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Abstract 
 

Parallel changes are a basic fact of modern software 
development. Where previously we looked at prima facie 
interference, here we investigate a less direct form that we 
call semantic interference. 

We reduce the forms of semantic interference that we 
are interested in to overlapping def-use pairs.  Using 
program slicing and data flow analysis, we present 
algorithms for detecting semantic interference for both 
concurrent changes (allowed in optimistic version 
management systems) and sequential parallel changes 
(supported in pessimistic version management systems), 
and for changes that are both immediate and distant in 
time. We provide these algorithms for changes that are 
additions, showing that interference caused by deletions 
can be detected by considering the two sets of changes in 
reverse-time order. 
 

Keywords: Parallel changes, local change analysis, 
semantic interference, program slicing, data flow analysis 
 

Introduction 
 

There are a number of factors that have made parallel 
development an increasingly serious and critically 
important problem.   
� With the ever increasing size of software systems 

comes the fact that developers must work in parallel 
to meet market time pressures and schedules.  This 
fact has always existed in large-scale software 
systems development.   

� Increasing globalization results in the additional 
factor of parallel geographically distributed software 
development.  Temporal and geographical separation 
make it extremely difficult to support the critical 
informal interactions that provide a significant means 
of problem solving.    

� With the increasing size of systems as they evolve 
over time comes the fact that only an increasingly 
smaller proportion of a system is changed for any one 
release  (a fact that makes traditional code ownership 
- the centralization of knowledge of code - an 
infeasible solution).   

� And finally, as features and feature ownership 
increasingly drive software systems evolution, we 
find that software systems evolve on the basis of 

many independent as well as interdependent software 
developments.  This emphasizes both the 
heterogeneity rather than the homogeneity of 
software systems evolution, and the centralization of 
the knowledge of changes. 
Thus, a fundamental and important problem in 

building and evolving complex large-scale software 
systems is how to manage and to support the phenomena 
of parallel change.  How do we support the people doing 
these parallel changes by organizational structures, by 
project management, by process, by methods and 
techniques, and by technology?  How can we support 
these kinds of parallel change efforts and maintain the 
desired levels of quality as well as schedules in the 
affected software?   

In our previous study [1], we described the landscape 
of parallel changes, determined the extent of prima facie 
interfering changes, and established a positive linear 
relationship between the degree of parallelism and the 
number of software faults. In this example, the variable b 
is common to both versions and a use of such variable is 
preserved in the program point pair (4,5) linked through 
application A. The immediate data predecessor relative to 
b - (3) for the former version and (4) for the latter - are 
not linked via A and therefore the variable definitions 
concerning a preserved use do not apply. 

We attribute this to the fact that there is insufficient 
time to understand the changes made under these kinds of 
constraints. 

In this paper, we present a local change analysis 
technique to detect changes that have a less direct effect – 
namely, semantically interfering changes. While all 
changes are intended to affect a program semantically, it 
is clearly the case that many changes have unintended 
effects – cf the fact that software faults are introduced in 
changes. [2,12] A change semantically interferes when 
modifications are made to the same slice [3,4,15] of the 
program and modify the program’s behavior.  We note 
that our analysis is done at the statement level (where we 
are concerned with the insertion, deletion and 
modification of lines of code) rather than at higher levels 
of abstractions such as in Chianti [21] where the focus is 
at the method level. 

In our experience with large version history data 
[1,12], a local change analysis technique that reveals the 



 

 

locations of these semantic effects would be extremely 
helpful in preventing the introduction of multiple new 
faults with every modification made to the code.   
 

Examples of Semantic Interference 
 

In analyzing semantic conflicts we focus on how 
variables are assigned and used throughout the data flow. 

 
program   program 
  a := 1     a := 1 
       a := 2   Í 
  b := a     b := a 
end   end 

 
Fig. 1 - A simplistic version of the def-use static overlapping case 
of semantic interference 

 

The simplest example of semantic interference is the 
def-use static overlapping (Fig.1). The left hand snippet 
shows a simple definition-use pair. The only execution 
path possible defines a value for the variable a and uses it 
in the next statement. As post-conditions on this code we 
expect b to carry the value 1 at the end of execution [9]. 
In the modified example an additional line has been 
inserted. The effect of this interference is clear: the 
variable b assumes the value 2 at the end of the execution, 
negating the post conditions that the author of the original 
code had intended.  In this example we show only two 
versions of the code referring to the leftmost as the 
original code and to the rightmost as the modified 
version.1  

The next example shows a simple variation that uses 
aliasing to disguise the def-use overlapping. The variable 
a, a middle link in the dereferencing chain, is modified in 
value and although the original value for c is not 
modified, a* and c do no longer refer to the same entity. 
Lines (2-4) and lines (3-4) constitute the overlapping def-
use pairs. 

 

program                program 
1:     c := 1    c := 1 
2:    a := &c    a := &c 
3:      a := a + 1   Í 
4:    b := a*    b := a* 
   end  end 

 
Fig. 2 – A pointer variant. 

 

While in the previous case the def-use pair involved 
assigning a value and accessing the location where the 
value was stored, in this case the interference occur 
during the pointer resolution process; in order to access 
the value of a*, access to the value of the pointer is 
required. When line 3 is inserted, a new definition for the 
variable a is added. When the variable is used in order to 
resolve the value for a*, interference occurs. 

                                                 
1 We only identify two possible types of code modification: line 

insertions and line deletions; we will consider modifications as 
deletion-insertion pairs.  

 

program  program 
         ...    ... 
1:         a := &c                     a := &c 
2:   a* := 1                    a* := 1 
3:     a* := 2   Í 
4:   b := a*    b := a* 

end  end 
 

Fig. 3 - Indirect effect. 
 

Fig. 3 shows a simplified case of indirect semantic 
interference. A true indirect conflict occurs when despite 
the absence of apparent def-use overlapping involving the 
variables, the content of the memory location being 
referenced is modified before the value contained at that 
location can be accessed. While explicit pointers are the 
classic culprit of this type of interference, languages that 
implement implicit pointers (e.g. Java™, C#™ ) may 
simply obscure the conflict rather than prevent it.  

In the specific example displayed in Fig. 3, a* is an 
alias for c. Although there is no apparent def-use 
overlapping for any of the variables (a or c), lines (2-4) 
and (3-4) still identify two overlapping def-use pairs for 
the entity referenced by a*. Although this falls within the 
given definition for indirect conflicts, because the subject 
entity is always referenced as a* while in no case is the 
value of a affected, this example has more affinity with 
direct conflicts such as those shown in Fig.1 and Fig. 2. It 
is sufficient to consider a* a stack variable, and static 
analysis of the code reveals the conflict. 

Fig. 4 shows the simplest form of a truly indirect 
interference, for which no def-use overlap is detectable in 
the code without keeping track of pointers’ values. The 
only variables present in both snippets are not explicitly 
affected by the change, although the value for the stack 
location indicated by c, to which a points, is changed 
through pointer dereferencing.  

 

program  program 
1:    c  := 1    c := 1 
2:          a := &c   Í 
3:      a* := 2   Í 
4:    b := c    b := c 

end  end 
 

Fig. 4 – A truly indirect semantic interference. 
 

Indeed, there is no explicitly visible def-use 
overlapping for lines (1-4) and (3-4) which do interfere. 
For both versions, lines (1-4) apparently constitute a 
perfectly valid def-use pair and line 3, which involves a 
different variable, should not affect this. It is also evident 
though – at least in this simple example - that c is 
semantically an alias for a* at this point in the execution, 
and that an overlap does indeed occur. This kind of 
semantic interference poses a series of additional 
challenges for detection purposes and is more problematic 
for developers to deal with.   



 

 

We have so far discussed only changes that inserted 
lines which interfere semantically with a preexisting 
reference version. The same distinctions and 
classifications that apply to line insertions apply to 
changes that remove or modify any existing line of code. 
As we show below, the analysis of all modifications can 
be elegantly reduced to a combination or reversal of the 
steps necessary for the detection of conflicts in the 
general case of line additions. 

It should now appear clear that a semantic 
interference is an artifact in the semantics of program 
evolution that defies the postconditions intended by the 
original author by interleaving pairs of def-use instruction 
in any of the program execution slices. 

Although this generalization seems well grounded, 
the actual interleaving mechanism may vary greatly.  
Pointer dereferencing can for instance involve multiple 
chained stages and interleaving def-use pairs may not 
appear as evident in these cases.  

While all flavors of semantic conflicts can be 
reduced to direct and indirect interference through def-use 
overlapping, the actual mechanisms in which these effects 
occur may also vary. In the examples shown so far, the 
execution path was sequential. This is not always the 
case: control structures, subroutine calls, data-driven and 
event-driven execution schemes, all affect the number of 
different paths that the actual execution of code can take 
and thereby hide the effects of semantic interferences. 

When non-determinism comes into play, as in multi-
threaded operations, detection of undesired effects may 
be even more difficult. 
 

Parallel Changes and Research Context 
 

We delineate two different flavors of parallel 
changes in our approach to detecting semantic 
interference between any two versions. 

• Concurrent changes are changes performed through an 
optimistic version control system which allows 
multiple valid copies of the same file at the same time 
[11]. The final version is a semi-automated integrated 
version. The merging process is usually dependent on 
the absence of syntactic and direct prima facie 
conflicts; indirect semantic interference may easily go 
undetected [9].  Changes of this sort are truly parallel 
and there is no assumed ordering among them. 
Concurrent modifications pose several additional 
challenges in detecting interfering changes. 

• Sequential parallel changes are also parallel changes in 
a logical sense: they take place independently from 
each other and are committed by different developers in 
a relatively short span of time. In a pessimistic version 
management system [7] parallel changes are 
sequentialized because only one developer may have a 
file checked out at a time. The time of submission for a 
change determines the ordering of the changes. By 

default, every change is assumed to possibly conflict 
with previous changes, potentially disrupting or 
modifying the effects of previous modifications, 
without notifying any of the developers. 

In both cases, it is very likely that indirect semantic 
interference will go undetected. In related work, Horwitz 
et al. [9] provide an algorithm for integrating non-
interfering versions under certain assumptions.  To our 
knowledge, the extent to which this algorithm is 
applicable is unknown.  Some version management 
systems [7,10,16] also provide automated merging 
functions. Nonetheless, as we discuss below, merging 
strategies find applicability only in optimistic version 
control scenarios and are nonetheless subject to various 
kinds of semantic interference.  

The context for this research is Lucent Technologies 
5ESS™ system where there is massive parallel work done 
in the context of pessimistic version management [1,12]. 
The 5ESS™ change process relies on an initial 
modification request (IMR) that models a logical 
problem, such as feature additions, fault corrections, 
performance improvements, etc. Each IMR is split into a 
set of more manageable modification requests (MRs), 
representing partial solutions to the problem, that reduce 
the granularity of the change being made. Each MR is 
typically owned by one developer, who implements it 
through one or more deltas. A delta specifies the change 
in terms of which lines of code were added, changed or 
deleted and includes pointers/references to the versions of 
code pre and post change [12, 2, 14]. 

In our reference system, single MRs are often split 
into a multitude of atomic changes (deltas). One could 
argue that an MR produces one functionally consistent 
version of the software code2, and that we should focus 
on versions produced by MRs rather than on single deltas. 
The reality is that in the context of pessimistic version 
management, the deltas that collectively represent one 
logical change are interleaved with deltas that represent 
other logical changes – that is, single deltas traceable to 
different MRs interleave changes to the code throughout 
the system’s evolution in the sequential case. Therefore 
we consider deltas as the atomic originators of semantic 
interferences in parallel changes rather than MRs. This 
fine level of granularity however does introduce several 
complications addressed below.  

Fig. 5 shows how changes from different MRs create 
versions of the code that overlap across MRs throughout 
time3. In general an arbitrary number of concurrently 
active MRs generate deltas applied in a non-foreseeable 

                                                 
2 This is because one MR, owned by one developer, groups changes that 
have one common reason and stem from one initial logical request of 
modification (IMR) 
3 Note that the diagram assumes only two MRs for which interleaving 
deltas are submitted. 



 

 

order. The study of two generic deltas for deciding 
whether the later interferes semantically with the earlier, 
must involve the analysis of four different versions of the 
source code about which no particular assumptions can be 
made. Only when two deltas are consecutive will the 
intermediate versions be identical.  

 

 
Fig. 5 – Deltas from different (independent) MRs, 
interleave non-deterministically in time. Adjacent deltas in 
a MR cannot be guaranteed to operate on adjacent versions 
of the code. 

 

There is only one exception to this. In the case of 
truly concurrent changes in optimistic CMSs deltas are 
checked before integration (or contextually to it). There is 
therefore no possibility that other deltas occur between 
those under analysis. While this reduces the number of 
versions to three, the merged version must be brought 
into the process in order to successfully “catch” any 
conflicting behavior. 

 

Overview: slicing and the detection process 
 

The most computationally most intensive step of our 
analysis technique involves slicing the code associated 
with each of the four versions required by a pair of deltas.  

A program slice [3,4] represents the source code 
components of a software program that could potentially  
affect the semantics of the computation depending on a 
slicing criterion, usually a 2-tuple (program point, set of 
variables) and the task of computing program slices is 
called program slicing.  

An important distinction is to be made between static 
slicing and dynamic slicing. Whereas static slices are 
computed without making assumptions regarding a 
program’s input, and thereby include all potentially 
affected program points, dynamic slicing relies on 
specific test cases, on a specific set of input values for the 
program [3]. A program point is either an explicit 
instruction in the code such as an assignment, a control or 
a function call, a control point such as the entry point for 
a subprocedure, or a “hidden” program point such as 
assignment for formal/actual parameters and return values 
from subprocedures [4]. 

A Program Dependency Graph (PDG) is a directed 
graph for a single procedure in a program. Several PDGs 
representing the control components (subprocedures, etc.) 
of a system are interconnected in a System Dependency 
Graph (SDG). The vertices of such graphs are program 

points while the edges represent control and data 
dependencies. Computing a program slice is the process 
of determining a subset of the vertices of one SDG whose 
members influence, or are influenced by, a particular 
slicing criterion.  This duality corresponds to the choice 
of computing a forward or a backward slice. [3] The 
intersection between a forward and a backward program 
slice is called a chop between two program points. [4] 

Fig. 6 shows a flow-chart of the steps involved in 
detecting semantic conflicts among parallel changes. The 
process assumes that two deltas have been chosen; the 
data available are therefore two chosen deltas, 1δ  and 2δ . 

Here we describe the process step by step, through 
the aid of examples. For simplicity, we start by discussing 
the general case in a pessimistic change management 
system. The general case also applies when two deltas are 
parallel in an optimistic CMS environment. 

 

 
 

Fig. 6 – The flow diagram for the interference detection process4. 
 

As discussed earlier, for two generic deltas, δ1 and δ2, 
ordered in time5, four different versions of the software 
system under development are referenced, ordered 
progressively according to their time sequence. If two 
deltas are greatly separated in time, V2 and V3 (i.e. the 
version generated by the older delta and the one from 
which the newer in time starts) will in general be 
different. Only when the two deltas are adjacent will 
these versions be identical.  This distinction will be 
relevant below. 

                                                 
4 The process shown is applied to two given deltas which are analyzed 
for interference. Note that two deltas that are concurrent in an optimistic 
CMS scenario always qualify as parallel changes, but in general two non 
concurrent changes may qualify as parallel and analyzed following the 
left branch of the diagram. 
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Next, we construct a fictitious delta, δε, which 
describes the sum of the changes made in the time lapsed 
between the two deltas under analysis. It can be simply 
shown that the combination of deltas is a closed operation 
in such a space, because the subsequent application of 
deltas can be seen as a combination of line insertions and 
line deletions. The role of δε will be key in determining 
possible interferences between the two deltas.  

Basic Defintions: ∆, A and NIV 
 

The central question that then arises is when do two 
deltas, rather than two versions, interfere semantically? 
We first define more formally how versions interfere 
semantically with each other. 

Let V be a version of the source code of a software 
program. We can define the dependency set ∆  as the set 
of the triples (v,d,u) as follows, 

{ }udv α:=∆  
where v is a variable, u is a use of such a variable and d is 
the definition of the value for v that is effectively used in 
u. Such a set is fairly straightforwardly derivable from the 
program’s SDG. d and u are by all definitions program 
points in the software dependency graph. In the simple 
examples used within this scope, they will always 
translate to source lines and will therefore be referenced 
by means of line numbers. Bear in mind however that 
several program points are often generated from the same 
source. Therefore program points in an SDG may not 
always show a one-to-one correspondence with source 
code lines.  

For each delta δ then, two dependency sets ∆1 and ∆2 
can be determined, as well as an injection 21: SDGSDGA →  
that transforms each program point in V1 into a program 
point in V2, thus codifying the changes in terms of 
program points.  

Now, it should appear clear that the application A can 
only be an injection in SDG2 when the only changes 
made from V1 to V2 are line insertions. Since a line 
change is a deletion followed by an insertion, it remains 
to be defined what happens in case of removed lines. A 
line deletion from V1 to V2 with t2>t1 is equivalent to a 
line insertion where V1 follows V2 in time. For the 
purpose of determining semantic interferences a deletion 
is equivalent to an insertion reversed in time. In order to 
determine whether or not V2 interferes semantically with 
V1 over a set of deletions, we must therefore establish if 
V1 interferes semantically with V2 over the equivalent set 
of line insertions. 

Consequently, the application A is logically an 
injection from SDG1 to SDG2 where the latter is the 
potentially interfering graph and the former is the one that 
is potentially interfered with. 

In determining a condition of non-interference for 
versions a and b in Fig. 7, we argue that a version 

interferes semantically with another when for any 
preserved use of a common variable, the immediate data 
predecessor or definition thereof, is not preserved.  

In this example, the variable b is common to both 
versions and a use of such variable is preserved in the 
program point pair (4,5) linked through application A. 
The immediate data predecessor relative to b - (3) for the 
former version and (4) for the latter - are not linked via A 
and therefore the variable definitions concerning a 
preserved use do not apply. 

 
 
Fig. 7 – A simple program in two interfering versions and the 
corresponding SDG shown for additive and subtractive types of 
changes. The solid connectors represent flow dependencies, the black 
dashed ones represent data dependencies and the green pointed 
connectors show the application A from graph to graph. The blue 
connectors show the equivalence between the programs by looking at 
subtractive changes as additive changes in a reversed timeframe. Note 
that A is an injection in the case of additive changes (every node in (a) is 
connected to some node in (b)) and the inverse injection in case of 
subtractive changes (some node in (a’) are connected to nodes in (b’) 
exhausting the node space in (b’).  
 

The latter version, however, does therefore interfere 
semantically with the former. Let V2 and V1 be two 
versions of code. Consider the case in which the 
modifications made to the code are generic, consisting of 
insertions, deletions and modifications. We must 
therefore verify that V1 does not interfere with V2 over the 
set of line deletions, and that V2 does not interfere with 
V1 over the set of line insertions. We do so using the 
following condition of non interference. 

Let V = V1 ∩ V2 be the intersection of the sets of 
variables used in V1 and V2, and 

21,VVA  be the injection 

from V1 to V2. 
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Thus, NIV means that for every variable v common to 
both versions and for each use of that variable made in 
the latter version, if there exist an A-equal use in the 
dependency set of the former version, governed by an A-
equal definition, the latter version does not interfere with 
the former.  

Handling Deleted Lines 

It could seem that the distinction between additive 
and subtractive changes is unnecessary and that the above 
definition could be applied regardless of the nature of the 
changes being made. While this may sometimes be the 
case, it does not hold when the cardinality of the 
dependency sets is not maintained6. This may happen 
when programs show more complicated flow diagrams 
than those we have shown.  The versions of the program 
in Fig. 8 interfere semantically. The latter version 
removes two lines from the original version. Nonetheless, 
were NIv to be directly applied, no interference would be 
caught. Since the changes are subtractive, in order to be 
sure to catch all possible interferences, NIv has to be 
applied switching the versions.  

Once again, for sake of clarity and simplicity we 
refer to program points in the following example by 
means of line numbers, binding each program point to the 
source code line that generated it.  

 

1: program(b)  program(b) 
2:   a:=0       a:=0  
3:   c:=0     c:=0 
4:   if (b==0)      if (b==0) 
5:         a:=2           a:=2    
6:   else          Í    fi 
7:         c:=2          Í    d:=a*b*c 
8:   fi     write c 
9:   d:=a*b*c    end   
10:   write d        

end 
 

Fig. 8 – A change that removes lines from a precedent version ought 
to be checked for interference by applying the non-interference 
condition NIv switching the role of each version. This is equivalent to 
check for interference in line additions by considering a reversed 
timeframe. 

 

A relatively straightforward analysis of the SDG of 
each of the two versions will reveal that: 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }109:,97:,93:,91:,41:,95:,92:1 ααααααα dccbbaa=∆  
[ ] [ ] [ ] [ ] [ ] [ ]{ }87:,73:,71:,41:,75:,72:2 αααααα dcbbaa=∆  

 

Since the dependency set is computed statically, one 
variable can allow multiple definitions to one use. In our 
approach code is sliced statically. There is therefore no 
                                                 
6 i.e. dependencies are not simply modified but are introduced or 
removed 

way to predict what the data that drives the execution 
flow will be. In fact, if we sliced the code dynamically, 
the cardinality of each dependency set would be exactly 
equal to the number of uses made of all variables 
involved in that execution path, and therefore for every 
preserved use only one dependency in each set could be 
found. 

An analysis of the information relative to the changes 
made (available through the change management system 
and associated with each delta) defines the function A as: 

{ })8,10(),7,9(),6,8(),,7(),,6(),5,5(),4,4(),3,3(),2,2(),1,1( εε=A  
To try to determine whether V2 interferes with V1 by 

applying NIv directly would erroneously lead to the 
conclusion that the two versions do not interfere. In fact 
for each preserved use7 of c in V2, the relative definitions 
(3,3) are preserved. However, if b equaled 0 in V1 c 
would carry the value 2 instead of 0.  

Simply reversing the roles of the dependency sets 
will do the trick. The universal quantifier is scoped over 
the version from which the lines were removed 
guaranteeing that the interference will be discovered. 
Since this phenomenon is triggered by the subtractive 
change, we argue that NIv must be applied in a reverse 
fashion for line deletions. In fact we argued that a 
deletion is a line insertion in a reversed timeframe. If the 
original version subject to subtractive changes would 
interfere with the modified version over the set of 
complementary additions, then the deletions in the 
modified version interfere semantically with the original 
version. 
 

Interference Sets: Conflicting Deltas 
 

We have at this point defined a formal condition for 
non interfering versions. We now define an interference 
set which describes how two versions interfere with each 
other. Such set represents the interferences that the latter 
version in time induced over the former independent of 
how NIv is applied. 

For a generic set of line insertions, deletions and 
modifications between two versions V1 and V2, one set of 
deletions and one set of insertions can be constructed. We 
will call these two sets CDel and CIns. 

We start applying NIv to (VDel,V1) where VDel is the 
version of code generated from the changes from CDel 
applied to V1, i.e. CDel(V1) . We then apply NIV to 
(V1,VIns) where analogously, VIns is CIns(V1). In both cases 
we define two sets, IDel and IIns of interferences. Each 
element in an interference set is a dependency triple 
extracted from the dependency set of the “potentially 
interfering” version, which causes NIv to be not satisfied. 

The interference set I for (V1,V2) is the union set of 
IDel and IIns where each element is only taken once. 

                                                 
7 the only use in V2 is at program point 7 and (9,7) belongs to A 



 

 

We now go back to the problem from which we 
started. In the context of this work we are interested in 
determining interfering deltas rather than interfering 
versions. The conclusion that we reach on the condition 
of non-interference for deltas stems from the idea that 
when two changes – no matter how separated in time – 
are found to be parallel and should therefore not 
interfere, the latter change should have no semantic 
impact on the program points affected by the former 
change. When we check a new delta for possible 
interferences we ask that the modifications introduced do 
not affect the same program points affected by the earlier 
change in an interfering fashion. 

 

    V1    V2=V3     V4 
1: program  program  program 
2:   a:=1      a:=1      a:=1 
3:   b:=2      b:=2      a:=2 
4:   c:=a+b      b:=3      b:=2 
5:   return c      c:=a+b      b:=3    
6: end    return c       c:=a+b 
7:   end    return c 
8:       end 

 
Fig. 9 – Two deltas that are adjacent in time will only refer to 
three different versions since V2 and V3 will be identical.  

 

Let us consider first the case of two parallel adjacent 
changes8. Fig. 9 shows two adjacent deltas for a simple 
program similar to the ones analyzed so far. 

Using the discussed technique we can determine ∆1, 
∆2, A1, A2 and the interference sets I1 and I2.  

 

[ ] [ ] [ ]{ } [ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }

{ } { }
{ } [ ]{ } [ ]{ }63:   ,54:     )7,5(),6,4(),5,(),4,3(),3,(),2,2(

)7,6(),6,5(),5,4(),4,3(),3,(),2,2(   ,)6,5(),5,4(),4,(),3,3(),2,2(
,76:,65:,63:

65:,54:,52:   ,54:,43:,42:

2121

21

3

21

αα

ααα
αααααα

aIbIAA
AA

cba
cbacba

===•
==

=∆
=∆=∆

εε
εε

 

 

We also compute the composition of A1 and A2 which 
transforms the program points of V1 in program points of 
V4 as if only one composed delta had been applied. 

The generic element of an interference set, as 
discussed, is a variable dependency, i.e. a variable and its 
effective definition for a use made thereof. It therefore 
defines a reference to two program points, the one in 
which the variable is defined and the one in which the 
variable is used. A variable definition associated with a 
program point, as in this case, is a valid candidate for a 
slicing criterion. A forward slice of such a criterion will 
compute exactly the set of program points affected by 
such a definition, i.e. the set of program points 
corresponding to that part of code on which the change 
had impact.  

Since in general a set of program points is produced 
for each interference, we define the set S, called impact 
set as    ( )Υ

Ii

iVFSS
∈

= ,  

                                                 
8 In this case the artificial delta δε is irrelevant since V2 and V3 
will be identical 

i.e. the union set of all the impact sets created by 
computing forward slices of a version V of the code, 
using each interference in an interference set as the 
slicing criteria. When impact sets are computed, the 
version that is being sliced is the version produced by the 
change. For our example: 

( )Υ
1

1
,21

Ii

iVFSSS
∈

== δ
     ( )Υ

2

2
,42

Ii

iVFSSS
∈

== δ
 

The domains from which the elements of each set are 
drawn therefore are not the same. While the first impact 
set will be made of program points of V2, the second 
impact set will accommodate program points of V4. We 
define a particular composition of an A-application as  

 

( ) { }ApqSqpSA ∈∈∀= ),(,: δδ  
 

with proper extensions for composed applications. 
The non-interference condition for adjacent deltas 

will thus be the following. 
( ) ∅=∩

21 δδ SSA    (NIδ) 
i.e. the set of program points impacted by the original 
change and the set of program points affected by the 
second change ought to be separated.  
 

The General Case: Non-Adjacent Changes 
 

Fig. 6 shows the flow graph for the general case of 
non-adjacent changes. In this case the number of versions 
involved grows to four, but we must also adjust the 
definition of semantic interferences between changes.  

   
   V1       V2 

1:  program   program 
2:    a:=2      a:=2  
3:    b:=&a     b:=&a 
4:    c:=a+2      a:=3 Í 
5:    d:=*b     c:=a+2    
6:    e=c*d     d:=*b 
7:    write e     e:=c*d 
8:  end     write e 
9:     end 
     

   V3      V4 
1:  program   program 
2:    a:=2      a:=2  
3:    b:=&a     b:=&a 
4:    a:=3      a:=3  
5:    c:=a+2     a:=4 Í 
6:     c:=4     c:=a+2    
7:    d:=*b     c:=4 
8:    e:=c*d     c:=5 Í 
9:    write e     d:=*b 
10:  end     e:=c*d 
11:       write e 
12:     end 

 
Fig. 10 - Two generic deltas involve four different versions of 
code. In general, the differences between the intermediate versions 
will be consistent, especially when the deltas are greatly separated 
in time. In the example,δ2 inserts two lines and while both 
manifestly interfere with V3, only the insertion of line 5 interferes 
with the changes made in δ1. 

 



 

 

When two deltas are not adjacent, the intermediate 
versions V2 and V3 will usually be very different. 
Specifically, V3 will often interfere semantically with V4 
accordingly to NIv because of the many deltas that may 
not have been parallel in the original context and that 
occurred in the lapsed time. Since the latter delta, which 
must be guaranteed not to interfere with the former delta, 
starts from a consolidated version V3, it is reasonable to 
assume that the interferences introduced by V3 over V2 
have been tested, accepted and integrated in the system. 

These interferences, independently from whether or 
not they conflict with the intended changes made in δ1, 
should be intentionally prevented from being the trigger 
of a positive assessment of interference between δ1 and 
δ2. With this rationale in mind, we define an operation 
between interference sets: the variable subtraction 
operation between interference sets, indicated by ⊗  is 
therefore defined as follows.  

Let I1 and I2 be two interference sets. 9 
 

[ ] [ ] [ ]( ){ }22222121 :),,(::: IudvudIudvudvII ∉∀∧∈=⊗ ααα  
 

An example will greatly simplify the understanding 
of this very simple operation. 
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In other words the operation deletes from the first 
interference set the dependencies defined over variables 
for which some dependency is also defined in the second 
operand. I2, in the example above, has dependencies 
defined for b and c and so does I1. Therefore the 
dependencies relative to these variables are removed from 
I1. The example also shows clearly that this operation is 
not commutative. 

As it is shown in the flow chart of Fig. 7, the process 
of detecting semantic interferences between generic 
changes is a three step process. First, three interference 
sets are determined. These three sets represent the 
semantic interferences introduced by δ1 and δ2 by 
modifying V1 and V3 and the set of interferences 
introduced by the combination δε of all changes submitted 
between δ1 and δ2.  

In a second step, the set of interferences caused by 
2δ  is ⊗ -filtered of those interferences which overlap with 

interferences introduced by any of the intermediate deltas. 
εIII ⊗= 22
 

By means of this operation we are indeed avoiding to 
look at those variables whose dependencies have already 
been affected by some change which occurred before δ2. 

                                                 
9 This formula reads as following: the variable subtraction set between 
two interference sets is an interference set whose members are members 
of the first operand, for which there are no members of the second 
operand set that specify a dependency for the same variable. 

Such changes have been submitted at some point in the 
past and yet they have been assimilated in the version 
history and accepted (admittedly, we do not know 
whether they interfered or not with δ1 and if they did, if 
the did so with good reason); therefore we argue that any 
further change that affects semantically what has already 
been affected by some δε cannot constitute a semantic 
interference of δ2 on δ1. 

Applying this procedure to the example of Fig. 11, 
we compute the four dependency sets, 

 
[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }1110:,109:,108:,93:,95:,65:,31:

98:,87:,86:,73:,74:,54:,31:
87:,76:,75:,63:,64:,54:,31:
76:,65:,64:,53:,52:,42:,31:

4

3

2

1

ααααααα

ααααααα
ααααααα
ααααααα

edcbaaa
edcbaaa
edcbaaa
edcbaaa

=∆

=∆
=∆
=∆

 

and the three A-applications that transform program 
points from one version to the next, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }9,8,8,7,7,6,6,,5,5,4,4,3,3,2,2,1,1

8,7,7,6,6,5,5,4,4,,3,3,2,2,1,11
ε

ε

ε =
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A
A  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }11,9,10,8,9,7,8,,7,6,6,5,5,,4,4,3,3,2,2,1,12 εε=A  
The four dependency sets show some particularities. 

The different versions of the program of Fig. 11 show for 
the first time in our analysis the use of pointers. We 
mentioned how pointers and pointer analysis affect the 
classification of semantic interferences and how special 
operations with these objects greatly affect the degree of 
side-effects that can be manifest in code and the 
difficulty, therefore, of detecting interferences. If we look 
at V1 as the version we refer to, we notice that the 
variable a has a dependency from program point (1) to 
program point (3), in which variable b is defined as a 
pointer to a. In the model we present, we use program 
point (1) to indicate the allocation of local variables on 
the stack along with their respective memory addresses. 
What is used at line 3 therefore is a memory address that 
was defined at such a program point, in order to be 
assigned to b. Under the same assumptions, we have two 
further dependencies, for a and for b, from program 
points (2) and (3) respectively, to program point (5). At 
line 5, only variable b is explicitly mentioned. 
Nonetheless, by dereferencing b, a use of both its direct 
value (defined at (3)) and indirect value (the value of a, 
defined at (2)) is made. This particularity is present in all 
further versions and is a characteristic of how we describe 
dependencies when pointers are involved. 

Following the flow diagram of Fig. 7 and the process 
that we described this far, we compute the three 
interference sets, I1, Iε , and I2. 

 

[ ] [ ]{ } [ ]{ } [ ] [ ] [ ]{ }108:,95:,65:   ,86:  ,64:,54: 21 αααααα caaIcIaaI === ε  
 

We can easily see that the cumulative change δε  
from V2 to V3 introduces a semantic interference on 
variable c. The potentially interfering delta in our 
inspection process (δ2) also interferes on variable c. Such 
interference should not be considered a possible cause of 
conflict between 2δ  and δ1 as c has been already 



 

 

interfered upon by changes that – one way or the other – 
have been successfully integrated in the version history. 
Following once again the process described in Fig. 7 we 
⊗ -subtract the set of intermediate interferences from the 
interferences introduced by δ2. 

[ ] [ ]{ }95:,65:22 αα aaIII =⊗= ε  
Looking at δ2 and at the modifications it makes to the 

code, and considering the previous versions altogether, 
we recognize that while the insertion of a:=4 disrupts the 
intended flow on the original data successors of a:=3, the 
same cannot hold for the interference on the variable c, as 
the data flow on this variable’s definition’s successors has 
already been disrupted by the cumulative change δε. If we 
were trying to investigate the interferences between δ2 
and that particular change that originally changed the data 
flow for c we might be likely to reach the conclusion that 
the two deltas do indeed interfere; nonetheless in our 
particular case, the effects of δε have made so that the 
impact of δ2 on δ1 is reduced. We indeed expect our 
technique to show that, only the addition of a:=4 
introduced a semantic conflict with δ2. 

We now ought to compute the impact that each 
interference set has on the global system dependency 
graph. The first impact set, S1 is created as the union set 
of the forward slices of V2 when each interference in I1 is 
used as a slicing criterion.  
 

1: program 
2:   a:=2 
3:   b:=&a             [ ] [ ]{ }64:,54:1 αα aaI =  
4:   a:=3 
5:   c:=a+2     → { }8,7,6,51 =S  
6:   d:=*b 
7:   e:=c*d 
8:   write e 
9: end 

 

In this case, since the two interferences are related to 
the same definition program point, the impact set and the 
only forward slice computed, coincide. In general, a set of 
program points for each interference set will be produced.  

Similarly for S2, 
 

1: program 
2:   a:=2  
3:   b:=&a           [ ] [ ]{ }95:,65:2 αα aaI =  
4:   a:=3  
5:   a:=4 
6:    c:=a+2     → { }11,10,9,62 =S  
7:   c:=4 
8:   c:=5 
9:   d:=*b 
10:   e:=c*d 
11:   write e 
12: end 

 

Naturally, the example that we are discussing is a 
very simple one. In general though, the slicing operation 
will reveal more subtle data dependencies and less 
obvious impact sets. As extensions to this work we plan 

to adapt and analyze more complicated and interesting 
examples. It should be easy to imagine though that the 
interferences introduced by two deltas can be completely 
unrelated and the respective impact sets completely 
separated. In this case we deem that the two changes do 
not conflict with each other. In our example though,  
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The two impact sets are not separated – in our 
example, as a matter of fact they completely overlap – 
showing that the considered interferences have impact on 
common program points. We decide that δ2 interferes 
with δ1 under the assumptions and definitions used this 
far.  
 

Optimistic CMS and Concurrent Changes 
 

While two deltas that are submitted for integration in 
a concurrency situation are simpler to classify as parallel, 
they also are rather counter-intuitive to define in terms of 
inter-deltas interference.  

While being not simpler than the sequential one, 
the concurrent case is not particularly harder. There still 
are four versions involved: the original version, two 
concurrent modified versions, and a unified version 
produced by a chosen merging algorithm. These 
versions are not linearly ordered on a time scale, and 
four deltas (δ1

,δ2
,δ1

*,δ2
*) govern the variations between 

the versions. 
First, when concurrent changes are made to the code, 

a merging strategy is necessary. At any given time there 
ought to be only one consistent version of the code which 
is allowed to be modified, and all modifications stemming 
from the same reference version are considered 
concurrent. 

 

 
Fig. 11 – Merging versions which do not present local conflicts but 
affect each other impact slices, may produce a version that defies 
the original changes or conflicts with the behavior expected by 
each or either one of the developers that submitted the changes.  

 

Several merging strategies and algorithms have been 
proposed [9] and while some involve looking at syntactic 
conflicts and slicing for delineating local interferences in 
the program flow, they produce integrated versions which 
might include elements that defy the original intents of 
either one or both the authors of the concurrent versions. 
Fig. 12 shows an example of such a phenomenon.  

program 
 sub op(number) 
   return number * number   
 end sub 
 a:=2 
 b:=op(a) 
 write b             
end

program 
 sub op(number) 
   return number + number   
 end sub 
 a:=3 
 b:=op(a) 
 write b             
end

program 
 sub op(number) 
   return number + number 
 end sub 
 a:=2 
 b:=op(a) 
 write b            
end  

program 
 sub op(number) 
   return number * number   
 end sub 
 a:=3 
 b:=op(a) 
 write b             
end  

Merging 
1δ

δ

δ1
* 

δ2
* 



 

 

We believe that deciding whether or not two 
concurrent changes interfere is equivalent to deciding 
whether or not the merged version interferes semantically 
with them. 

The last flow block of the rightmost branch of Fig. 7 
incorporates this duality. We argue that δ1 interferes with 
the concurrent change δ2 if and only if the respective 
changes necessary to construct the merged version 
starting from V1 and V2 interfere semantically with either 
one of the original deltas.  

In symbols, δ1 and δ2 are concurrent changes, δ1
* and 

δ2
* are the changes that bring each concurrent version in 

the merged one, and the symbol <>  indicates semantic 
interference (see Fig. 12), 

( ) ( )2
*
21

*
121 δδδδδδ <><><> ∨⇔  

Note that while the leftmost part of the above 
expression is a commutative interference between 
concurrent changes, the interference relations contained 
in the rightmost part of the equivalence are non 
commutative interferences between adjacent time-ordered 
changes. 

One could easily verify that the process sketched in 
Fig. 6 realizes the equivalence above. In doing so, one 
should remember that A1

* is the application that links 
program points of Vi to program points of the merged 
version VU.  

 

Conclusion 
 

In this paper, we showed how parallel changes may 
interfere semantically, subverting intended modifications 
and causing unintended behavior. We described some 
ways in which software changes may interact and 
interfere at a semantic, rather than syntactic, level, and we 
showed that semantic interferences derive from intrusions 
in the established data flow of an execution slice, through 
def-use overlapping. We then described a technique based 
on code slicing and dataflow analysis to detect semantic 
conflicts at a local level among parallel changes. We 
extended the notion of semantic interferences between 
versions of source code to that of conflicts between 
changes and we defined a formal notion of parallel 
changes as modifications to the code that work against the 
intent of the author of the original modification.  

For future directions of this research, we plan to 
build a prototype of the SCA [19], to perform empirical 
studies [20] to evaluate the efficacy of our technique and 
its performance under different sets of environmental 
conditions and constraints, and to use the prototype to 
determine the extent of both interfering and non-
interfering parallel changes. 
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