
Software Inspections, Reviews & Walkthroughs

Marcus Ciolkowski

University of
Kaiserslautern &
Fraunhofer IESE
Kaiserslautern,

Germany

Oliver Laitenberger

Fraunhofer IESE,
Kaiserslautern,

Germany

Dieter Rombach Forrest Shull Dewayne Perry

University of Fraunhofer Center University of Texas,
Kaiserslautern & Maryland, Austin, Tx,
Fraunhofer IESE, College Park, MD, USA

Kaiserslautern, USA
Germany

1. INTRODUCTION

While software has become one of the most valuable products of
the past decades, its growing complexity and size is responsible
for making it one of the most challenging ones to build and
maintain. The challenge stems from the fact that software
development belongs to the most labor- and, at the same time,
knowledge-intensive processes of today's world. The heavy
dependence on knowledgeable human beings may be one reason
why software development is often compared to an art or craft
rather than to an engineering discipline. However, it has almost
become impossible nowadays for a craftsman to produce large
software systems according to a given schedule, to a limited
budget, and to the quality requirements of a customer at delivery.
Hence, researchers as well as practitioners are increasingly
obliged to address the question of how to integrate engineering
principles into software development. An important one is to
perform quality-enhancing activities as early as possible. Despite
the simplicity of this principle one can observe in the software
industry that the activity of detecting and correcting software
problems is often deferred until late in the project.

To address this issue, engineering-oriented software organizations
have started to implement rigorous inspections, reviews and/or
walkthroughs (in this paper all referred to as "inspections"). But
still, a large number of organizations do not take full advantage of
these approaches, which prevents them to base their software
development approach on engineering grounds.
The main objective of the IMPACT project in the area of software
inspection is to collect demonstrated success cases, perform root
cause analyses as to what contributed to the success cases in terms
of research and transfer activities in software engineering, and
derive lessons learned to maximize the success in other interested
organizations. The research results in the inspection context
include both new techniques, methods and tools as well as sound
empirical evidence regarding the effectiveness and context
dependency of inspections. The results show the importance of
methodological and empirical software engineering research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the flail citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to fists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

Empirical software engineering has lead to overcome the ,factoid'
that testing is the most effective defect finding technique, and
helped maturing software development in practice one step further
towards an engineering discipline.

This abstract first presents some of the history of inspections,
walkthroughs and reviews. An example is briefly described to
illustrate how research impacted industrial software development
practice in this area. Finally, challenges and questions as well as
areas for further work are outlined.

2. HISTORY
This historical overview is based on material of Tom Gilb. He
therefore earns the credit for this part.

Walkthroughs were widely practiced before inspection at IBM.
They were conducted by someone presenting the entire logic of an
artifact and paraphrasing it aloud, while others listened or asked
questions. Walkthroughs primarily aim at training and only
secondarily detecting or measuring defects. In a direct comparison
a British IBM Lab showed that inspection was an order of
magnitude better at finding defects than structured walkthrough.

As the 1960s drew to a close, it became apparent that delivering
defect free software on time was difficult. IBM was one of the
largest software houses in the world. There were a number of
streams of development of better quality control methods for
software, at about the same time.

The major players were Michael Fagan, Harlan Mills and Ronald
Radice [2], with Watts Humphrey supporting Fagan and Radice in
their developments. Mills was in the Federal Systems Division,
outside of Humphrey's domain. But Mike Fagan worked directly
with Mills for a few years. Mills also was one of the first working
on reading techniques

Mills and his associates packaged inspection into a larger attack
on the software quality and time problem known as the
Cleanroom method [4]. There were a number of components to
that such as structured programming, user profile testing,
evolutionary project management, design reviews, and code
inspections including "reading by stepwise abstraction".

In parallel with Fagan, Ronald Radice, at Kingston Labs used the
inspection process in 1975 for levels of specification above
pseudocode. Some of his ideas went into the development of the
Capability Maturity Model (CMM). Level Three of that model
was called 'Peer Reviews'. Many other elements from the practice
of inspections would influence other levels of the CMM.

641

3. R E S E A R C H I M P A C T ON P R A C T I C E
As part of the IMPACT initiative several industrial inspection
implementations were analyzed to determine how research has
influenced the industry practice. Among those, the NASA/SEL is
presented here as an example to illustrate the analysis principle.

The NASA/SEL-Example
Some of the earliest work in the area of inspections that
influenced the work at NASA/SEL can be traced to Hetzel [1] and
Myers [5], who performed studies of developers that showed there
was little difference between the effectiveness of code inspection
and testing for finding defects.

In the late 1980's, as part of ongoing efforts to improve software
product quality at NASA's Goddard Space Flight Center (GSFC),
an investigation was undertaken in a research setting to explore
the effects of different test techniques (structural and functional
testing) on defect detection. Somewhat surprisingly, the results
indicated that the initial results of Hetzel and Myers did not seem
to hold. In fact, several distinct benefits to code inspection were
identified:

Code inspection was significantly more effective than either
functional testing or structural testing for finding defects.
Code inspection led to better estimates of code quality.

Code inspection found different fault types than testing.
Based on these research results, code inspection was introduced at
NASA GSFC for development use. However, when the defect
detection rates were compared to historical baselines, the results
were disappointing: code inspection seemed to have very little
effect on defect detection.
Researchers attempted to analyze the reasons for this result and
hypothesized that: (1) inspectors may require specific techniques
for finding defects in order to inspect effectively, and (2)
inspectors will inspect less effectively if they know they can count
on downstream testing of the software to catch what they miss.

Based on these results, software reading (i.e. an inspector's
individual preparation strategy for finding defects) was
hypothesized to be an important component of inspection
effectiveness. To test this, the "Cleanroom" process was
formulated. Cleanroom provides developers with a specific
reading technique (in this case, developers were asked to use the
step-wise abstraction process [3]) and a motivation for reading
(the developer is asked to certify quality without being able to test
the code). In this way, code inspections were again moved to
industry in the form of the Cleanroom process, applied on a
project at NASA GSFC. It was shown effective in an initial study,
in which it was shown that Cleanroom reduced the failure rate
during test by 25% and at the same time increased productivity by
30%, mostly due to reducing the rework effort.

Although the Cleanroom experiments were successful, it was
recognized that one necessary direction for further work was
fmding reading techniques that could be applied for inspections of
other artifacts, such as requirements or design. As a result, the
basic research results concerning reading techniques have been
tailored for and applied in a number of different environments, for
various goals. Among them are Defect-Based Reading (DBR),
Perspective-Based Reading (PBR), Object-Oriented Reading
Techniques (OORTs), and Use-Based Reading (UBR). DBR is a
family of reading techniques for defect detection in requirements
expressed using a state machine notation called Software Cost
Reduction. PBR is a family of reading techniques focused on

defect detection in requirements expressed in natural language;
further, PBR has been tailored for design and code documents.
OORTs are another family of reading techniques designed for
inspections of high-level designs. Finally, UBR is a family of
reading techniques focused on fault detection in user interfaces.

4 . C H A L L E N G E S AND QUESTIONS
Despite the large volume of published inspection material, there
are some important challenges and questions underlying this
work. First, a sound examination of the impact that research on
inspections did have on practice requires more insight into a
company. This is usually beyond the scope published in research
papers. Hence, we challenge the members of the software
engineering community to get us access to companies that are
willing to provide this information in the form of success stories.
If possible, the success stories should have some quantitative
underpinning.

5. FURTHER WORK
The results from the Impact project also revealed areas for further
work in inspection. Among others, further work requires a better
integration of inspections in the overall software development
process, the clarification of its relationship with other defect
analysis techniques such as testing, verification, or model
checking and the clarification of its relationship with construction
techniques such as design documentation or languages.

6. SUMMARY
This paper presented some information on the impact initiative in
the area of walkthroughs, inspections, and reviews. It consisted of
several parts. The first introduced some historical information. It
showed that inspections are related to research efforts back in the
70's. It also presents an example success story together with a
succinct description of how research influenced the practice. The
success story was the result of researchers and practitioners
working closely together. As a summary statement one can say
that in the inspection area, research did have and still has impact
on the industrial practice.

Most of the inspection work can be traced back to the original
publication of Michael Fagan. Although he is mainly mentioned
as the "inventor" of inspections, the historical overview revealed
that other researchers did participate in the development of
inspections. Since then, many others fine-tuned the approach to
adjust it to the specificities of today's software development
approaches. In this way, research and practice goes hand in hand
to come up with new solutions. It is also fortunate that large
communities, such as the ISERN-comrnunity, selected inspection
technologies for the purpose of progressing empirical work in
software engineering. Based on their findings, myths can be
examined and funding can be directed to the most valuable areas.

7. R E F E R E N C E S
[1] Hetzel, W. C., 1976. An Experimental Analysis of Program Verification

Methods. PhD thesis, University of North Carolina at Chapel Hill, Department
of Computer Science.

[2] Kohli , O. Robert, and Ronald A. Radice, Low Level Design Inspection
Specification, TR 21.629, IBM System Communications Division, Kingston
NY 12401

[3] Linger, R. C., Mills, H. D., and Witt, B. I., 1979. Structured Programming:
Theory and Practice. Addison-Wesley Publishing Company.

[4] Harlan Mills, "Cleanroom Engineering", American Programmer, Pages 31-37,
May 1991

[5] Myers, G. J., 1978. A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the ACM, 21(9): 760-768.

642

