom-
posing software into manageable and comprehensible parts.

Many different kinds, or dimensions, of concerns may be relevant
to different developers in different roles, or at different stages of
the software lifecycle. For example, the prevalent kind of concern
in object-oriented programming is data or class; each concern in
this dimension is a data type defined and encapsulated by a class.
Features [19], like printing persistence, and display capabilities,
are also common concerns, as are non-functional concerns, like
concurrency control and distribution, roles [1], viewpoints [13],
variants, and configurations. Separation of concerns involves de-
composition of software according to one or more dimensions of
concerlL

"Clean" separation of concerns has been hypothesized to reduce
software cemplexity and improve comprehensibility; promote
traceability within and across artifacts and throughout the lifecy-
cle; limit the impact of change, facilitating evolution and non-
invasive adaptation and customization; facilitate reuse; and sim-
plify component integration.

2 THE TYRANNY OF THE DOMINANT
DECOMPOSITION

These goals, while laudable and important, have not yet been
achieved in practice. This is because the set of relevant concerns
varies over time and is context-sensitive--different development
activities, stages of the software lffecycle, developers, and roles
often involve concerns of dramatically different kinds. One con-

cem may promote some goals and activities, while impeding oth-
ers; thus, any criterion for decomposition will be appropriate fm
some contexts, but not for all. Further, multiple kinds of concerns
may be relevant simultaneously, and they may overlap and inter-
act, as features and classes do. Thus, different concerns and
modularizations are needed for different purposes: sometimes by
class, sometimes by feature, sometimes by viewpoint, or aspect,
role, variant, or other criterion.

These considerations imply that developers must be able to iden-
tify, encapsulate, modularize, and wanipulate multiple dimensions
of concern simultaneously, and to introduce new concerns and
dimensions at any point during the software lifecycle, without suf-
fering the effects of invasive modification and rearchitecture. Even
modern languages and methodologies, however, suffer from a
problem we have termed the "tyranny of the dominant decomposi-
tion" [18]: they permit the separation and encapsulation of only
one kind of concern at a time.

Software started out being represented on linear media, and despite
advances in many fields, such as graphics and vi~laliT.~tiOIl, hy-
pertext and other linked structures, and databases, it is still mostly
treated as such. Progrants are typically linear sequences of char-
acters, and modnles are collections of contiguous characters. This
linear structure implies that a body of software can be decomposed
in only one way, just as a typical document is divided into sections
and subsections in only one way. This one decomposition is domi-
nant, and often excludes any other form of decomposition.

Examples of tyrant decompositions are classes (in object-oriented
languages), functions (in functional languages), and roles (in rule-
based systems). It is, therefore, impossible to encapsulate and ma-
nipnlate, for example, features in the object-oriented paradigm, or
objects in rule-based systems. Thus, it is impossible to obtain the
benefits of different decomposition dimensions throughout the
software lffecycle. Developers of an artifact are forced to commit
to one, dominant dimension early in the development of that arti-
fact, and changing this decision can have catastrophic conse-
quences for the existing artifact. What is more, artifact languages
often constrain the choice of dolnina~t dimension (e.g., it must be
class in object-oriented software), and different artifacts, such as
requirements and design documents, might therefore be forced to
use different decompositions, obscuring the relationships between
them.

We believe that the tyranny of the dominant decomposition is the
single most significant cause of the failure, to date, to achieve
many of the expected benefits of separation of concerns.

ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 79

3 MULTI-DIMENSIONAL SEPARATION OF
CONCERNS

We use the te~m multi-dimensional separation of concerns to de-
note separation of concerns involving:

• Multiple, arbitrary dimensions of concern.

• Separation along these dimensions simultaneously', i.e., a devel-
oper is not forced to choose a small number (usually one) of
dominant dimensions of concern according to which to decom-
pose a system at the expense of others.

• The ability to handle new concerns, and new dimensions of con-
cern, dynamically, as they arise throughout the software lifecy-
cie. Concerns that span artifacts and stages of the software life-
cycle are especially interesting, and challenging.

• Overlapping and interacting concerns; it is appealing to think of
many concerns as independent or "orthogonal," but they rarely
are in practice. It is essential to be able m support interacting
concerns, while still achieving useful separation.

• Concern-hased integratiox~ Separation of concerns is clearly of
limited use if the concerns that have been separated cannot be
integrated; as Jackson notes, "having divided to conquer, we
must reunite to rule" [3].

Full support for multi-cfimensional separation of concerns opens
the door to on-demand remodularizat~on, allowing a developer to
choose at any time the best modularization, based on any or all of
the concerns, for the development task at hand. Mnlti-dimensional
separation of concerns thus represents a set of very ambitious
goals, applying to any software development language or para-
digra.

A good deal of research has been done within the last decade or so
on "advanced" approaches to separation of concerns
[1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,18,20,21]. Considerable re-
search is still required, however, before any approach fully
achieves the goals stated above. We believe that it is necessary to
achieve them in order to overcome the problems associated with
the tyranny of the dominant decomposition and to re~liT¢ the
potential of separation of concerns.

4 THE WORKSHOP
This workshop was intended to bring together researchers inter-
ested in pushing the frontier in this important and burgeoning area,
and practitioners who have experienced problems related to inade-
quate separation of concerns that can help to guide their research.
Twenty-five position papers were accepted to the workshop, all
available at the workshop Web site [20]. The workshop consisted
of five sessions, organized around some of the key themes that
emerged from the position papers. Most sessions were introduced
by brief prese~_atJons, and continued with general discussion.

The rest of this section outlines the sessions of the workshop and,
where appropriate, the presentations that introduced then~ The
abstracts have been extracted verbatim from the position papers.

Introduction: Setting the Stage
A brief overview of common concepts and terminology, and moti-
vation for multi-dimensional separation of concerns was presented
by Peri Tarr. The foils axe available at the workshop Web site [20].

Models of Decomposition and Composition
Fundamental to multi-dimensional separation of concerns are ap-
proaches to decomposing software that go beyond the standard

medularization mechanisms provided by modern languages, and
corresponding approaches to composition.

Don Batory, "Refinements and Separation of Concerns" (invited
presentation).
Today's notions of encapsulation are very res t r i c ted- a module
or component contain~ only source code. What we really need is
for modules or component to encaps~d_ate not only source code that
will be installed when the component is used, but also encaps~l~e
corresponding changes to document mi_'on, formal properties, and
performance properties - - i.e., changes to the central concerns of
software development. The general abstraction that encompasses
this broad notion of encapsulation is called a "refinement".

Franz Achermann, "Language Support for Feature Mixing"
Object oriented languages cannot express certain composition ab-
stractions due to restricted abstraction power. A number of ap-
proaches, like SOP or AOP overcome this restriction, thus giving
the programmer more possibilities to get a higher degree of sepa-
ration of concenL We propose forms, extensible mappings f~m
labels to values, as vehicle to implement and reason about compo-
sition abstractions. Forms unify a variety of concepts such as inter-
faces, environments, and contexts. We are prototyping a composi-
tion language where forms are the only and ubiquitous first class
value. Using forms, it is possible compose soRware artifacts fo-
cusing on a single concern and thus achieve a high degree of sepa-
ration of concertL We befieve that using forms it also possible to
compare and reason about the different composition mechanisms
proposed.

Lodewijk Bergmans, "Composing Software from Multiple Con-
cerns: A Model and Composition Anomalies"
Constructing software from components is considered to be a key
requiremem for managing the complexity of software. Separation
of concerns makes only sense ff the realizations of these concerns
can be composed together effectively into a working program.
Various publications have shown that composability of software is
far from trivial and fails when components express complex be-
havior such as constraints, synchronization and history-
sensitiveness. We believe that to ad-dress the composability prob-
lems, we need to understand and define the situations where com-
position fails. To this aim, in this paper we (a) introduce a general
model of multi-dimensional concern composition, and (b) define
so-called composition anomalies.

Mark Chu-Carroll, "Software Configuration Management as a
Mechanism for MDSOC"
Real software rarely conforms to one single view of the program
structure; instead, software is sufficiently complex that the strut-
tare of the program is best understood as a collection of orthogonal
divisions of the program into components. However, most soft-
ware tools only recognize the decomposition of the program into
source files, forcing the programmer to adopt one primary program
de-composition which is well-suited to some tasks and poorly
suited to others. Software tools can overcome this weakness by
allowing programmers to trangform their view of the program to a
structure which is more appropriate for the task they need to per-
forr~ We propose that a software configuration management
(SCM) system, which stores the source code for the project, can
perform this task. By providing the SCM system with the capabil-
ity to generate orthogonal program organizations through compo-
sitions of pro-gram fragments, the SCM system can support or-

ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 80

thogonal decompositions of the program without performing any
automatic alteration of the source code.

Real-Life Dimensions of Concern
The primary motivation behind multi-dimensional separation of
concerns is that there are many different kinds of concerns that
come up during the software lifecycle, all of which should be rec-
ognized and at least some of which should be separated. This ses-
sion began with small discussion groups, each focusing on a par-
ticular phase of the lffecycle, followed by general discussion. The
purpose of the session was to raise important dimensions of con-
cern that ann up durin_g each phase, and to discuss their relation-
ships, and the extent to which they span lifecycle phases and inter-
act with concerns arising in other phases.

Dimensions of Concern in Product Lines and Software Archi-
tecture
Product lines have particularly strong separation of concerns re-
quirements. In addition to separating components, they must also
separate variants, often involving multiple components, from one
another and from the base. Separation of concerns is also one of
the themes of software architecture. Care is taken to separate com-
ponents from interactions, and a key distinguishing feature of dif-
ferent architectural styles is what kinds of concerns they separate,
and how. This session explored the implications of multi-
dimensional separation of concerns for these important areas.

Joachim Bayer, "Towards Engineering Product Lines using Con-
cerns '"
Separation of concerns is accepted as introducing numerous bene-
fits into software development and maintenance. In this position
paper, we argue for a method that introduces separation of con-
cerns into product line software engineering. The method covers
the complete product line life cycle and integrates the different
concerns expressed at the different product line life cycle stages.

Juha Savolainen, "Improving Product-Line Development with
SOP"
It has been demonstrated the product lines have introduced large
improvements to quality, time to market and overall productivity.
However, creating a successful product line is a highly complex
and difficult task. There are still many technological barriers to
overcome in effective product line development. The current in-
dustrial practice employs patterns, idioms and components to han-
die complexity, but shortcomings in current object-oriented lan-
guages limit the effectiveness of product line development. Sub-
ject-oriented programming and more recently multi-dimensional
separation of concerns promise improved support for product line
development. Ideally, a product line can be composed of slices of
an overall system that provide low coupling among components,
good separation of unrelated concerns and improved understand-
ability of the system slxucture. In this paper we describe our expe-
riences on applying subject-oriented programming to product line
development.

Tools and Visualization
Identification of and encapsulation according to multiple dimen-
sions of concern simultaneously introduces the need for tools that
perform a variety of functions, including to find, display, identify,
extract, analyze, separate and compose concerns. It also opens up
rich possibilities for visualizing software in flexible ways based on
different dimensions of concern at different times, not constrained
by any dominant decomposition.

Bill Griswold, "Aspect Browser: Tool Support for Managing Dis-
persed Aspects."
Although modularization, if used properly, separates the concerns
of primary design decisions, it often fails to cost-effectively sepa-
rate lower-order design decisions. These lower-order decisions
may cross-cut the primary module structure. Changes to these
cross-cutting design decisions tend to be more costly since they are
dispersed throughout the system and tangled with the primary de-
sign decisions and each other. When the code relating to a par-
ticular change is not localized to a module, an information-
transparent software design allows a programmer to use available
software tools to economically identify and quickly view the re-
lated code, easing the change. That is, the "si~_amre" of the
changing design decision can be used to approximate the benefits
of locality, in particular providing a way to quickly view and com-
pare the elements of the cross-cutting aspect without distraction
from inessential details. This signature is one or more shared char-
acteristics of the code to be changed, such as the use of particular
variables, data structures, language features, or system resources.
Since the intrinsic characteristics of a design decision can be inci-
dentally shared by unrelated code, it is helpful if the programmer
has adopted distinguishing conventions such as stylized naming of
identifiers.

Anthony Finkelstein: "Consistency Management o f Distributed
Documents using XML and Related Technologies"
In this talk I will describe an approach to managing consistency of
distributed documents. I will give an account of a toolkit which
demonstrates the approach. The toolkit supports the management
of consistency of documents with Intemet-scale distribution. It
takes advantage of XML (eXtensible Markup Language) and re-
lated technologies. The talk will include a brief discussion of the
base technologies, a discussion of related work and a demonstra-
tion. The approach and the toolkit will be described in the context
of a typical application in the area of software engineering.

REFERENCES
1. Mehmet Aksit, Lodewijk Bersmans, and S. Vural. "An Object-

Oriented Language-Database Integration Model: The Composition
Filters Approach." Proceedings of ECOOP'92, Lecture Notes in
Computer Science #615, 1992.

2. E.P. Andersen and T. Reenskaug. "System Design by Composing
Structures of Interacting Objects." Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP), 1992.

3. Elisa L.A. Baniassad and Gaff C. Murphy. "Conceptual Modules
Querying for Software Reengineefing." In Proceedings of the Inter-
national Conference on Software Engineering (ICSE 20), April 1998.

4. Don Batory, Gang Chen, Eric Robertsen, and Tao Wang; Design
Wizards and Visual Progral~rning Environments for GenVoca Gen-
erators, IEEE Transactions on Software Engineering, May 2000,
441-452.

5. Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder,
"Achieving Extensibility Through Product-Lines and Domain-
Specific Languages: A Case Study", International Conference on
Software Reuse, Vienna, AusU-/a, 2000.

6. Kz'zysztof Czamecki and Ulrich W. Eisenecker. Generaffve Pro-
gramming: Methods, Tools, and Applications. Addison-Wesley,
Reading, MA, June 2000.

7. D. D'Souza and A. C. Wills, Objects, Components, and Frameworks
with UA~L: The Catalysis Approach. Addison-Wesley, 1998.

ACM SIGSOFT Software Engineering Notes vol 26 no 1 January 2001 Page 81

8. Martin L. C,-riss. "hnplement~g Product-Line Features with Compo-
nent Reuse," Proceedings 6 m International Conference on Software
Reuse, Vierma, Austria, June 2000.

9. W. Harrison and H. Ossher. Subject-oriented programming (a cri-
tique of pure objects). In Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and Applications,
pages 411--428, September 1993. ACM.

10. I.M. Holland. Specif~g reusable components using contracts. In O.
L. Madsen, editor, ECOOP '92: European Coherence on Object-
Oriented Programming, pages 287-308, Utrecht, June/July 1992.
Springer-Verlag. LNCS 615.

1 I. M. Jackson. Some complexities in computer-based systems and their
implications for system development. In Proceedings of the Interna-
tional Conference on Computer Systems and Software Engineering,
pages 34d 851, 1990.

12. Gregor Kiczalcs, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Mare Loingtier, John Irwin. "Aspoet-
Oriented Programming." In proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland. Springer-
Verlag LNCS 1241. June 1997.

13. Karl Lieberhc~, Adapave Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company,
Boston, 1996.

14. Mira Mczim, "PIROL: A Case Study for Multidemansional Separa-
tion of Concerns in SoRwaxe Engineering Environments." In Pro-
ceedings of the Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), pages 188-207, Oc-
tober 2000.

15. Mira M~ n i and Karl Lieberherr. "Adaptive Plug-and-Play Compo-
nents for Evolutionary Software Development." In Proceedings of
the Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA), October 1998.

16. Bashar Nuseibeh, JeffKramer, and Anthony Finkelstein. "A Frame-
work for Expressing the Rehtionships Between Multiple Views in
Requirements Specifications." In Transactions on Software Engi-
neering, vol. 20, no. 10, pages 260-773, October 1994.

17. David L. Pamas. "On the Criteria To Be Used in Decomposing Sys-
tems into Modules." Communications of the ACM, vol. 15, no. 12,
December 1972.

18. Peri Tan-, Harold Ossher, William Harrison, and Stanley M. Sutton,
Jr. ' ~ Degrees of Separation: Multi-Dimensional Separation of Con-
cerns." In Proceedings of the 21 ~ International Conference on Soft-
ware Engineering, pages 107-119, May 1999.

19. C. 1L Turner, A. Fuggetta, L. LavazT~a and A. L. Wolf. Feature Engi-
neering. In Proceedings of the 9th International Workshop on Soft-
ware Specification and Design, 162-164, April, 1998.

M. VanHilst and D. Notkin. Using roles components to implement
collaboration-based designs. In Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and Applica-
tions, pages 359-369, October 1996. ACM.

Robert J. Walker, Elisa L.A. Baniassad, and Gall C. Murphy. "An
Initial Assessment of Aspect-oriented Programmin__g." In Proceed-
ings of the International Conference on SoRware Engineering (ICSE
21), May 1999.

Workshop Web site: http://www.research.ibm.com/h~ce/work-
shopdicse2000

20.

21.

22.

E d i t o r ' s Fi l ler

Space to fill!

N o t like the top o f m y desk :-)

.... or m y hard drive .

I s u p p o s e I s h o u l d say a f ew w o r d s
a b o u t F S E - 8 in San D i e g o

... the o n l y o n e s t h a t c o m e to
m i n d are

"very nice ."

Of course t h e r e w e r e t h e m i s s -~
ing (I m e a n m i s - p l a c e d) b o x e s
of tu tor ia l s and p r o c e e d i n g s , b u t
J o h n K n i g h t and D a v i d R o s e n -
b l u m shou ld be c o n g r a t u l a t e d for
p u t t i n g t o g e t h e r a f ine c o n f e r e n c e .

J o h n and D a v i d c o u l d n ' t have
done it w i t h o u t the he lp o f D e b r a
B r o d b e c k and P e g g y R e e d .

A n d t h a n k s to e v e r y o n e w h o at-
t e n d e d .

N e x t year F S E wi l l be in V i e n n a
w i t h E S E C in S e p t e m b e r . . . a
love ly c i ty if y o u have no t b e e n
t h e r e before , if I do say so m y s e l f !

