
Understanding the Software Development Process by Analysis of Changed Lines

Ranjith Purushothaman
Client Product Group Engineering

Dell Computer Corporation
Austin, Texas 78727

+1.512.123.0528
ranjith_purush@dell.com

Dewayne E. Perry
Computer Engineering & Computer Science

University of Texas at Austin
Austin, Texas 78712-1084

+1.512.471.2050
perry@ece.utexas.edu

Abstract

Understanding the impact of software change has
been a challenge since software systems were first
developed. With the increasing size and complexity of
systems, this problem has become more difficult. There
are many ways to identify change impact from the
plethora of software artifacts produced during
development and maintenance. We present the analysis
of the software development process using change and
defect history data. Specifically, we address the problem
of one-line changes. The generic version control data
that is used for the research allows the results of the
study to be extended to other software development
projects. The studies revealed that (1) there is only a 4
percent probability that a one-line change will introduce
an error in the code; (2) though the effort for changing
one-line of code is lesser compared to larger changes,
the vast number of changes that need one-line changes
negate this savings in effort; (3) Nearly 10 percent of all
changes made during the maintenance of the software
were one-line changes.

1. Introduction

Change is one of the essential characteristics of
software systems [1]. The typical software development
life cycle consists of requirements analysis, high/low
level design, coding, testing, delivery and finally,
maintenance. Beginning with the coding phase and
continuing with the maintenance phase, change becomes
ubiquitous through the life of the software. Software may
need to be changed to fix errors, to change executing
logic, to make the processing more efficient, or to
introduce enhancements.

Despite its omnipresence, source code change is
perhaps the least understood and most complex aspect of
the development process. An area of concern is the issue
of software code degrading through time as more and
more changes are introduced to it � code decay [5].

While change itself is unavoidable, there are some
aspects of change that we can control. One such aspect is
the introduction of defects while making changes to
software, thus preventing the need for fixing those errors.

A software change has different properties such as
size, diffusion, type, duration among others and we are
interested in studying the impact of the size and type of
change on the risk of failure. The motivation for our
research comes from a claim made by a software
engineer from the industry: a one-line change has a 50%
chance of being wrong (We do not mean the probability
of a one-line change being right or wrong but that half of
one-line changes are incorrect). So in this research, our
primary focus will be on one-line changes.

Though often overlooked, small changes such as one-
line changes can be very critical. Gerald Weinberg [9]
documents an error that cost a company 1.6 billion
dollars and was the result of changing a single character
in a line of code. The general perception among
developers is that one-line errors are less critical and less
expensive to fix than errors in analysis or design and are
hence given low priority.

Our main hypothesis, driven more by intuition, is that
the probability of a one-line change resulting in an error
is less than ten percent. Our approach is different from
most other studies that address the issue of software
errors because we have based the analysis on the property
of the change itself rather than the properties of the code
that is being changed [7].

Change to software can be made by addition of new
lines, modifying existing lines, or by deleting lines. We
expect each of these different types of change to have
varying risks of failure. So in addition to the main
hypothesis, we conjecture that the failure probability is
higher when the change involves addition of new lines as
compared to modification of the existing lines of code.

To test our hypotheses, we used data from the source
code control system (SCCS) of a large scale software
project (5ESS). The Lucent Technologies 5ESS�
switching system software is a multi-million line

distributed, high availability, real-time telephone
switching system software that was developed over two
decades [6]. The source code of the 5ESS project, mostly
written in the programming C language, underwent
several hundred thousand changes.

The use of data from a generic version control system
for our analysis ensures that our results can be extended
to any commercial software product. While historic data
from project management systems have been used to
analyze the various attributes affecting software
development, the use of this data to study the impact of
making one-line changes to software has not been done
before.

In the next section we provide an insight into the past
works that have addressed issues related to our analysis.
In section 3, we provide the background for the study,
describing the change data, and the methodology
employed for our research. In section 4, we describe our
approach for the analysis of the changed lines, focusing
first on how we prepared the data. In section 5 we discuss
the results of the analysis, and finally conclude the paper
in section 6.

2. Literature Review

Software maintenance and evolution is the final phase
of the software life cycle and is frequently viewed as a
phase of lesser importance than the design and
development phases. Quite the contrarily, statistical data
shows that maintaining two to ten year old software
systems demand possibly as high as 40 percent to 70
percent of the initial development effort [15]. We are not
sure that these figures are really accurate for the
evolution of software, but did not know what to do about
it. However, software maintenance still remains as a
difficult process to understand and manage.

Understanding the need for classification of the
software changes, E. B. Swanson [12] proposed that
change be classified to belong to three types of
maintenance activities. The three types are corrective,
adaptive, and perfective. As defined by Swanson,
corrective maintenance is performed to correct defects
that are uncovered after the software is brought to use.
Adaptive maintenance is applied to properly interface
with changes in the external processing environment and
very often this translates into new development.
Perfective maintenance is applied to eliminate
inefficiencies, enhance performance, or improve
maintainability.

Mockus and Votta [3] used the change history from
the 5ESS� switching software project to identify the
reasons for software changes. In the analysis, changes
were classified as corrective, adaptive, and perfective.

They also introduced a fourth type of change
classification � changes performed following inspections.
Though the changes from inspections were mostly
perfective and corrective changes, the number of such
changes justified the introduction of a different type of
change classification. In any systematic software
development environment, code inspection and
modification of code following the inspection is standard
procedure. Hence, for our results to be valid in such an
environment and since our analysis was also based on the
same data, we have retained the �inspection� type of
change classification. Our research is based on the
ground work that has been laid down in [3].

Now let us move on to list some of the past work that
analyzes changed lines, which is the subject matter of
this paper. In his analysis, Les Hatton [17] relates the
defect frequency to file size. He states that contrary to
conventional wisdom that smaller components contain
fewer faults, medium sized components are
proportionally more reliable than small or large ones.

Analysts use both product measures such as the
number of lines of code and process measures such as
those obtained from the change history [10]. In their
study to predict fault incidence, Graves et al [13] state
that, in general, process measures based on change
history are more useful in predicting fault rates than
product metrics of the code. They give an example of
how a process metric such as the number of times the
code has already been changed is a better indication of
how many faults it will contain than its length which is a
product measure. Their study concluded that a module�s
expected number of faults is proportional to the number
of times it has been changed.

Mockus and Weiss [7] have studied the relation
between the size of the change and probability of error
and have found that the failure probability increases with
the number of changes, the number of lines of code
added, and the number of subsystems touched. They also
conclude that the probability of error is much more for
new development as compared to defect fixes because the
change size associated with defect fixes tend to be much
smaller in size. Dunsmore and Gannon [14] state that
there is statistical evidence (0.56 spearman coefficient at
5 percent level of significance) that shows a direct
relationship between the amount of program changes and
the error occurrences.

In the analysis done by Stoll et al [2], the authors
conclude that large changes to existing code are fault
prone and have provided statistical data to support their
claim. They go a step further to propose that changes that
would involve modification of more than 25 percent of
existing code should be avoided and recommend
recoding instead of modification. Basili and Perricone
[18] categorize the software modules based on their size

(lines of code) and then checks for the errors at the
module level. An interesting observation from their
research was that, of the modules found to contain errors,
49 percent were categorized as modified and 51 percent
as new modules.

From our review of work done in related areas in the
past (as listed above), we have not found any analysis
that measures the risk of faults based on one-line
changes, which is the research problem that is discussed
in this paper. Another unique aspect of our research is
that we have used both product measures such as the
lines of code and process measures such as the change
history (change dependency) to analyze the data. In
doing so, we have tried to gain the advantages of both
measures while removing any bias associated with either
of them.

While several papers discuss the classification of
changes based on its purpose (corrective, adaptive,
preventive) there is virtually no discussion on the type of
change. Software can be changed by adding lines,
deleting lines or by modifying existing lines. So, along
the way, we have provided some information that gives
some insight into the impact of the type of change on the
software development process.

The 5ESS� change history data has been used for
various research purposes such as, for inferring change
effort from configuration management databases [4],
studying the impact of parallel changes in large scale
software development projects [16], analyzing the
challenges in evolving a large scale software product [6],
to identify the reasons for software changes [3], for
predicting fault incidence [13], to name a few. The wide
range of studies that have used this particular change
history data ensures good external validity for the results
of the analysis based on this data.

2. Background � Change Data Description

Traditionally, analysis of software development
processes use specific experiments and instrumentation
that can limit the scope of the results of the analysis.
Hence, to ensure that the results of this analysis are not
constrained to just the system under study, data from a
well known version control system had been used for this
research. In this section, we describe the change process
in the 5ESS software development project and also give
an introduction to the product subsystem that we use for
our analysis.

2.1. Change Process

In the 5ESS change management process, a logical
change to the system is implemented as an initial

modification request (IMR) by the IMR Tracking System
(IMRTS). The change history of the files is maintained
using the Extended Change Management System
(ECMS) for initiating and tracking changes and the
Sources Code Control System for managing different
versions of the files. Hence, to keep it manageable, each
IMR is organized into a set of maintenance requests
(MR) by the ECMS as shown in Figure.1 [3][5][7]. The
ECMS records information about each MR and every MR
is owned by a developer, who makes changes to the
necessary files to implement the MR. Every change that
is made is recorded by the SCCS in the form of a single
delta. Each delta provides information on the following
attributes of the change: Lines added, lines deleted, lines
unchanged, login of the developer, and the time and date
of the change.

While it is possible to make all changes that are
required to be made to a file by an MR in a single delta,
developers often perform multiple deltas on a single file
for an MR. Hence there are typically many more records
in the delta relation than there are files that have been
modified by an MR.

Figure 1: Change hierarchy

2.2. Change Data

The 5ESS� source code is organized into
subsystems, and each subsystem is subdivided into a set
of modules. Any given module contains a number of
source lines of code. For this research, we use data from
one of the subsystems of the project. The Office
Automation (OA) subsystem contains 4550 modules that
have a total of nearly 2 million lines of code. Over the
last decade, the OA subsystem had 31884 modification
requests (MR) that changed nearly 4293 files. So nearly
95 percent of all files were modified after first release of
the product.

Feature

IMR

IMRTS

MR ECMS

Delta
Lines Added/Deleted SCCS

∞

∞

∞

Change to software can be introduced and interpreted
in many ways. However, our definition of change to
software is driven by the historic data that we used for
the analysis: A change is any alteration to the software
recorded in the change history database [5]. In
accordance with this definition, in our analysis the
following were considered to be changes:

- One or more modifications to single/multiple
statements

- One or more new statements inserted between
existing lines

- One or more lines deleted
- A modification to a single/multiple statements

accompanied by insertion or/and deletion of one or
more statements

The following changes would qualify to be a one-line
change:

- One or more modifications to a single statement
- One or more lines replaced by a single line
- One new statement inserted between existing lines
- One line deleted
Previous studies such as [14] do not consider deletion

of lines as a change. However, from preliminary analysis,
we found that lines were deleted for fixing bugs as well
as making modifications. More over, in the SCCS
system, a line modification is tracked as a line deleted
and a line added. Hence in our research, we have
analyzed the impact of deleting lines of code on the
software development process

4. Approach

In this section, we document the steps we took to
obtain useful information from our project database. We
first discuss the preparation of the data for the analysis
and then explain some of the categories into which the
data is classified. The final stage of the analysis identifies
the logical and physical dependencies that exist between
files and MRs.

4.1 Data Preparation

The change history database provides us with a large
amount of information. Since our research focuses on
analyzing one-line changes and changes that were
dependent on other changes, one of the most important
aspects of the project was to derive relevant information
from this data pool. While it was possible to make all
changes that are required to be made for a MR in a file in
a single delta, developers often performed multiple deltas
on a single file for an MR. Hence there were lot more
delta records than the number of files that needed to be
modified by MRs.

In the change process hierarchy, an MR is the lowest
logical level of change. Hence if the MR was created to
fix a defect, all the modifications that are required by an
MR would have to be implemented to fix the bug. Hence
we were interested in change information for each
effected file at the MR level. For example, in Table 1, the
MR oa101472pQ changes two files and we can also note
that the file oaMID213 is changed in two steps. In one of
the deltas, it modifies only one-line. However, this cannot
be considered to be a one-line change since for the
complete change, the MR changed 3 lines of the file.
With nearly 32000 MRs that modified nearly 4300 files
in the OA subsystem, the aggregation of the changes
made to each file at the MR level gave us 72258 change
records for analysis.

Table 1: Delta relation snapshot
DELTA relation

MR FILE Add Delete Date

Oa101472pQ oaMID213 2 2 9/3/1986

Oa101472pQ oaMID213 1 1 9/3/1986

Oa101472pQ oaMID90 6 0 9/3/1986

Oa101472pQ oaMID90 0 2 9/3/1986

4.2. Data classification

Change data can be classified based on the purpose of
the change and also based on how the change was
implemented. The classification of the MRs based on the
change purpose was derived from the work done by
Mockus and Votta [3]. They classified MRs based on the
keywords in the textual abstract of the change. For
example, if keywords like �fix�, �bug�, �error�, and �fail�
were present, the change was classified as corrective. In
Table 2 we provide a summary of the change information
classified based on its purpose. The naming convention is
similar to the work done in their original paper.

Table 2: Change classification (Purpose)

ID Change type Change purpose

B Corrective Fix defects

C Perfective Enhance performance

N Adaptive New development

I Inspection Following inspection

However, there were numerous instances when

changes made could not be classified clearly. For
example, certain changes were classified as �ICC� since
the textual abstract had keywords that suggested changes
from inspection (I) as well as corrective changes (C).

Though this level of information provides for better
exploration and understanding, in order to maintain
simplicity, we made the following assumptions:

- Changes with multiple �N� were classified as �N�
- Changes with multiple �C� were classified as �C�
- Changes containing at least one �I� were

classified as �I�
Changes which had �B� and �N� combinations were

left as �Unclassified� since we did not want to corrupt the
data. Classification of these as either a corrective or
perfective change would have introduced validity issues
in the analysis. Based on the above rules, we were able to
classify nearly 98 percent of all the MR into corrective,
adaptive or perfective changes.

Table 3: Change classification (implementation)

ID Change Type Description

C Modify Change existing lines

I Insert Add new lines

D Delete Delete existing lines

IC Insert/Modify Inserts and modifies lines

ID Insert/Delete Inserts and deletes lines

DC Delete/Modify Deletes and modifies lines

DIC All of the above Inserts, deletes and modifies lines

Another way to classify changes is on the basis of the

implementation method into insertion, deletion, or
modification. But the SCCS system maintains records of
only the number of lines inserted or deleted for the
change and not the type of change. Modifications to the
existing lines are tracked as old lines being replaced by
new lines (insert and delete). However, for every changed
file SCCS maintains an SCCS file that relates the MR to
the insertions and deletions made to the actual module.
Scripts were used to parse these files and categorize the
changes made by the MR into inserts, deletes or
modifications. Table 3 lists different types of changes
based on their implementation method.

4.3 Identifying file dependencies

Our primary concern was in isolating those changes
that resulted in errors. To do so, our methodology was to
identify those changes that were dependencies � changes
that modified lines of code that were changed by an
earlier MR. If the latter change was a bug fix our
assumption was that the original change was in error.
The one argument against the validity of this assumption
would be that the latter change might have fixed a defect
that was introduced before the original change was made.
However, in the absence of prima facie evidence to
support either case, and since preliminary analysis of

some sample data did not support the challenging
argument, we ruled out this possibility. In this report, we
will refer to those files in which changes were made to
those lines that were changed earlier by another MR as
dependent files.

The dependency, as we have defined earlier, may have
existed due to bug fixes (corrective), enhancements
(perfective), changes from inspection, or new
development (adaptive). 2530 files in the OA subsystem
were found to have undergone dependent change. That is
nearly 55 percent of all files in the subsystem and nearly
60 percent of all changed files. So, in nearly 60 percent
of cases, lines that are changed were changed again.
This kind of information can be very useful to the
understanding of the maintenance phase of a software
project. We had 51478 dependent change records and
this data was the core of our analysis.

In Figure 2, we show the distribution of change
classifications of the dependent files across the original
files. The horizontal axis shows the types of changes
made to the dependent files originally. In the vertical
axis, we distribute the new changes based on their
classification based on the implementation type. From
the distribution it can be noted that most bug fixes were
made to code that was already changed by an earlier MR
to fix bugs. At this point of time, we can conclude that
roughly 40 percent of all changes made to fix bugs
introduced more bugs.

Figure 2: Distribution of change classification
on dependent files

It is also interesting to note that nearly 40 percent of

all the dependent changes were of the adaptive type and
the maximum amount of perfective changes were made
to lines that were previously changed for the same
reason, i.e., enhancing performance or removing
inefficiencies.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

New/Dependent
change

classification

Corrective
(B)

Perfective (C) Adaptive (N) Inspection (I)

Original change classification

Inspection (I)
Adaptive (N)
Perfective (C)
Corrective (B)

5. Results and Analysis

The analysis of the data proceeds in several steps. We
begin with an investigation of the software project based
on the change size.

5.1. Change size

Change size is an effective way to estimate the change
effort in a software development project. From our
analysis, we were able to derive meaningful information
that gives a measure of the number of lines that are
changed as part of an MR. Figure 3 shows the
distribution of the changed files based on the number of
lines that were changed. The vertical axis shows the
percentage of changed files that changed the number of
lines specified on the horizontal axis.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of lines changed

Percentage of
changed files

Regression line

Figure 3: Distribution of small changes

From the Figure 3, we can see that nearly 10 percent

of changes involved changing only a single line of code.
Since the data was fluctuating slightly, we did a second
degree polynomial regression analysis of the data as
shown by the regression line in the figure. From the
regression line obtained, we can see that percentage of
effected files reduces as the size of the change increases.
Nearly 50 percent of all changes involved changing less
than 10 lines of code.

So, though the effort for changing one-line of code is
generally lesser, the magnitude of these changes is very
large in the software evolution process. However, it has
been found that developers tend to give less priority to
smaller changes and especially one-line changes. To
illustrate further, Figure 4 shows distribution of all the
changed files in the subsystem under study across their
change sizes. From this figure, we can note that nearly
95% of all changes were those that changed less than 50
lines of code.

0

5000

10000

15000

20000

25000

Number of files

0<
=C

<5

5<
=C

<1
0

10
<=

C<20

20
<=

C<3
0

30
<=C

<5
0

50
<=C

<1
00

10
0<

=C
<20

0

20
0<

=C
<5

00

50
0<

=C
<1

00
0

10
00

<=
C<2

00
0

>2
00

0

Number of lines changed

Figure 4: Change size distribution across files

5.2. Erroneous changes

Let us know analyze those changes that resulted in
error. In Figure 5, we present the data for erroneous
changes that affected less than 10 lines of code. The
vertical axis gives the percentage of changes that resulted
in error out of the total changes that affected the number
of lines specified in the horizontal axis. The data was
derived from the change file dependencies that we had
defined in an earlier section of this paper. This analysis
also answers a very important question: What percentage
of one-line changes result in error? Only 3.95 percent of
one-line changes result in error.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11

Number of lines changed

Percentage of
changed lines that
resulted in error

(%)

Figure 5: Errors introduced by change

It may also be noted that the changes tend to be more

erroneous as the number of lines changed increases. One
possible explanation to this behavior can be that as the
number of lines that are changed increases, it provides
more avenues for the developer to make mistakes, i.e.,
the number of possible interactions increases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
100%

Change
classification

Modify (C) Insert (I) Delete (D) Combination
(B)

Type of change

Unclassified
Inspection (I)
Adaptive (N)
Perfective (C)
Corrective (B)

We had mentioned earlier about the classification of
changes based on their type into changes by insertion,
deletion, and modification. We thought it would be a
useful metric to analyze the distribution of erroneous
changes based on the type of change. Figure 6 shows the
results of this analysis. Changes made by deletion of lines
have been excluded since our analysis did not produce
any credible evidence that deletion of less than 10 lines
of code resulted in error.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11

Number of lines changed

P
er

ce
n

ta
g

e
o

f
ch

an
g

es
 t

h
at

 r
es

u
lt

ed
 i

n
 e

rr
o

r
(%

)

Inserted lines
Modified lines

Figure 6: Erroneous changes classified by
type of change

From Figure 6, we can note that while the probability

that an insertion of a single line might introduce an error
is 2 percent, there is nearly a 5 percent chance that a one-
line modification will cause an error. It can also be seen
that while modified lines seem to cause more errors when
less than 5 lines are changed, insertion of new lines
introduce more errors with larger change sizes.

0

10

20

30

40

50

60

70

80

0<
=C

<5

5<
=C

<1
0

10
<=

C<20

20
<=

C<3
0

30
<=

C<50

50
<=

C<10
0

10
0<

=C
<20

0

20
0<

=C<50
0

>50
0

Number of lines changed

P
er

ce
nt

ag
e

of
 c

ha
ng

es
 th

at
 r

es
ul

te
d

in
 e

rr
or

 (%
)

Inserted
Modified
Changed

Figure 7: Erroneous changes versus change size

To emphasize this behavior, in Figure 7, we have
shown the distribution of the probability of error
introduced by change over a wider range of change sizes.

It may be noted that there is nearly 50 percent chance of
at least one error being introduced if more than 500 lines
of code are changed. The trend of the lines for change
implemented by lines inserted and modified clearly
shows that insertion of new lines generates a lot more
errors when the change size is higher. One plausible
explanation for this may be that developers tend to be
more cautious when existing code has to be modified
than when new development is done.

5.3. Change Process Metrics

We will now present some of the information that we
gathered on general software development process
metrics. In Figure 8, the vertical axis categorizes changes
based on their purpose and the horizontal axis classifies
changes based on how the change was implemented. As
expected, the largest number of lines was inserted for
adaptive changes since new development involves
addition of new lines of code. Modifications were made
to existing lines of code equally for both adaptive and
corrective changes.

Figure 8: Relation between change classification
and change type

We can see that the Figure 8 holds no surprises except

maybe that deletion of lines occurred pretty much
uniformly for adaptive, corrective and perfective changes.
Figure 9 continues this discussion but restricts the change
data to only one-line changes. The similarity of the data
distribution in the two figures show that the behavior of
one-line changes at least in regard to their distribution
among the change types is representative of the behavior
of changes irrespective of the size of the change. The
only notable difference between the data in Figure 8
and Figure 9 is in the case when new single lines are
inserted � less than 2.5 percent of one-line insertions
were for perfective changes compared to nearly 10

percent of insertions towards perfective changes when all
change sizes were considered.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Change
classification

Modify (C) Insert (I) Delete (D)
Type of one-line changes

Unclassified
Inspection (I)
Adaptive (N)
Perfective (C)
Corrective (B)

Figure 9: Relation between various change types

for one-line changes

In the figures 10 and 11, we show the distribution of
the OA subsystem change data across the different
change classifications that were defined earlier. We can
see that the maximum number of changes was made for
adaptive purposes and most changes were made by
inserting new lines of code.

28%

40%

3%

29%

Change (C)

Insert (I)
Delete (D)

Combination (B)

Figure 10: Distribution of changes based on type

33%

8%48%

9% 2%

Corrective (B)

Perfective (C)

Adaptive (N)

Inspection (I)

Unclassif ied

Figure 11: Distribution of changes based on purpose

6. Conclusion

We have found that the probability that a one-line change
would introduce at least one error is nearly 4 percent.
This conclusion can be extended to other software
systems since our analysis was based on data from an
embedded real time and highly reliable system that was
developed using a common programming language and
development platform and hence is sufficiently
representative of a large class of software systems.
Interestingly, the result is very surprising considering
that the motivation for the research claimed that � �one-
line changes are erroneous 50 percent of the time�. This
large deviation may be attributed to the structured
programming procedure involving code inspections and
walkthroughs that was practiced for the development of
the project under study. Earlier research [9] shows that
without proper code inspection procedures in place, there
is a very high possibility that one-line changes could
result in error.

We have also provided some insights that can be very
useful for better understanding the software development
process. As we conclude, we list some of the more
interesting observations that we made during our
analysis:

- Nearly 95 percent of all files in the software project
were maintained at one time or another. If the
common header and constants files are excluded
from the project scope, we can conclude that nearly
100 percent of files were modified at some point of
time after the initial release of the software product.

- Nearly 40 percent of the changes that were made to
fix bugs introduced one or more other bugs in the
software

- Most of the changes made involve changing less
than 10 lines of code. 95 percent of changes change
less than 50 lines of code.

7. Future Work

Very few studies have been done to understand the
software development process by the analysis of changed
lines. While the software project we analyzed had
modules varying in sizes from 50 lines of code to 50,000
lines of code, we did not consider the individual module
sizes separately. It will be interesting to know if there is a
relation between the size of the module and the
probability of error due to change. Our intuition is that
changes (irrespective of change size) made to larger files
will introduce more errors since the developer may not
have an understanding of the larger modules.

In this analysis, we have only considered those defects
that were introduced in the lines affected by the change.

However, making a change to a part of the code could
affect another part of the same module, either very close
to the changed lines or in other parts of the program. In
the future we intend to extend this research to study
localization effects of making changes.

8. References

[1] Fred Brooks, �The Mythical Man-Month�, Addison-Wesley,

1975

[2] Dieter Stoll, Marek Leszak, Thomas Heck, �Measuring
Process and Product Characteristics of Software
Components � a Case study�

[3] Audris Mockus, Lawrence G. Votta, �Identifying Reasons
for Software Changes using Historic Databases�, In
International Conference on Software Maintenance,
San Jose, California, October 14, 2000, Pages 120-
130

[4] Todd L Graves, Audris Mockus, �Inferring Change Effort
from Configuration Management Databases�,
Proceedings of the Fifth International Symposium on
Software Metrics, IEEE, 1998, Pages 267-273

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S.
Marron, Audris Mockus, �Does Code Decay?
Assessing the Evidence from Change Management
Data�, IEEE Transactions on Software Engineering,
Vol. 27, No. 1, January 2001

[6] Dewayne E. Perry, Harvey P. Siy, �Challenges in Evolving
a Large Scale Software Product�, Proceedings of the
International Workshop on Principles of Software
Evolution, 1998 International Software Engineering
Conference, Kyoto, Japan, April 1998

[7] Audris Mockus, David M. Weiss, �Predicting Risk of
Software Changes�, Bell Labs Technical Journal,
April-June 2000, Pages 169-180

[8] Rodney Rogers, �Deterring the High Cost of Software
Defects�, Technical paper, Upspring Software, Inc.

[9] G. M. Weinberg, �Kill That Code!�, Infosystems, August
1983, Pages 48-49

[10] David M. Weiss, Victor R. Basili, �Evaluating Software
Development by Analysis of Changes: Some Data
from the Software Engineering Laboratory�, IEEE
Transactions on Software Engineering, Vol. SE-11,
No. 2, February 1985, Pages 157-168

[11] Myron Lipow, �Prediction of Software Failures�, The
Journal of Systems and Software, 1979, Pages 71-75

[12] Swanson. E. B., �The Dimensions of Maintenance�,
Procedures of the Second International Conference on
Software Engineering, San Francisco, California,
October 1976, Pages 492-497

[13] Todd L. Graves, Alan F. Karr, J.S. Marron, Harvey Siy,
�Predicting Fault Incidence Using Software Change
History�, IEEE Transactions on Software
Engineering, Vol. 26, No. 7, July 2000, Pages 653-
661

[14] H.E. Dunsmore, J.D. Gannon, �Analysis of the Effects of
Programming Factors on Programming Effort�, The
Journal of Systems and Software, 1980, Pages 141-
153

[15] Ie-Hong Lin, David A. Gustafson, �Classifying Software
Maintenance�, 1988 IEEE, Pages 241-247

[16] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta,
�Parallel Changes in Large Scale Software
Development: An Observational Case Study�, In
Proceedings of the 1998 International conference on
Software Engineering, Kyoto, Japan, April 1998

[17] Les Hatton, Programming Research Ltd, �Reexamining the
Fault Density � Component Size Connection�, IEEE
Software, March/April 1997, Vol. 14, No. 2, Pages
89-97

[18] Victor R. Basili, Barry T. Perricone, �Software Errors and
Complexity: An Empirical Investigation�,
Communications of the ACM, January 1984, Vol 27,
Number 1, Pages 42-52

