
Abstraction --- the Hard Core of Software Engineering

Dewayne Perry
ECE, University of Texas, Austin

perry@ece.utexas.edu

Abstract

Modularity, encapsulation and abstraction are the primary intellectual
tools for managing complexity in software systems, but the greatest of
these is abstraction. Finding the right, or most appropriate,
abstractions is the most important part of engineering software
systems: they provide understanding; they provide the right veneer
over complex underlying implementations; they provide the basic
vocabulary (data and operations; nouns and verbs) for each layer of our
virtual machines to express the solutions to the problems to solve.
They are the fundamental job of software engineering.

Indeed, abstraction is the fundamental job of software engineering
research as well: finding the right abstractions for software
engineers to use in their quest for the right abstractions to solve
their problems. Structured Programming is one such "right" abstraction
for programming: it provides precisely the right focus on what is
critical to write the simplest, understandable programs whose static
structure provides us with useful clues and understanding about their
dynamic structure.

I will explore how various abstractions have affected the way we
engineer software systems. One of the most important insights recently
is one due to our honoree, Prof. Wlad Turski, made in a key note
address several years ago in which he distinguished between programs as
computations and programs as behaviors. These two abstractions provide
a keen and fundamental distinction and a deep understanding of
different views about programs and systems, and clarify much of the
confusion about differing and often conflicting views of software
engineering.

15

mailto:perry@ece.utexas.edu

