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1. INTRODUCTION
Large-scale software development presents a number of significant prob-
lems and challenges to software engineering and software engineering
research. In our pursuit of a deep understanding of how complex large-
scale software systems are built and evolved, we must understand how
developers work in parallel. Indeed, in any software project with more than
one developer, parallel changes are a basic fact of life. This basic fact is
compounded by four essential [Brooks 1987] problems in software develop-
ment: evolution, scale, multiple dimensions of system organization, and
distribution of knowledge.

—Evolution compounds the problems of parallel development because we
not only have parallel development within each release, but among
releases as well.

—Scale compounds the problems by increasing the degree of parallel
development and hence increasing both the interactions and interdepen-
dencies among developers.

—Multiple dimensions of system organization1 [Perry 1996] compounds the
problems by preventing tidy separations of development into indepen-
dent work units.

—Distribution of knowledge compounds the problem by decreasing the
degree of awareness in that dimension of knowledge that is distributed.2

Thus, a fundamental and important problem in building and evolving
complex large-scale software systems is how to manage the phenomena of
parallel changes. How do we support the people doing these parallel
changes by organizational structures, by project management, by process,
and by technology? How can we support this kind of parallel-change effort
and maintain the desired levels of quality in the affected software? We are
particularly interested in the problems of technology and process support.

Before we can adequately answer these questions we need to understand
the depth and breadth of the problem and correlate it to the related quality
data. To explore the dimensions of this phenomena, we take a look at the

1By system organization, we mean the hardware and software components which make up the
product. It is not to be confused with the developers’ organization.
2Here there are two possibilities of knowledge centralization: the knowledge of a part of the
system, or the knowledge of (part of) the problem to be solved. If one centralizes knowledge of
the system (for example, by file ownership where only the file owner makes changes) then one
must distribute knowledge of the problems to be solved over the file owners. Conversely, as is
done here, if one centralizes knowledge of the problems (for example, by feature ownership)
then one must distribute the knowledge of the system over the feature owners.
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history of a subsystem of Lucent Technologies’ 5ESS(R) telephone switch
[Martersteck and Spencer 1985] to understand the various aspects of
parallel development in the context of a large software development orga-
nization and project.

We use an observational case study method to do this empirical investi-
gation. We describe this study as observational, since it captures many
important quantitative properties associated with the problem of concur-
rent changes to software. We consider it to be a case study because it is one
specific instance of the observed phenomena.

Central to this technique is an extended series of repeated observations
to establish credibility [Yin 1994]. In this way, the method is similar to the
ones used in astronomy and the social sciences [Judd et al. 1991]. Finally, a
theory is built using these observations (e.g., with grounded theory [Glaser
and Strauss 1967]) to make predictions (hypotheses) that are tested with
future studies.

Our strategy for understanding the problem of parallel changes is to look
at the problem from a number of different angles and viewpoints in the
context of a large-scale, real-time system and a large-scale development.
We have three goals in this initial study. First, we provide a basic
understanding of the parallel-change phenomena that provides the context
for subsequent studies. For this we provide basic observational data on the
nature of parallel changes. Our thesis is that these problems cannot be
(and indeed have not been) adequately addressed without quantitative data
illustrating their fundamental nature.

Second, we begin an investigation (which we will continue in subsequent
studies) of an important subproblem: interfering changes. Given the high
degree of parallelism in our study system and the increasing emphasis on
shorter development intervals, it is inevitable that some of these changes
will be incompatible with each other in terms of their semantic intent. Here
we look at the prima facie cases where we have changes to changes and
changes made within the same day. In subsequent studies we will explore
the extent to which parallel changes interfere with each other semantically
(i.e., they affect the data flow within the same slice).

Third, we explore the relationship between parallel changes and the
related quality data. We have several hypotheses about this relationship.
One, interfering changes are more likely to result in quality problems later
in the development than noninterfering changes. Two, files with significant
degrees of parallel changes are likely candidates for code that “decays” over
time. The degree of interference increases this likelihood. Three, current
technology supporting the management of these problems addresses only
superficial aspects of these problems.

We first summarize the various kinds of tools that are available to
support parallel development. We then describe the context of this study:
the characteristics of the organizational, process, and development environ-
ment and the characteristics of the subsystem under investigation. We do
this to provide a background against which to consider the phenomena of
parallel changes. Having set the context for the study, we present our data
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and analyses of the parallel-change phenomena, the extent and magnitude
of interfering changes, correlate the parallel-change phenomena to the
quality data, and discuss the construct, internal, and external validity of
our study. Finally, we summarize our findings, evaluate the various means
of technological and process support in the light of our results, and suggest
areas for further research and development.

2. RELATED WORK

The problem addressed in this paper is primarily that of merging changes
made in parallel with respect to the software developers and concurrently
with respect to the change management system. The primary related work,
then, is that which addresses the problems of merging versions either as
part of configuration management, or as an independent endeavor. Not
quite as central, but important because of the numerous interdependencies,
is the issue of build strategies. Of course, related empirical work is
critically important.

We note here that we are not concerned in this study with the problems
of specifying the relationships among versions as one can do in Odin
[Clemm and Osterweil 1990], nor are we concerned with the semantics of
substitution and interface dependencies such as one finds in the Inscape
Environment [Perry 1989]. While they are important problems and cer-
tainly significant in the context of evolution, we are focused here on the
more narrow issue of parallel changes and how they are supported and
managed.

2.1 Configuration Management

Classic configuration management systems in widespread use today, SCCS
[Rochkind 1975] and RCS [Tichy 1982], embody the traditional library
metaphor where source files are checked out for editing and then checked
back in [Grinter 1997]. They induce a sequential model of software devel-
opment. The locking for a checkout operation guarantees that only one user
can change a particular file at a time and blocks other developers from
making changes until a checkin operation has been done, thereby releasing
the lock on the file. There is no checking for the presence of conflicts
between successive changes. The purpose of the configuration management
system is to guarantee, as in a database, that no changes are lost due to
race conditions.

2.2 Management of Parallel Changes

One of the standard features of even the classic configuration management
systems that enables developers to create parallel versions is the branching
mechanism. Everytime a developer needs to create a new version of the
code, they request the configuration management system to create a new
branch. The different versions are all stored in the same physical file. The
configuration management system can isolate changes made to one version
from those of other versions by examining the branch identifier associated
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with each change. However, since all changes are stored in the same file,
only one developer at a time can make changes to the file.

Newer configuration management systems such as Rational’s
ClearCase(R) [Leblang 1994] and the Adele Configuration Manager [Estub-
lier and Casallas 1994] allow developers to work in parallel on the same file
without waiting for some other developer to release his lock on the file.
ClearCase’s views and Adele’s workspaces enable developers to create
different versions of the file. Within each view or workspace, a developer
can make changes to the code in parallel with other developers.

2.3 Integration of Parallel Changes

The creation and maintenance of parallel versions give rise to another set
of problems and issues, depending on whether the versions are permanent
or temporary. Permanent versions are “branches in the product develop-
ment path that have their own life cycle” [Mahler 1994]. These typically
mean different releases or different members of a software product family.
In dealing with permanent versions, problems arise in managing software
product families, in sharing and reusing common code, in propagating
common changes across different versions, and in identifying the version
best suited for a given application. Temporary versions on the other hand
are meant to be merged eventually and only need to exist for the time
needed until merging. The problem here is in figuring out how to merge the
multiple versions back into a coherent single version, resolving potential
conflicts that might arise in the process. We narrow the scope of this paper
to this problem. We examine previous configuration management research
to address this problem. We will also examine related research into two key
issues related to integrating parallel changes that are not addressed by
configuration management systems: semantic conflicts and logical com-
pleteness.

In classic configuration management systems, this merging process has
to be done manually. There are no mechanisms to collapse branches back
together. Modern configuration management systems provide mechanisms
for automatically merging several versions back together. For example,
ClearCase provides support for merging up to 32 versions. Mutually
exclusive changes are merged automatically. Changes that are not mutu-
ally exclusive must be resolved manually, and the merge tool provides an
interface for doing so.

In one project case study [Leblang 1994], ClearCase was able to automat-
ically merge over 90% of the changed files. The rest required manual
intervention. In about 1% of the cases, the merge tool inappropriately made
an automatic decision, but nearly all of those cases were easily detected
because they resulted in compiler errors. This data came from an in-house
merge of the Windows port of ClearCase with their UNIX version (D. B.
Leblang, 1997, Personal communication). The merge involved several thou-
sand files resulting from 9 to 12 months of diverging development effort by
about 10 people.
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Adele provides a mechanism to automatically merge a file in a workspace
into the current version of the file. However, it is recommended that
frequent merges be performed by the different workspaces because the
probability of conflicts rapidly increases with the number of changes
performed in all the copies [Estublier and Casallas 1994]. Thus, Adele
requires frequent updating of the changes being made in the other work-
spaces to keep the various parallel versions more or less in synch.

2.3.1 Semantic Conflicts. Configuration management systems are only
able to detect the most simple types of conflicting changes: changes made
on top of other changes, i.e., changes in one version that physically overlap
with changes in another version. There may be many more changes that
indirectly conflict with each other. To detect these, more sophisticated
program analysis techniques are needed, e.g., the work of Horwitz, Prins,
and Reps on integrating noninterfering versions [Horwitz et al. 1989]. They
describe the design of a semantics-based tool that automatically integrates
noninterfering versions, given the base version and two derived but paral-
lel versions. The work makes use of dependence graphs and program slices
to determine if there is interference and, if not, to determine the integra-
tion results.

2.3.2 Logical Completeness. In trying to synchronize a consistent build
of a system, we have to worry about logical completeness of changes—i.e.,
we have to worry about dependencies that are shared across multiple
components in the system [Perry 1996]. Cusumano and Selby [1995] noted
this problem in the course of applying Microsoft’s synch and build strategy
to Windows NT. Their solution to coordinating changes [Cusumano and
Selby 1995] was to post the intent to check in a particular component and
for related files to prepare and coordinate their changes so as to be able to
synchronize a consistent build.

This problem of coordinating changes is certainly an important one in the
context of large-scale system builds out of separately evolved components.
This exacerbates the problem of increasing parallel changes, especially for
central components which may be indirectly affected by multiple logical
changes.

2.4 Empirical Evaluation

We have presented some of the past research done to address the problems
of parallel changes. In general, the studies reviewed here have either been
conducted to prove the technical feasibility of specific solutions or to
document observations on effective practices of software development. We
note a dearth of empirical studies in the literature investigating the scope
and problems due to parallel changes.

The data offered in support of ClearCase are the only data we know of
that are relevant to the merging of parallel versions.

While no direct data exist about the number of components on average
involved in the evolution of Windows NT, data are provided about the
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specific case of fixing faults [Cusumano and Selby 1995]: each fault repair
usually required changing 3 to 5 files.

In both cases, the data as published are anecdotal in nature. An empiri-
cal study on parallel changes is necessary if we are to evaluate the
scalability of a certain solution, to weigh the trade-offs in costs, and to
understand why and in what situation one approach may be better than
another.

3. STUDY CONTEXT

This study is one of several strands of research being done in the context of
the Code Decay Project [Eick et al. 2001], a multidisciplinary and multiin-
stitution project supported in part by NSF. It was conducted in part to
understand how software systems evolved over time and how parallel
changes played a role in that evolutionary process, to the extent that can be
deduced from the change management data recorded over several years.

We describe first the characteristics of the subsystem under study, then
the change and configuration management data available to the Code
Decay Project, and finally the change and configuration management
processes.

RELEASE TIMELINE
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Fig. 1. Timeline of parallel releases. Each histogram represents number of deltas made per
month for one release of the software. The top and bottom halves show releases for the
international and domestic products, respectively. In this picture, Release I6 shows a peak of
around 1,800 deltas per month.
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3.1 The Subsystem under Study

The data for this study comes from the complete change and quality history
of a subsystem of the Lucent Technologies’ 5ESS. These data consist of the
change and configuration management history representing a period of 12
years from April 1984 to April 1996. This subsystem is one of 50 sub-
systems in 5ESS. It was built at a single development site. The develop-
ment organization has undergone several changes in structure over the
years, and its size has varied accordingly, reaching a peak of 200 develop-
ers and eventually decreasing to the current 50 developers. There are two
main product offerings, one for US customers and another for international
customers. Historically, the two products have separate development
threads although they do share some common files.

3.2 The 5ESS Change Management Process

Lucent Technologies uses a two-layered system for managing the evolution
of 5ESS: a change management layer, ECMS [Tuscany 1987], to initiate
and track changes to the product, and a configuration management layer,
SCCS [Rochkind 1975], to manage the versions of files needed to construct
the appropriate configurations of the product.

All changes are handled by ECMS and are initiated using an Initial
Modification Request (IMR) whether the change is for fixing a fault,
perfecting or improving some aspect of the system, or adding new features
to the system. Thus an IMR represents a problem to be solved and may
encompass the implementation of all or part of a feature. Features are the
fundamental unit of extension to the system, and each feature has at least
one IMR associated with it as its problem statement.

Each functionally distinct set of changes to the code made by a developer
is recorded as a Modification Request (MR) by the ECMS. An MR repre-
sents all or part of a developer’s contribution to the solution of an IMR. (A
developer may split a solution into multiple MRs if it appears to encompass
multiple logical changes.) Multiple MRs may be needed to solve an IMR,
especially if multiple developers are involved. A variety of information is
associated with each IMR and MR. For example, for each MR, ECMS
includes such data as the date it was opened, its status, the developer who
opened it, a short text abstract of the work to be done, and the date it was
closed.

When a change is made to a file in the context of an MR, SCCS keeps
track of the actual lines added, edited, or deleted. This set of changes is
known as a delta. For each delta, the ECMS records its date, the developer
who made it, and the MR where it belongs.

The process of implementing an MR usually goes as follows:

(1) make a private copy of necessary files,

(2) try out the changes within the private copy,

(3) when satisfied, retrieve the files from SCCS, locking them for editing,
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(4) commit the changes as deltas in the SCCS, releasing the locks,

(5) retrieve the files again from the SCCS for reading,

(6) put the files through code inspection and unit testing, and

(7) submit the MR for load integration and feature and regression test

There are several observations. In step 3, the developer has to make sure
that his changes do not conflict with other recent changes put into the code.
In step 6, the code that is inspected contains only the officially approved
base code plus changes from the developer’s MR. It does not include
unapproved changes made by other developers. Hence, the inspection and
testing may not catch any conflicts when all these different MRs are
combined. It is hoped that any conflicts are caught during load integration
and feature and regression testing.

When all the changes required by an MR have been made, the MR is
closed after all approval has been obtained for all the dependent units.
Similarly, when all the MRs for an IMR have been closed, the IMR itself is
closed, and when all IMRs implementing a feature have been closed the
feature is completed.

4. DATA AND ANALYSIS

The change management data provides various different viewpoints from
which to delineate the boundaries of, and to understand the nature of, the
phenomena of parallel changes. We first discuss the different levels at
which parallel development takes place, and then explore the effects of
parallel changes at the file level and discuss the basic problem of change
interference. We conclude this section by analyzing and summarizing the
data about parallelism at the levels of features, IMRs, MRs , and files.

In this section we make liberal use of histograms to provide a clear
picture of the data that would not be evident if we were to report merely
the minimum, mean, and maximum of each distribution. It is important to
notice that the tails of several distributions are long and fall off more
slowly than the Poisson or binomial distributions (classical engineering
distributions). This is extremely important to consider in designing tools: if
a tool is designed around the mean value, it will not be particularly useful
for the critical cases that need the support the most, namely, those cases

Table I. Data Summary. This table summarizes the data to be used in analyzing the degree
of parallelism.

Features IMRs MRs

Min Median Mean Max Min Median Mean Max Min Median Mean Max

Active per day 0 23 25.3 86 0 21 21.8 62 1 65 69.3 223
Interval (days) 1 201 318.5 3344 , 1 1 14.6 2233 , 1 1 10.1 2191
#Files 1 8 31.0 906 1 1 4.3 388 1 1 1.1 15
#MRs 1 6 34.6 2188 1 1 2.6 86 n/a n/a n/a n/a
#Developers 1 2 4.0 98 1 1 1.1 9 n/a n/a n/a n/a
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represented by the tail of the distribution. For example, in Figure 3 and
Table I we note that the median number of MRs per day is 65 but that the
tail stretches out to a maximum of 223. If we designed the creation of
workspaces for parallel changes for MRs using the mean, we might well run
into performance and space problems when the load is a factor of 4 above
that.

4.1 Levels of Parallel Development

The 5ESS system is maintained as a series of releases, with each release
offering new features on top of the existing features in previous releases.
The timeline on Figure 1 shows the number of deltas applied every month
to each release of the 5ESS subsystem under study. The top half shows the
international releases (labeled I1–I15) and the bottom shows the domestic
ones (labeled D1–D12). It shows for each product line that there may be
3–4 releases undergoing development and maintenance at any given time.

Within each release shown in Figure 1, multiple features are under
development. The overlapping time schedule of successive releases suggest
that features for different releases are being developed almost concur-
rently. Figure 2 is a timeline showing the density of new feature development
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Fig. 2. Concurrent development activities in the development interval of Release I6. These
panels show the activities being conducted in parallel at the feature, IMR, and MR levels
during the development interval for Release I6. Release I6 has peaks of approximately 60 open
features, 50 open IMRs, and 100 open MRs. The panels also show activities for other releases
during the same time period.
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during the development interval of Release I6.3 At its peak, there was work
on about 60 features. It not only shows that multiple features are being
developed concurrently for Release I6, but also shows that 8 other releases
are doing new feature development.

Figure 2 also shows the density of IMRs and MRs developed for Release
I6 as well as other releases in the same interval. At its peak, there were
approximately 50 open IMRs and 100 open MRs.

Thus, we have parallel development going on at different levels in the
development of this subsystem. Releases are being built in parallel with

3We picked Release I6 as an example here because it exhibited a high degree of parallel
development at multiple levels and, thus, was useful for our illustrations.
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Fig. 3. Feature, IMR, MR distribution per day. These histograms show the distribution of
open features, IMRs, and MRs per day over the 12-year period under study.
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varying amounts of overlapping development. Features are being developed
in parallel both within a single release and in the context of multiple
releases. Typically multiple IMRs are being developed in parallel for each
feature, and MRs are developed in parallel for each IMR. And, finally, files
are changed in parallel within MRs, IMRs, features, and releases.

4.2 Multilevel Analysis of Parallel Development

To understand the amount of parallelism going on at the different levels,
we examine the number of features, IMRs, and MRs being developed per
day. We then look at four measures associated with the amount of work
within each feature, IMR, and MR: their intervals, the number of files
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Fig. 4. Interval distributions. These histograms show the development interval distributions
for features, IMRs, and MRs in number of days.
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affected, the number of MRs involved, and the number of developers
involved. Table I summarizes these data.

Figure 3 shows the frequency distributions of features, IMRs, and MRs
being worked on per day. The feature and IMR distributions have means of
25 and 22, and maximum values of 86 and 62, respectively. On the other
hand, there is a mean of 69 MRs open per day, and a maximum of more
than 200. Note that in all cases the tail is very long with respect to the
mean.

Figure 4 shows the frequency distributions of development intervals at
the three levels. The intervals are measured by taking the dates of the first
and last delta associated with that feature, IMR, or MR, and computing the
difference. Thus the interval reflects the activity only with respect to
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Fig. 5. Files touched. These histograms show the distributions of number of files affected per
feature, IMR, and MR.
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coding.4 One observation here is that the shapes of all three distributions
appear to be similar, even though their scales are orders of magnitude
apart. Also, 46% of the IMRs and 50% of the MRs are opened and solved on
the same day. Nevertheless, the tails here are even longer with respect to
the mean than in Figure 3.

Figure 5 shows the frequency distributions on the number of files
affected in implementing each feature, IMR, or MR. The number of files per
feature exhibits a very large tail distribution; 33% of the features affected
more than 20 files. On the other hand, 51% of the IMRs and more than 90%
of the MRs affect only one file.

Figure 6 shows the frequency distributions on the number of MRs it took
to implement each feature and IMR. The number of MRs per feature again
exhibits a large tail; 25% of the features needed more than 20 MRs. The tail
for IMRs, while not as long as that for features, is still significant with a
maximum of 86 needed for the largest IMR, while the mean is less than 3.

Figure 7 shows the frequency distributions on the number of developers
working on each feature and IMR.5 The number of developers working on a
feature does not have as large a tail as the number of MRs per feature, but
there were still more than 20 features which involved more than 10

4For instance, the feature interval measured excludes other feature activities like estimation,
planning, requirements, design, and feature test.
5Because of the way MRs are defined and tracked within the software process, there can be
only one developer per MR.
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developers, with the largest feature involving 98 developers. Similarly, the
mean is 1.1 developer per IMR, but the tail stretches out to a maximum of
9. Note, however, that the percentage of IMRs requiring more than one
developer is only 10%.

4.3 Parallel Development within a File

The preceding discussion does not show how these parallel activities
interact with each other, particularly in the case when several of them
make changes to the same file. Figure 8 shows the distribution of the
number of features, IMRs, developers, and MRs affecting each file over the
lifetime of the file.

To illustrate further, Figure 9 shows the different levels of ongoing
activity for a certain file. This clearly shows that parallel activities are
going on at every level.

4.4 Parallel Versions

The set of changes belonging to a feature, IMR, MR, and developer can be
thought of as creating different versions of the code. Among these, MRs are
the atomic component. Hence, in the subsequent discussion, we will use
parallel MR activity as the basic unit of parallel development.

Figure 10 shows, that in the interval when Release I6 was being
developed, about 60% of the files are touched by multiple MRs. Note also

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

10
0

15
0

DEVELOPERS PER FEATURE

N
U

M
B

E
R

 O
F

 F
E

AT
U

R
E

S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
10

00
30

00
50

00

DEVELOPERS PER IMR

N
U

M
B

E
R

 O
F

 IM
R

s
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that the tail of the distribution is significant here—17% of the files are
touched by more than 10 MRs.

Figure 11 is a closeup of Figure 9. It magnifies the MR panel at one
period with high activity. It shows that at one time there were as many as
8 open MRs affecting this file, with 4 of them having deltas on the same
day. We define PCmax, the maximum number of concurrently open MRs per
day over the entire lifetime of the file, as our initial measure of the degree
of parallel change. (For the file in Figure 9, PCmax 5 9.) We computed
PCmax for each file in the subsystem. The average PCmax is 1.73, which
translates to nearly 2 active variants at a given time. One file had a PCmax
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of 16. Figure 12 shows the frequency distribution of PCmax. It shows that
55% of the files never had more than one MR at a time, although about 30%
of the files had up to 2 parallel MRs per day, and 0.6% of the files had more
than 6 parallel MRs.

5. EFFECTS OF PARALLEL CHANGES

In the preceding section we presented the phenomena of parallel changes in
the context of a very large scale development. In this section, we look at the
consequences of parallel development such as is found here. We first
investigate the quality consequences of this parallelism and show how the
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higher the degree of parallelism, the higher the number of defects. We then
look at one of the possible root causes of these quality problems, interfering
changes, and discuss the most obvious cases of interference: changes on top
of previous changes, and changes made within very close temporal proxim-
ity to each other.

5.1 Implication on Quality

To examine the impact of parallel changes on software quality, we exam-
ined the defect distribution of the files for each value of PCmax. We counted
as a defect every MR whose purpose is to correct a problem in the file. The
MR classification was done automatically by analyzing the MR descriptions
for known keywords. The paper by Mockus and Votta [2000] describes the
MR classification method in more detail.

In order to avoid double-counting the MRs, we recomputed the parallel
development measure including only MRs opened up to 1994, and we
plotted it against the number of defects discovered from 1994 to 1996. The
results are shown in the boxplot in Figure 13.6 The plot shows that files
that have high degrees of parallel changes also tend to have more defects.

6Boxplots are a compact way to represent data distributions. Each data set is represented by a
box whose height spans the central 50% of the data. The upper and lower ends of the box mark
the upper and lower quartiles. The data’s median is denoted by a bold point within the box.
The dashed vertical lines attached to the box indicate the tails of the distribution; they extend
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to the standard range of the data (1.5 times the interquartile range). The detached points are
“outliers” lying beyond this range [Chambers et al. 1983].
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Fig. 11. A closer look at MR activity. This is a closer look at the MR activity during one busy
period (8/89) of the file in Figure 9. Each line in the top panel shows the lifespan of an MR
being worked on during this period, from the date it was opened until the date it was closed.
The X’s indicate when deltas were made into the file. The solid line in the bottom panel shows
the number of open MRs on each of those days. It is a magnification of the MR panel from
Figure 9. The dotted line shows the number of deltas actually made on each day.

Table II. Analysis of Variance. This table shows the contributions of various factors to the
variance in number of defects. The column of major interest is the last one, which gives the
significance of the contribution of each factor to the variance. As shown here, every factor is

significant except lifetime.

Degrees of
Freedom

Sum of
Squares

Mean
Squares F Value Significance

Number of deltas 1 14379 14379 3288 0.0000
File lifetime 1 4 4 1 0.3298
Creation date 1 548 548 125 0.0000
File size 1 164 164 38 0.0000
Past faults 1 241 241 57 0.0000
Parallel changes ~PCmax! 1 213 213 50 0.0000
Residuals 3266 13936 4
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We then performed an analysis of variance (ANOVA) [Box et al. 1978] to
account for the effects of other factors believed to contribute to the
likelihood of increasing the number of defects [Graves et al. 2000]. We
examined the following: file creation date (date the first delta was made),
lifetime of file (from file creation date up to 1994 or the date of last delta,
whichever came first), total number of deltas made between 1984–1994,
size of file at 1994, and past faults found in the file between 1984–1994.
The results are shown in Table II. The sum of squares and corresponding
significance probabilities were computed from the first factor to the last.
The table shows, that even after accounting for all of these other factors,
the degree of parallel changes PCmax makes a significant contribution to
the variance of the defect distribution. (See the appendix for more detailed
explanation.)

We also ascertained that the results were not an artifact of the measure
of degree of parallel changes that we defined. We had been using PCmax,
the maximum number of MRs open in parallel, as our degree of parallel
changes (e.g., for the file in Figure 9, PCmax 5 9). Another measure of the
degree of parallel changes is to count, for each file, the number of days in
which more than one MR was open. We label this as PCdays. Figure 14
shows the distribution of PCdays against defect count (cor 5 0.63). When we
replaced PCmax with PCdays in the ANOVA model, the results remained
significant.
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Yet another measure of parallel changes is to take the number of days
with more than one open MR and weigh each day by the number of open
MRs. We label this as PCwdays. Figure 15 shows the distribution of PCwdays

against defect count (cor 5 0.62). When we used PCwdays in the ANOVA
model, the results again remained significant. Table III compares the three
measures of the degree of parallel changes. Of these three, PCdays appears
to be the best measure.

5.2 Interfering Changes

Thus far, we have examined the amount of parallel activities going on and
how it might contribute to quality problems. We have not actually delved
into the mechanisms by which parallel changes could cause defects. In this
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Fig. 13. Parallel development ~PCmax! vs. number of defects. This boxplot shows the number
of defects for each file, grouped by degree of parallel changes.

Table III. Three Measures of Degree of Parallel Changes. This table compares the
contribution of the three measures of the degree of parallel changes. The sum of squares, F
values, and significance values are obtained when each one replaces the parallel-changes

entry in the ANOVA table in Table II.

Degrees of
Freedom

Sum of
Squares

Mean
Squares F Value Significance

Maximum parallel MRs ~PCmax! 1 213 213 50 0.0000
Number of days with parallel MRs ~PCdays! 1 705 705 171 0.0000
Weighted number of days ~PCwdays! 1 551 551 132 0.0000
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section, we provide results of our initial investigation into parallel changes
that interfere with each other.

Upon analyzing the delta data, we found that 12.5% of all deltas are
made to the same file by different developers within 24 hours of each other.
Given this high degree of parallel development, it seems likely that
changes by one developer will interfere with changes made by another
developer. For this study we have looked at the prima facie case where
changes interfere by one change physically overlapping another. For exam-
ple, Figure 16 traces several versions of the file examined in Figure 9, as
five deltas were applied to it during a 24-hour period. Developer A made
three deltas, the first two of which did not affect this fragment of code.
Then developer B put in changes on top of A’s changes. Finally some of B’s
changes were modified by developer C on the same day.

Across the subsystem, 3% of the deltas made within 24 hours by different
developers physically overlap each others’ changes. Note that physical
overlap is just one way by which one developer’s changes can interfere with
others. We believe that many more conflicts arise as a result of parallel
changes to the same data flow or program slice—i.e., conflicts arise as a
result of semantic interference.
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Fig. 14. PCdays (number of days with parallel MRs) vs. number of defects. This scatterplot
shows the number of defects for each file, plotted against PCdays, the number of days the file
had parallel MRs. A log transformation was applied to both axes to spread the points. In
addition, a small random offset was added to each point to expose overlapping points.
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6. VALIDITY

In any study, there are three aspects of validity that must be considered in
establishing the credibility of that study: construct validity, internal valid-
ity, and external validity. We consider each of these in turn.

We have operationalized the definition of parallel changes in several
ways. First, we looked at the level of parallel development with respect to
different levels (release, feature, IMR, MR, and file). Second, in deriving a
summary measure of the degree of parallel development for use in the
quality model, we looked at multiple measures and showed that they are
consistent with each other. Thus we argue that we have the necessary
construct validity.

As can be seen from the data as we have presented them, we have done
only the minimal amount of data manipulation and then only to put it into
easily understood forms of summarization. Also, in the quality study, we
have sought to account for other factors that may affect the number of
defects in the software. Thus we argue that we have the necessary internal
validity.

It is in the context of external validity that we must be satisfied with
arguments weaker than we would like. We argue from extra data (namely,
visualizations of the entire 5ESS system similar to Figure 1) that this
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Fig. 15. PCwdays (weighted number of days with parallel MRs) vs. number of defects. This
scatterplot shows the number of defects for each file, plotted against PCwdays, the number of
days the file had parallel MRs, weighted by the number of parallel MRs per day. Transforma-
tions were applied as in Figure 14.
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subsystem is sufficiently representative of the other subsystems to act as
their surrogate.

The primary problem then is the representativeness of 5ESS as an
embedded real-time and highly reliable system. In its favor are the facts
that it is built using a common programming language (C) and develop-
ment platform (UNIX). Also in its favor are the facts that it is an extremely
large and complicated system development and that problems encountered
here are at least as severe as those found in smaller and less complicated
developments. Finally, it follows an ISO 9000-compliant process that has
consistently received a CMM [Paulk et al. 1993] rating of 2 and satisfies
most of the process areas for levels 3 and 4, the same as, if not better than,
a good number of software organizations in the industry. Thus, we argue
that our data have a good level of external validity and are generalizable to
other developments of similar domains.

7. SUMMARY AND EVALUATION

In systems such as 5ESS which evolve over a long period of time, the
amount of the system that changes remains relatively constant with the
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result that an increasing amount of the system remains unchanged [Leh-
man et al. 1998]. Because of this, the situation has shifted from centraliz-
ing knowledge of code, to centralizing knowledge of the features to be added
(and thus distributing the knowledge of the code). Furthermore, while
features have become the main unit of organization, their implementations
are not neat, tidy units added to the system, but bits and pieces distributed
over existing units of code. Thus, we see that our four essential problems do
indeed compound the problems of parallel development.

7.1 Study Summary

This work represents initial empirical investigations to understand the
nature of large-scale parallel development. The data show in this sub-
system that:

—There are multiple levels of parallel development. Each day, there is
ongoing work on multiple MRs by different developers solving different
IMRs belonging to different features within different releases of two
similar products aimed at distinct markets.

—The activities within each of these levels cut across common files. Twelve
and one half percent of all deltas are made by different developers to the
same files within a day of each other, and some of these may interfere
with each other.

—Over the interval of a particular release (I6), the number of files changed
by multiple MRs is 60% which, while not directly concurrent, is concur-
rent with respect to the release. These may also have interfering chang-
es—though we would expect the degree of awareness of the implications
of these changes to be higher than those made within one day of each
other.

—There is a significant correlation between files with a high degree of
parallel development and the number of defects. Moreover, even account-
ing for lifetime, size, and number of deltas, the degree of parallel changes
makes a significant contribution to the variance of the defect distribu-
tion.

The data presented illustrate the problems of evolution, scale, and
multiple dimensions of organization described in Section 1: of evolution
because of the increasing number of releases that needed to be maintained;
of scale because of the sheer number of parallel activities going on within a
release interval; and of organization because the parallel activities are not
independent, but that at some point they need to coordinate, especially if
they are modifying common files.

7.2 Evaluation of Current Support

As we mentioned in Subsection 4.2, the histograms provide a critical
picture of the problems that need to be solved. In particular, the tail values
of the distributions are the significant factors to consider in technical
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support, not the mean values. In both the cases of workspaces and merging,
we claim that those critical factors have not been understood or appreci-
ated.

7.2.1 Management of Parallel Changes. The data in Subsection 4.2
suggests that if each MR had its own workspace we would then need on the
order of 70 to 200 workspaces per day for this particular subsystem. (And
this is just one of 50 5ESS subsystems!) Moreover, since 50% of MRs are
solved in less than a day, the cost and complexity of constructing and
destroying workspaces becomes very important. One might reduce the
number of workspace per day by assuming one workspace per IMR or per
feature. Doing so introduces further coordination problems, since there
may be more than one developer working on the IMR or feature.

Given the multilevel nature of feature development, one might imagine
the need for a hierarchical set of workspaces [Kaiser and Perry 1987] such
that there is a workspace for each feature, a subset of workspaces for each
IMR for that feature, and then individual workspaces for each MR. In
either case, further studies are needed to determine the costs and utility of
workspaces in supporting the phenomena we have found in this study.

7.2.2 Integration of Parallel Changes. The utility of the current state of
merge support depends on the level of interference versus noninterference.
The data in Subsection 4.4 indicate that about 45% of the files can have 2 to
16 parallel versions. While ClearCase claims to be able to merge up to 32
parallel versions, conflicts still have to be resolved manually. It is not clear
how well current merge technologies will be able to support this degree of
parallel versions if there are interfering changes, as suggested by the defect
data. The data we have uncovered certainly lead us to be sympathetic with
Adele’s claim that frequent updates are necessary for coordinated changes
and that waiting until commit time will lead to parallel versions that
cannot be merged without some very costly overhead and coordinated
effort. In fact, their supported strategy is what is left unsupported in these
developments reported here.

Further studies are needed to assess the validity and utility of merge
technologies. We note in Section 7.5 one such study that will help to assess
this area.

7.2.3 Synchronize and Build. In terms of effort needed to obtain a
consistent build, the synchronize and build strategy poses a scalability
problem in this context. To ensure logical completeness of changes, all
changes related to a feature should be checked in together. However,
features are too coarse-grained as units of synchronization, since they
frequently involve a large number of files, with 33% of all features affecting
more than 20 files and a maximum of 906 files as shown in Table I. The
current build process synchronizes at the MR level. This does not pose a
problem, since more than 90% of MRs touch only single files. However, each
MR represents only a partial solution to a problem, and failure to include
all the dependent MRs has been a common cause of build problems. At the
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IMR level, 50% touch more than one file, and 15% touch more than 5 files.
This increases the likelihood of conflicts, especially for certain central files.
Moreover, an IMR may still not be logically complete because IMRs
sometimes depend on MRs belonging to other IMRs. Further studies are
needed to understand the optimal build strategy.

7.3 Process and Project Management

Because of the direct correlation between the degree of parallelism and an
increased number of defects, process and project management need to take
a careful look at how to support the development process at this particular
point. A study of the software development organization which maintains
this subsystem yielded two results relevant to parallel development, (1) a
focus toward development interval reduction by gradually shifting from a
code ownership model—in which a developer was designated to be the
“owner” of one or more modules of code—to a feature ownership model—in
which a developer was authorized to make all the changes necessary to
implement a given feature or fix, and (2) a trend toward features that cut
across an increasingly larger number of modules [Staudenmayer et al.
1998]. While the orientation towards feature development has useful
properties for evolving and marketing the product, the resulting parallel
development by multiple developers compared to that with file ownership
poses significant problems that need to be carefully managed.

As it is very likely that the changes done in parallel conflict with each
other, it is very important that the developers making the concurrent
changes understand what each other is doing and how their changes
interact with each other. This is the area where tool support is needed.
Where these interdependencies cannot be managed automatically, they
must be managed manually.

Much of the current coordination is done informally between developers
where they know there are conflicts. The conceptual distance between the
changes exacerbates the problem and increases the need for explicit coordi-
nation—i.e., developers working on the same IMRs are likely to understand
how the changes fit together much better than those working on different
features in different releases.

7.4 Contributions

In our observational case study, we have established that

—parallel development is a significant factor in large-scale software devel-
opment;

—current tool, process, and project management support for this level of
parallelism is inadequate; and

—there is a significant correlation between the degree of parallelism and
the number of defects.
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In addition, we have provided a novel form of visualization for the
differences within a sequence of versions of a file, showing where code has
been inserted, deleted, and replaced (see Figure 16).

7.5 Future Directions

We have looked at only the prima facie conflicts, namely, those where there
are changes on changes or changes within a day of each other. A more
interesting class of conflicts are those which we might term semantic
conflicts. These cases arise where changes are made to the same slices of
the program and hence may interfere with each other logically rather than
syntactically. This phenomena requires us to look very closely at the files
themselves rather than just the change management data. Our plans for
this analysis include combining the use of dataflow and slicing analysis
techniques to determine when semantic interference occurs.

Given the appropriate analysis techniques, we will then look at a subset
of the files to determine the degree of interference associated with various
degrees of parallelism and to establish the correlation with the existing
defect data.

APPENDIX

REVIEW OF ANOVA

This appendix gives some additional explanations of the ANOVA table in
Table II.

The first column gives the source of variation or the factors being
considered.

The second column is the degrees of freedom, which is always 1 for
numeric variables. For the residuals, it is the difference between the
number of points in the analysis and the number of degrees of freedom used
up by the factors being considered.

The third column (sum of squares) is obtained as follows:

(1) for the first factor (e.g., number of deltas), fit a linear regression line
between that factor and the number of faults; then sum up the squares
of the differences between each of the files’ number of faults and the
corresponding value fitted from the regression;

(2) for the second factor, fit a linear regression line between that factor and
the residuals from the first regression, and repeat the sum of squares
calculation;

(3) for the third factor, fit a linear regression line between that factor and
the residuals from the second regression and repeat the sum-of-squares
calculation;

(4) and so on.

The fourth column is the mean square, which is just the sum of squares
divided by the degrees of freedom.
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The fifth column is the F statistic, which is the ratio of the mean square
of each factor divided by the mean square of the residuals, and can be
thought of as a measure of how real the contribution of each factor is
relative to chance (the larger the number, the higher the likelihood of a real
effect).

The last column is the significance of the F statistic (a value less than
0.05 is usually considered significant).

Note, that because the factors are not all independent of each other and
because of the way the sum of squares are computed, the significance
values are sensitive to the ordering of the factors. In this case, we
purposely put parallel changes at the end to see if they would still be
significant after all the other factors have been considered. As it turned
out, the contribution of parallel changes was significant regardless of its
position in the ordering.

Introductory explanations of ANOVA can be found in most statistics
textbooks. In addition, there are several online references:

(1) David Stockburger. ANOVA: Why multiple comparisons using t-tests is
not the analysis of choice. http://www.psychstat.smsu.edu/introbook/
sbk27.htm,

(2) David Lane. Partitioning the sums of squares. http://www.ruf.rice.edu/
˜lane/hyperstat/B83612.html.
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