
Understanding the Software Development Process by Analysis of Changed Lines 
 
 

 

Ranjith Purushothaman 
Client Product Group Engineering 

Dell Computer Corporation 
Austin, Texas 78727 

+1.512.123.0528 
ranjith_purush@dell.com 

 

Dewayne E. Perry 
Computer Engineering & Computer Science 

University of Texas at Austin 
Austin, Texas 78712-1084 

+1.512.471.2050 
perry@ece.utexas.edu 

 
 

Abstract 
 

Understanding the impact of software change has 
been a challenge since software systems were first 
developed. With the increasing size and complexity of 
systems, this problem has become more difficult.  There 
are many ways to identify change impact from the 
plethora of software artifacts produced during 
development and maintenance. We present the analysis 
of the software development process using change and 
defect history data. Specifically, we address the problem 
of one-line changes. The generic version control data 
that is used for the research allows the results of the 
study to be extended to other software development 
projects. The studies revealed that (1) there is only a 4 
percent probability that a one-line change will introduce 
an error in the code; (2) though the effort for changing 
one-line of code is lesser compared to larger changes, 
the vast number of changes that need one-line changes 
negate this savings in effort; (3) Nearly 10 percent of all 
changes made during the maintenance of the software 
were one-line changes. 

  
1. Introduction 
 

Change is one of the essential characteristics of 
software systems [1]. The typical software development 
life cycle consists of requirements analysis, high/low 
level design, coding, testing, delivery and finally, 
maintenance. Beginning with the coding phase and 
continuing with the maintenance phase, change becomes 
ubiquitous through the life of the software. Software may 
need to be changed to fix errors, to change executing 
logic, to make the processing more efficient, or to 
introduce enhancements. 

Despite its omnipresence, source code change is 
perhaps the least understood and most complex aspect of 
the development process. An area of concern is the issue 
of software code degrading through time as more and 
more changes are introduced to it � code decay [5]. 

While change itself is unavoidable, there are some 
aspects of change that we can control. One such aspect is 
the introduction of defects while making changes to 
software, thus preventing the need for fixing those errors. 

A software change has different properties such as 
size, diffusion, type, duration among others and we are 
interested in studying the impact of the size and type of 
change on the risk of failure. The motivation for our 
research comes from a claim made by a software 
engineer from the industry: a one-line change has a 50% 
chance of being wrong (We do not mean the probability 
of a one-line change being right or wrong but that half of 
one-line changes are incorrect). So in this research, our 
primary focus will be on one-line changes. 

Though often overlooked, small changes such as one-
line changes can be very critical. Gerald Weinberg [9] 
documents an error that cost a company 1.6 billion 
dollars and was the result of changing a single character 
in a line of code. The general perception among 
developers is that one-line errors are less critical and less 
expensive to fix than errors in analysis or design and are 
hence given low priority. 

Our main hypothesis, driven more by intuition, is that 
the probability of a one-line change resulting in an error 
is less than ten percent. Our approach is different from 
most other studies that address the issue of software 
errors because we have based the analysis on the property 
of the change itself rather than the properties of the code 
that is being changed [7]. 

Change to software can be made by addition of new 
lines, modifying existing lines, or by deleting lines. We 
expect each of these different types of change to have 
varying risks of failure. So in addition to the main 
hypothesis, we conjecture that the failure probability is 
higher when the change involves addition of new lines as 
compared to modification of the existing lines of code. 

To test our hypotheses, we used data from the source 
code control system (SCCS) of a large scale software 
project (5ESS). The Lucent Technologies 5ESS� 
switching system software is a multi-million line 



distributed, high availability, real-time telephone 
switching system software that was developed over two 
decades [6]. The source code of the 5ESS project, mostly 
written in the programming C language, underwent 
several hundred thousand changes. 

The use of data from a generic version control system 
for our analysis ensures that our results can be extended 
to any commercial software product. While historic data 
from project management systems have been used to 
analyze the various attributes affecting software 
development, the use of this data to study the impact of 
making one-line changes to software has not been done 
before. 

In the next section we provide an insight into the past 
works that have addressed issues related to our analysis. 
In section 3, we provide the background for the study, 
describing the change data, and the methodology 
employed for our research. In section 4, we describe our 
approach for the analysis of the changed lines, focusing 
first on how we prepared the data. In section 5 we discuss 
the results of the analysis, and finally conclude the paper 
in section 6. 
 
2. Literature Review 
 

Software maintenance and evolution is the final phase 
of the software life cycle and is frequently viewed as a 
phase of lesser importance than the design and 
development phases. Quite the contrarily, statistical data 
shows that maintaining two to ten year old software 
systems demand possibly as high as 40 percent to 70 
percent of the initial development effort [15]. We are not 
sure that these figures are really accurate for the 
evolution of software, but did not know what to do about 
it. However, software maintenance still remains as a 
difficult process to understand and manage. 

Understanding the need for classification of the 
software changes, E. B. Swanson [12] proposed that 
change be classified to belong to three types of 
maintenance activities. The three types are corrective, 
adaptive, and perfective. As defined by Swanson, 
corrective maintenance is performed to correct defects 
that are uncovered after the software is brought to use. 
Adaptive maintenance is applied to properly interface 
with changes in the external processing environment and 
very often this translates into new development. 
Perfective maintenance is applied to eliminate 
inefficiencies, enhance performance, or improve 
maintainability. 

Mockus and Votta [3] used the change history from 
the 5ESS� switching software project to identify the 
reasons for software changes. In the analysis, changes 
were classified as corrective, adaptive, and perfective. 

They also introduced a fourth type of change 
classification � changes performed following inspections. 
Though the changes from inspections were mostly 
perfective and corrective changes, the number of such 
changes justified the introduction of a different type of 
change classification. In any systematic software 
development environment, code inspection and 
modification of code following the inspection is standard 
procedure. Hence, for our results to be valid in such an 
environment and since our analysis was also based on the 
same data, we have retained the �inspection� type of 
change classification. Our research is based on the 
ground work that has been laid down in [3]. 

Now let us move on to list some of the past work that 
analyzes changed lines, which is the subject matter of 
this paper. In his analysis, Les Hatton [17] relates the 
defect frequency to file size. He states that contrary to 
conventional wisdom that smaller components contain 
fewer faults, medium sized components are 
proportionally more reliable than small or large ones.  

Analysts use both product measures such as the 
number of lines of code and process measures such as 
those obtained from the change history [10]. In their 
study to predict fault incidence, Graves et al [13] state 
that, in general, process measures based on change 
history are more useful in predicting fault rates than 
product metrics of the code. They give an example of 
how a process metric such as the number of times the 
code has already been changed is a better indication of 
how many faults it will contain than its length which is a 
product measure. Their study concluded that a module�s 
expected number of faults is proportional to the number 
of times it has been changed. 

Mockus and Weiss [7] have studied the relation 
between the size of the change and probability of error 
and have found that the failure probability increases with 
the number of changes, the number of lines of code 
added, and the number of subsystems touched. They also 
conclude that the probability of error is much more for 
new development as compared to defect fixes because the 
change size associated with defect fixes tend to be much 
smaller in size. Dunsmore and Gannon [14] state that 
there is statistical evidence (0.56 spearman coefficient at 
5 percent level of significance) that shows a direct 
relationship between the amount of program changes and 
the error occurrences. 

In the analysis done by Stoll et al [2], the authors 
conclude that large changes to existing code are fault 
prone and have provided statistical data to support their 
claim. They go a step further to propose that changes that 
would involve modification of more than 25 percent of 
existing code should be avoided and recommend 
recoding instead of modification. Basili and Perricone 
[18] categorize the software modules based on their size 



(lines of code) and then checks for the errors at the 
module level. An interesting observation from their 
research was that, of the modules found to contain errors, 
49 percent were categorized as modified and 51 percent 
as new modules. 

From our review of work done in related areas in the 
past (as listed above), we have not found any analysis 
that measures the risk of faults based on one-line 
changes, which is the research problem that is discussed 
in this paper. Another unique aspect of our research is 
that we have used both product measures such as the 
lines of code and process measures such as the change 
history (change dependency) to analyze the data. In 
doing so, we have tried to gain the advantages of both 
measures while removing any bias associated with either 
of them. 

While several papers discuss the classification of 
changes based on its purpose (corrective, adaptive, 
preventive) there is virtually no discussion on the type of 
change. Software can be changed by adding lines, 
deleting lines or by modifying existing lines. So, along 
the way, we have provided some information that gives 
some insight into the impact of the type of change on the 
software development process. 

The 5ESS� change history data has been used for 
various research purposes such as, for inferring change 
effort from configuration management databases [4], 
studying the impact of parallel changes in large scale 
software development projects [16], analyzing the 
challenges in evolving a large scale software product [6], 
to identify the reasons for software changes [3], for 
predicting fault incidence [13], to name a few. The wide 
range of studies that have used this particular change 
history data ensures good external validity for the results 
of the analysis based on this data. 
 
2. Background � Change Data Description 
 

Traditionally, analysis of software development 
processes use specific experiments and instrumentation 
that can limit the scope of the results of the analysis. 
Hence, to ensure that the results of this analysis are not 
constrained to just the system under study, data from a 
well known version control system had been used for this 
research. In this section, we describe the change process 
in the 5ESS software development project and also give 
an introduction to the product subsystem that we use for 
our analysis. 
 
2.1. Change Process 
 

In the 5ESS change management process, a logical 
change to the system is implemented as an initial 

modification request (IMR) by the IMR Tracking System 
(IMRTS). The change history of the files is maintained 
using the Extended Change Management System 
(ECMS) for initiating and tracking changes and the 
Sources Code Control System for managing different 
versions of the files. Hence, to keep it manageable, each 
IMR is organized into a set of maintenance requests 
(MR) by the ECMS as shown in Figure.1 [3][5][7]. The 
ECMS records information about each MR and every MR 
is owned by a developer, who makes changes to the 
necessary files to implement the MR. Every change that 
is made is recorded by the SCCS in the form of a single 
delta. Each delta provides information on the following 
attributes of the change: Lines added, lines deleted, lines 
unchanged, login of the developer, and the time and date 
of the change. 

While it is possible to make all changes that are 
required to be made to a file by an MR in a single delta, 
developers often perform multiple deltas on a single file 
for an MR. Hence there are typically many more records 
in the delta relation than there are files that have been 
modified by an MR. 
 

 
 

Figure 1: Change hierarchy 
 
2.2. Change Data 
 

The 5ESS� source code is organized into 
subsystems, and each subsystem is subdivided into a set 
of modules. Any given module contains a number of 
source lines of code.  For this research, we use data from 
one of the subsystems of the project. The Office 
Automation (OA) subsystem contains 4550 modules that 
have a total of nearly 2 million lines of code. Over the 
last decade, the OA subsystem had 31884 modification 
requests (MR) that changed nearly 4293 files. So nearly 
95 percent of all files were modified after first release of 
the product. 
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Change to software can be introduced and interpreted 
in many ways. However, our definition of change to 
software is driven by the historic data that we used for 
the analysis: A change is any alteration to the software 
recorded in the change history database [5]. In 
accordance with this definition, in our analysis the 
following were considered to be changes: 

- One or more modifications to single/multiple 
statements 

- One or more new statements inserted between 
existing lines 

- One or more lines deleted 
- A modification to a single/multiple statements 

accompanied by insertion or/and deletion of one or 
more statements 

The following changes would qualify to be a one-line 
change: 

- One or more modifications to a single statement 
- One or more lines replaced by a single line 
- One new statement inserted between existing lines 
- One line deleted 
Previous studies such as [14] do not consider deletion 

of lines as a change. However, from preliminary analysis, 
we found that lines were deleted for fixing bugs as well 
as making modifications. More over, in the SCCS 
system, a line modification is tracked as a line deleted 
and a line added. Hence in our research, we have 
analyzed the impact of deleting lines of code on the 
software development process 
 
4. Approach 
 

In this section, we document the steps we took to 
obtain useful information from our project database. We 
first discuss the preparation of the data for the analysis 
and then explain some of the categories into which the 
data is classified. The final stage of the analysis identifies 
the logical and physical dependencies that exist between 
files and MRs. 
 
4.1 Data Preparation 
 

The change history database provides us with a large 
amount of information. Since our research focuses on 
analyzing one-line changes and changes that were 
dependent on other changes, one of the most important 
aspects of the project was to derive relevant information 
from this data pool. While it was possible to make all 
changes that are required to be made for a MR in a file in 
a single delta, developers often performed multiple deltas 
on a single file for an MR. Hence there were lot more 
delta records than the number of files that needed to be 
modified by MRs. 

In the change process hierarchy, an MR is the lowest 
logical level of change. Hence if the MR was created to 
fix a defect, all the modifications that are required by an 
MR would have to be implemented to fix the bug. Hence 
we were interested in change information for each 
effected file at the MR level. For example, in Table 1, the 
MR oa101472pQ changes two files and we can also note 
that the file oaMID213 is changed in two steps. In one of 
the deltas, it modifies only one-line. However, this cannot 
be considered to be a one-line change since for the 
complete change, the MR changed 3 lines of the file. 
With nearly 32000 MRs that modified nearly 4300 files 
in the OA subsystem, the aggregation of the changes 
made to each file at the MR level gave us 72258 change 
records for analysis. 
 

Table 1: Delta relation snapshot 
DELTA relation 

MR FILE Add Delete Date 

Oa101472pQ oaMID213 2 2 9/3/1986 

Oa101472pQ oaMID213 1 1 9/3/1986 

Oa101472pQ oaMID90 6 0 9/3/1986 

Oa101472pQ oaMID90 0 2 9/3/1986 

 
4.2. Data classification 
 

Change data can be classified based on the purpose of 
the change and also based on how the change was 
implemented. The classification of the MRs based on the 
change purpose was derived from the work done by 
Mockus and Votta [3]. They classified MRs based on the 
keywords in the textual abstract of the change. For 
example, if keywords like �fix�, �bug�, �error�, and �fail� 
were present, the change was classified as corrective. In 
Table 2 we provide a summary of the change information 
classified based on its purpose. The naming convention is 
similar to the work done in their original paper. 

 
Table 2: Change classification (Purpose) 

ID Change  type Change  purpose 

B Corrective Fix defects 

C Perfective Enhance performance 

N Adaptive New development 

I Inspection Following inspection 

 
However, there were numerous instances when 

changes made could not be classified clearly. For 
example, certain changes were classified as �ICC� since 
the textual abstract had keywords that suggested changes 
from inspection (I) as well as corrective changes (C). 



Though this level of information provides for better 
exploration and understanding, in order to maintain 
simplicity, we made the following assumptions: 

- Changes with multiple �N� were classified as �N� 
- Changes with multiple �C� were classified as �C� 
- Changes containing at least one �I� were 

classified as �I� 
Changes which had �B� and �N� combinations were 

left as �Unclassified� since we did not want to corrupt the 
data. Classification of these as either a corrective or 
perfective change would have introduced validity issues 
in the analysis. Based on the above rules, we were able to 
classify nearly 98 percent of all the MR into corrective, 
adaptive or perfective changes.  

 
Table 3: Change classification (implementation) 

ID Change Type Description 

C Modify Change existing lines 

I Insert Add new lines 

D Delete Delete existing lines 

IC Insert/Modify Inserts and modifies lines 

ID Insert/Delete Inserts and deletes lines 

DC Delete/Modify Deletes and modifies lines 

DIC All of the above Inserts, deletes and modifies lines 

 
Another way to classify changes is on the basis of the 

implementation method into insertion, deletion, or 
modification. But the SCCS system maintains records of 
only the number of lines inserted or deleted for the 
change and not the type of change. Modifications to the 
existing lines are tracked as old lines being replaced by 
new lines (insert and delete). However, for every changed 
file SCCS maintains an SCCS file that relates the MR to 
the insertions and deletions made to the actual module. 
Scripts were used to parse these files and categorize the 
changes made by the MR into inserts, deletes or 
modifications. Table 3 lists different types of changes 
based on their implementation method. 
 
4.3 Identifying file dependencies 
 

Our primary concern was in isolating those changes 
that resulted in errors. To do so, our methodology was to 
identify those changes that were dependencies � changes 
that modified lines of code that were changed by an 
earlier MR. If the latter change was a bug fix our 
assumption was that the original change was in error. 
The one argument against the validity of this assumption 
would be that the latter change might have fixed a defect 
that was introduced before the original change was made. 
However, in the absence of prima facie evidence to 
support either case, and since preliminary analysis of 

some sample data did not support the challenging 
argument, we ruled out this possibility. In this report, we 
will refer to those files in which changes were made to 
those lines that were changed earlier by another MR as 
dependent files. 

The dependency, as we have defined earlier, may have 
existed due to bug fixes (corrective), enhancements 
(perfective), changes from inspection, or new 
development (adaptive). 2530 files in the OA subsystem 
were found to have undergone dependent change. That is 
nearly 55 percent of all files in the subsystem and nearly 
60 percent of all changed files. So, in nearly 60 percent 
of cases, lines that are changed were changed again. 
This kind of information can be very useful to the 
understanding of the maintenance phase of a software 
project. We had 51478 dependent change records and 
this data was the core of our analysis. 

In Figure 2, we show the distribution of change 
classifications of the dependent files across the original 
files. The horizontal axis shows the types of changes 
made to the dependent files originally. In the vertical 
axis, we distribute the new changes based on their 
classification based on the implementation type. From 
the distribution it can be noted that most bug fixes were 
made to code that was already changed by an earlier MR 
to fix bugs. At this point of time, we can conclude that 
roughly 40 percent of all changes made to fix bugs 
introduced more bugs. 

Figure 2: Distribution of change classification  
on dependent files 

 
It is also interesting to note that nearly 40 percent of 

all the dependent changes were of the adaptive type and 
the maximum amount of perfective changes were made 
to lines that were previously changed for the same 
reason, i.e., enhancing performance or removing 
inefficiencies. 
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5. Results and Analysis 
 

The analysis of the data proceeds in several steps. We 
begin with an investigation of the software project based 
on the change size. 
 
5.1. Change size 
 

Change size is an effective way to estimate the change 
effort in a software development project. From our 
analysis, we were able to derive meaningful information 
that gives a measure of the number of lines that are 
changed as part of an MR. Figure 3 shows the 
distribution of the changed files based on the number of 
lines that were changed. The vertical axis shows the 
percentage of changed files that changed the number of 
lines specified on the horizontal axis. 
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Figure 3: Distribution of small changes 

 
From the Figure 3, we can see that nearly 10 percent 

of changes involved changing only a single line of code. 
Since the data was fluctuating slightly, we did a second 
degree polynomial regression analysis of the data as 
shown by the regression line in the figure. From the 
regression line obtained, we can see that percentage of 
effected files reduces as the size of the change increases. 
Nearly 50 percent of all changes involved changing less 
than 10 lines of code. 

So, though the effort for changing one-line of code is 
generally lesser, the magnitude of these changes is very 
large in the software evolution process. However, it has 
been found that developers tend to give less priority to 
smaller changes and especially one-line changes. To 
illustrate further, Figure 4 shows distribution of all the 
changed files in the subsystem under study across their 
change sizes. From this figure, we can note that nearly 
95% of all changes were those that changed less than 50 
lines of code. 
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Figure 4: Change size distribution across files 

 
5.2. Erroneous changes 
 

Let us know analyze those changes that resulted in 
error. In Figure 5, we present the data for erroneous 
changes that affected less than 10 lines of code. The 
vertical axis gives the percentage of changes that resulted 
in error out of the total changes that affected the number 
of lines specified in the horizontal axis. The data was 
derived from the change file dependencies that we had 
defined in an earlier section of this paper. This analysis 
also answers a very important question: What percentage 
of one-line changes result in error? Only 3.95 percent of 
one-line changes result in error. 
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Figure 5: Errors introduced by change 

 
It may also be noted that the changes tend to be more 

erroneous as the number of lines changed increases. One 
possible explanation to this behavior can be that as the 
number of lines that are changed increases, it provides 
more avenues for the developer to make mistakes, i.e., 
the number of possible interactions increases. 
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We had mentioned earlier about the classification of 
changes based on their type into changes by insertion, 
deletion, and modification. We thought it would be a 
useful metric to analyze the distribution of erroneous 
changes based on the type of change. Figure 6 shows the 
results of this analysis. Changes made by deletion of lines 
have been excluded since our analysis did not produce 
any credible evidence that deletion of less than 10 lines 
of code resulted in error. 
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From Figure 6, we can note that while the probability 

that an insertion of a single line might introduce an error 
is 2 percent, there is nearly a 5 percent chance that a one-
line modification will cause an error. It can also be seen 
that while modified lines seem to cause more errors when 
less than 5 lines are changed, insertion of new lines 
introduce more errors with larger change sizes. 
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Figure 7: Erroneous changes versus change size 

To emphasize this behavior, in Figure 7, we have 
shown the distribution of the probability of error 
introduced by change over a wider range of change sizes. 

It may be noted that there is nearly 50 percent chance of 
at least one error being introduced if more than 500 lines 
of code are changed. The trend of the lines for change 
implemented by lines inserted and modified clearly 
shows that insertion of new lines generates a lot more 
errors when the change size is higher. One plausible 
explanation for this may be that developers tend to be 
more cautious when existing code has to be modified 
than when new development is done. 
 
5.3. Change Process Metrics 
 

We will now present some of the information that we 
gathered on general software development process 
metrics. In Figure 8, the vertical axis categorizes changes 
based on their purpose and the horizontal axis classifies 
changes based on how the change was implemented. As 
expected, the largest number of lines was inserted for 
adaptive changes since new development involves 
addition of new lines of code. Modifications were made 
to existing lines of code equally for both adaptive and 
corrective changes. 

 
 

Figure 8: Relation between change classification 
and change type 

 
We can see that the Figure 8 holds no surprises except 

maybe that deletion of lines occurred pretty much 
uniformly for adaptive, corrective and perfective changes.  
Figure 9 continues this discussion but restricts the change 
data to only one-line changes. The similarity of the data 
distribution in the two figures show that the behavior of 
one-line changes at least in regard to their distribution 
among the change types is representative of the behavior 
of changes irrespective of the size of the change. The 
only notable difference between the data in    Figure 8 
and Figure 9 is in the case when new single lines are 
inserted � less than 2.5 percent of one-line insertions 
were for perfective changes compared to nearly 10 



percent of insertions towards perfective changes when all 
change sizes were considered. 
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Figure 9: Relation between various change types  

for one-line changes 
 

In the figures 10 and 11, we show the distribution of 
the OA subsystem change data across the different 
change classifications that were defined earlier. We can 
see that the maximum number of changes was made for 
adaptive purposes and most changes were made by 
inserting new lines of code. 
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Figure 10: Distribution of changes based on type 
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Figure 11: Distribution of changes based on purpose 

6. Conclusion 
 
We have found that the probability that a one-line change 
would introduce at least one error is nearly 4 percent. 
This conclusion can be extended to other software 
systems since our analysis was based on data from an 
embedded real time and highly reliable system that was 
developed using a common programming language and 
development platform and hence is sufficiently 
representative of a large class of software systems. 
Interestingly, the result is very surprising considering 
that the motivation for the research claimed that � �one-
line changes are erroneous 50 percent of the time�. This 
large deviation may be attributed to the structured 
programming procedure involving code inspections and 
walkthroughs that was practiced for the development of 
the project under study. Earlier research [9] shows that 
without proper code inspection procedures in place, there 
is a very high possibility that one-line changes could 
result in error. 

We have also provided some insights that can be very 
useful for better understanding the software development 
process.  As we conclude, we list some of the more 
interesting observations that we made during our 
analysis: 

- Nearly 95 percent of all files in the software project 
were maintained at one time or another. If the 
common header and constants files are excluded 
from the project scope, we can conclude that nearly 
100 percent of files were modified at some point of 
time after the initial release of the software product. 

- Nearly 40 percent of the changes that were made to 
fix bugs introduced one or more other bugs in the 
software 

- Most of the changes made involve changing less 
than 10 lines of code. 95 percent of changes change 
less than 50 lines of code. 

 
7. Future Work 
 

Very few studies have been done to understand the 
software development process by the analysis of changed 
lines. While the software project we analyzed had 
modules varying in sizes from 50 lines of code to 50,000 
lines of code, we did not consider the individual module 
sizes separately. It will be interesting to know if there is a 
relation between the size of the module and the 
probability of error due to change. Our intuition is that 
changes (irrespective of change size) made to larger files 
will introduce more errors since the developer may not 
have an understanding of the larger modules. 

In this analysis, we have only considered those defects 
that were introduced in the lines affected by the change. 



However, making a change to a part of the code could 
affect another part of the same module, either very close 
to the changed lines or in other parts of the program. In 
the future we intend to extend this research to study 
localization effects of making changes. 
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