
1

1

Abstraction: The Hardcore of
Software Engineering

Dewayne E Perry
Motorola Regents Chair in Software Engineering

Electrical and Computer Engineering
The University of Texas at Austin

2

What is Software Engineering (SE)?

• SE is concerned with building and evolving 
software systems that have a practical 
effect in the world
– Fundamentally, SE is a set of problem solving 

skills, methods, techniques and technology 
applied in a variety of domains

– Programming is just one of these basic problem 
solving skills



2

3

Basic job of a Software Engineer

• Discover, create and build/evolve 
abstractions and behaviors

• Effectively evaluate and decide among 
alternative abstractions/solutions

To do this we use
– Theories or models that we use or create

• From standard well understood domains
• For new domains we do not understand well

4

Basic job of a Software Engineer

– Experience
• Feedback, either directly or from users
• Experimentation, engineering or scientific

– Process
• Problems solving methods and techniques
• Technologies appropriate to the product and to 

the methods and techniques
• Organizational and cultural structures -



3

5

Software Engineering Research

• Discover, create and build new 
abstractions to help software engineers

• Evaluate the effectiveness and utility of 
these abstractions for engineering 
software systems

• Discover, create and evaluate effective 
measures for comparing and evaluating 
abstractions, behaviors and solutions

6

Abstractions

• SE, as any engineering discipline, is a 
discipline of design
– Brooks’ goal: conceptual integrity of design
– Abstractions are our fundamental intellectual 

tool for design
• Simplification
• Generalization
• Codification
• Satisficing 



4

7

Abstractions

• For the SEs, abstractions 
– Are the primary means of managing complexity
– Provide basic domain specific concepts

• For SE Researcher, abstractions
– Provide the primary means to help SEs to think 

about how to architect, design, build and evolve 
software systems

– Remove accidental underbrush and simplify SW 
development

8

Whither Structured Programming?

• Basic set of abstractions for programming
– Basic set of programming actions

• Complete 
• Orthogonal

– Well defined semantics, composition and proof rules
– Disciplined control flow
– Static structure reflects dynamic structure
– Basis for additional needed abstractions

• Eg, separation of normal and abnormal (exceptions)



5

9

Some Useful Abstractions 

• Problem versus solution space
• Virtual machines
• Product families
• Essential versus accidental characteristics
• Components and connectors
• Computations versus behaviors

10

Problem vs Solution Space

• SE’s often too focused on solutions
• Emphasis on problem domain

– What rather than how
– Problem discourse
– Domain abstractions 

• In the world rather than in the machine
• Jackson: shape of the solution should 

reflect the shape of the problem



6

11

Virtual Machines

• Interfaces as little languages
• Coherent and related set of abstractions
• Layering 

– with increasingly rich concepts
– with increasingly higher level languages

• Domain specific machine and language
• Encapsulated implementations - changeable

12

Product Families

• Parnas: Planning for change
• Commonality vs variability
• System as a sequence of family members

– Some parts are invariant
– Some change

• Exploit commonality to reduce maintenance
• Basis for things to come

– Product line architecture



7

13

Essential versus Accidental

• Brooks: Critical distinction
• Essential - need to be managed

– Basic facts of life
• Accidental - need to be remedied – Eg,

– Inadequate abstractions, expressions
– Inadequate modes of expression
– Inadequate support and resources
– Inadequate knowledge

14

Components and Connectors

• Perry/Wolf: Logical rather physical distinction
• Connectors represent interactions

– Communication
– Coordination
– Mediation 

• Components represent computations and 
behaviors to be composed

• Connectors relate and regulate the behavior of 
the composed components

• Possible: composable non-functional properties



8

15

Computations vs Behaviors

• Turski: critical distinction
• Computations

– Bounded, neat problems
– Underlying theory available
– Admit of clean, theoretically nice solutions

• Eg, Misra’s composition of concurrent programs
• Behaviors

– Unbounded, messy problems
– Little theory available – often make it up as we go
– Harder to formally describe and reason about

16

Evaluation

• Few agreed on measures
– Still at level of naïve art critic

• I know what I like
• I’ll know it when I see it

– Tend to rely on experience (anecdotal)
– Poor construct validity

• Eg, cohesion
– Little agreement on effectiveness and 

reliability of metrics



9

17

Creating Effective Evaluations

• Tends to be I have a dream paradigm
• Too little theory to go on
• Experimental side of SE (and CS) very immature

– Lack of understanding of basic experimental issues: 
design, validity, analysis

– Lack of standard designs and measures
• Virtually no replicated experiments
• A long way to go yet

18

Conclusions

• Abstractions and evaluations fundamental 
to software engineering

• Abstractions, evaluations and the creation 
of effective measures fundamental to 
software engineering research.

• Doing well in the abstractions department
• Doing poorly in the evaluations department
• Much worse in creating effective measures


