
Parallel Changes: Detecting Semantic Interferences

G. Lorenzo Thione
FX Palo Alto Laboratory

3400 Hillview Ave. Bldg. 4
Palo Alto, CA 9304
thione@fxpal.com

Dewayne E. Perry
Empirical Software Engineering Lab

ECE, The University of Texas at Austin
Austin, Texas 78712-1084

perry@ece.utexas.edu

Abstract

Parallel changes are a basic fact of modern software
development. Where previously we looked at prima facie
interference, here we investigate a less direct form that we
call semantic interference.

We reduce the forms of semantic interference that we
are interested in to overlapping def-use pairs. Using
program slicing and data flow analysis, we present
algorithms for detecting semantic interference for both
concurrent changes (allowed in optimistic version
management systems) and sequential parallel changes
(supported in pessimistic version management systems),
and for changes that are both immediate and distant in
time. We provide these algorithms for changes that are
additions, showing that interference caused by deletions
can be detected by considering the two sets of changes in
reverse-time order.

Keywords: Parallel changes, local change analysis,
semantic interference, program slicing, data flow analysis

Introduction

There are a number of factors that have made parallel
development an increasingly serious and critically
important problem.
� With the ever increasing size of software systems

comes the fact that developers must work in parallel
to meet market time pressures and schedules. This
fact has always existed in large-scale software
systems development.

� Increasing globalization results in the additional
factor of parallel geographically distributed software
development. Temporal and geographical separation
make it extremely difficult to support the critical
informal interactions that provide a significant means
of problem solving.

� With the increasing size of systems as they evolve
over time comes the fact that only an increasingly
smaller proportion of a system is changed for any one
release (a fact that makes traditional code ownership
- the centralization of knowledge of code - an
infeasible solution).

� And finally, as features and feature ownership
increasingly drive software systems evolution, we
find that software systems evolve on the basis of

many independent as well as interdependent software
developments. This emphasizes both the
heterogeneity rather than the homogeneity of
software systems evolution, and the centralization of
the knowledge of changes.
Thus, a fundamental and important problem in

building and evolving complex large-scale software
systems is how to manage and to support the phenomena
of parallel change. How do we support the people doing
these parallel changes by organizational structures, by
project management, by process, by methods and
techniques, and by technology? How can we support
these kinds of parallel change efforts and maintain the
desired levels of quality as well as schedules in the
affected software?

In our previous study [1], we described the landscape
of parallel changes, determined the extent of prima facie
interfering changes, and established a positive linear
relationship between the degree of parallelism and the
number of software faults. In this example, the variable b
is common to both versions and a use of such variable is
preserved in the program point pair (4,5) linked through
application A. The immediate data predecessor relative to
b - (3) for the former version and (4) for the latter - are
not linked via A and therefore the variable definitions
concerning a preserved use do not apply.

We attribute this to the fact that there is insufficient
time to understand the changes made under these kinds of
constraints.

In this paper, we present a local change analysis
technique to detect changes that have a less direct effect –
namely, semantically interfering changes. While all
changes are intended to affect a program semantically, it
is clearly the case that many changes have unintended
effects – cf the fact that software faults are introduced in
changes. [2,12] A change semantically interferes when
modifications are made to the same slice [3,4,15] of the
program and modify the program’s behavior. We note
that our analysis is done at the statement level (where we
are concerned with the insertion, deletion and
modification of lines of code) rather than at higher levels
of abstractions such as in Chianti [21] where the focus is
at the method level.

In our experience with large version history data
[1,12], a local change analysis technique that reveals the

locations of these semantic effects would be extremely
helpful in preventing the introduction of multiple new
faults with every modification made to the code.

Examples of Semantic Interference

In analyzing semantic conflicts we focus on how
variables are assigned and used throughout the data flow.

program program
 a := 1 a := 1
 a := 2 Í
 b := a b := a
end end

Fig. 1 - A simplistic version of the def-use static overlapping case
of semantic interference

The simplest example of semantic interference is the
def-use static overlapping (Fig.1). The left hand snippet
shows a simple definition-use pair. The only execution
path possible defines a value for the variable a and uses it
in the next statement. As post-conditions on this code we
expect b to carry the value 1 at the end of execution [9].
In the modified example an additional line has been
inserted. The effect of this interference is clear: the
variable b assumes the value 2 at the end of the execution,
negating the post conditions that the author of the original
code had intended. In this example we show only two
versions of the code referring to the leftmost as the
original code and to the rightmost as the modified
version.1

The next example shows a simple variation that uses
aliasing to disguise the def-use overlapping. The variable
a, a middle link in the dereferencing chain, is modified in
value and although the original value for c is not
modified, a* and c do no longer refer to the same entity.
Lines (2-4) and lines (3-4) constitute the overlapping def-
use pairs.

program program
1: c := 1 c := 1
2: a := &c a := &c
3: a := a + 1 Í
4: b := a* b := a*
 end end

Fig. 2 – A pointer variant.

While in the previous case the def-use pair involved
assigning a value and accessing the location where the
value was stored, in this case the interference occur
during the pointer resolution process; in order to access
the value of a*, access to the value of the pointer is
required. When line 3 is inserted, a new definition for the
variable a is added. When the variable is used in order to
resolve the value for a*, interference occurs.

1 We only identify two possible types of code modification: line

insertions and line deletions; we will consider modifications as
deletion-insertion pairs.

program program

1: a := &c a := &c
2: a* := 1 a* := 1
3: a* := 2 Í
4: b := a* b := a*

end end

Fig. 3 - Indirect effect.

Fig. 3 shows a simplified case of indirect semantic
interference. A true indirect conflict occurs when despite
the absence of apparent def-use overlapping involving the
variables, the content of the memory location being
referenced is modified before the value contained at that
location can be accessed. While explicit pointers are the
classic culprit of this type of interference, languages that
implement implicit pointers (e.g. Java™, C#™) may
simply obscure the conflict rather than prevent it.

In the specific example displayed in Fig. 3, a* is an
alias for c. Although there is no apparent def-use
overlapping for any of the variables (a or c), lines (2-4)
and (3-4) still identify two overlapping def-use pairs for
the entity referenced by a*. Although this falls within the
given definition for indirect conflicts, because the subject
entity is always referenced as a* while in no case is the
value of a affected, this example has more affinity with
direct conflicts such as those shown in Fig.1 and Fig. 2. It
is sufficient to consider a* a stack variable, and static
analysis of the code reveals the conflict.

Fig. 4 shows the simplest form of a truly indirect
interference, for which no def-use overlap is detectable in
the code without keeping track of pointers’ values. The
only variables present in both snippets are not explicitly
affected by the change, although the value for the stack
location indicated by c, to which a points, is changed
through pointer dereferencing.

program program
1: c := 1 c := 1
2: a := &c Í
3: a* := 2 Í
4: b := c b := c

end end

Fig. 4 – A truly indirect semantic interference.

Indeed, there is no explicitly visible def-use
overlapping for lines (1-4) and (3-4) which do interfere.
For both versions, lines (1-4) apparently constitute a
perfectly valid def-use pair and line 3, which involves a
different variable, should not affect this. It is also evident
though – at least in this simple example - that c is
semantically an alias for a* at this point in the execution,
and that an overlap does indeed occur. This kind of
semantic interference poses a series of additional
challenges for detection purposes and is more problematic
for developers to deal with.

We have so far discussed only changes that inserted
lines which interfere semantically with a preexisting
reference version. The same distinctions and
classifications that apply to line insertions apply to
changes that remove or modify any existing line of code.
As we show below, the analysis of all modifications can
be elegantly reduced to a combination or reversal of the
steps necessary for the detection of conflicts in the
general case of line additions.

It should now appear clear that a semantic
interference is an artifact in the semantics of program
evolution that defies the postconditions intended by the
original author by interleaving pairs of def-use instruction
in any of the program execution slices.

Although this generalization seems well grounded,
the actual interleaving mechanism may vary greatly.
Pointer dereferencing can for instance involve multiple
chained stages and interleaving def-use pairs may not
appear as evident in these cases.

While all flavors of semantic conflicts can be
reduced to direct and indirect interference through def-use
overlapping, the actual mechanisms in which these effects
occur may also vary. In the examples shown so far, the
execution path was sequential. This is not always the
case: control structures, subroutine calls, data-driven and
event-driven execution schemes, all affect the number of
different paths that the actual execution of code can take
and thereby hide the effects of semantic interferences.

When non-determinism comes into play, as in multi-
threaded operations, detection of undesired effects may
be even more difficult.

Parallel Changes and Research Context

We delineate two different flavors of parallel
changes in our approach to detecting semantic
interference between any two versions.

• Concurrent changes are changes performed through an
optimistic version control system which allows
multiple valid copies of the same file at the same time
[11]. The final version is a semi-automated integrated
version. The merging process is usually dependent on
the absence of syntactic and direct prima facie
conflicts; indirect semantic interference may easily go
undetected [9]. Changes of this sort are truly parallel
and there is no assumed ordering among them.
Concurrent modifications pose several additional
challenges in detecting interfering changes.

• Sequential parallel changes are also parallel changes in
a logical sense: they take place independently from
each other and are committed by different developers in
a relatively short span of time. In a pessimistic version
management system [7] parallel changes are
sequentialized because only one developer may have a
file checked out at a time. The time of submission for a
change determines the ordering of the changes. By

default, every change is assumed to possibly conflict
with previous changes, potentially disrupting or
modifying the effects of previous modifications,
without notifying any of the developers.

In both cases, it is very likely that indirect semantic
interference will go undetected. In related work, Horwitz
et al. [9] provide an algorithm for integrating non-
interfering versions under certain assumptions. To our
knowledge, the extent to which this algorithm is
applicable is unknown. Some version management
systems [7,10,16] also provide automated merging
functions. Nonetheless, as we discuss below, merging
strategies find applicability only in optimistic version
control scenarios and are nonetheless subject to various
kinds of semantic interference.

The context for this research is Lucent Technologies
5ESS™ system where there is massive parallel work done
in the context of pessimistic version management [1,12].
The 5ESS™ change process relies on an initial
modification request (IMR) that models a logical
problem, such as feature additions, fault corrections,
performance improvements, etc. Each IMR is split into a
set of more manageable modification requests (MRs),
representing partial solutions to the problem, that reduce
the granularity of the change being made. Each MR is
typically owned by one developer, who implements it
through one or more deltas. A delta specifies the change
in terms of which lines of code were added, changed or
deleted and includes pointers/references to the versions of
code pre and post change [12, 2, 14].

In our reference system, single MRs are often split
into a multitude of atomic changes (deltas). One could
argue that an MR produces one functionally consistent
version of the software code2, and that we should focus
on versions produced by MRs rather than on single deltas.
The reality is that in the context of pessimistic version
management, the deltas that collectively represent one
logical change are interleaved with deltas that represent
other logical changes – that is, single deltas traceable to
different MRs interleave changes to the code throughout
the system’s evolution in the sequential case. Therefore
we consider deltas as the atomic originators of semantic
interferences in parallel changes rather than MRs. This
fine level of granularity however does introduce several
complications addressed below.

Fig. 5 shows how changes from different MRs create
versions of the code that overlap across MRs throughout
time3. In general an arbitrary number of concurrently
active MRs generate deltas applied in a non-foreseeable

2 This is because one MR, owned by one developer, groups changes that
have one common reason and stem from one initial logical request of
modification (IMR)
3 Note that the diagram assumes only two MRs for which interleaving
deltas are submitted.

order. The study of two generic deltas for deciding
whether the later interferes semantically with the earlier,
must involve the analysis of four different versions of the
source code about which no particular assumptions can be
made. Only when two deltas are consecutive will the
intermediate versions be identical.

Fig. 5 – Deltas from different (independent) MRs,
interleave non-deterministically in time. Adjacent deltas in
a MR cannot be guaranteed to operate on adjacent versions
of the code.

There is only one exception to this. In the case of
truly concurrent changes in optimistic CMSs deltas are
checked before integration (or contextually to it). There is
therefore no possibility that other deltas occur between
those under analysis. While this reduces the number of
versions to three, the merged version must be brought
into the process in order to successfully “catch” any
conflicting behavior.

Overview: slicing and the detection process

The most computationally most intensive step of our
analysis technique involves slicing the code associated
with each of the four versions required by a pair of deltas.

A program slice [3,4] represents the source code
components of a software program that could potentially
affect the semantics of the computation depending on a
slicing criterion, usually a 2-tuple (program point, set of
variables) and the task of computing program slices is
called program slicing.

An important distinction is to be made between static
slicing and dynamic slicing. Whereas static slices are
computed without making assumptions regarding a
program’s input, and thereby include all potentially
affected program points, dynamic slicing relies on
specific test cases, on a specific set of input values for the
program [3]. A program point is either an explicit
instruction in the code such as an assignment, a control or
a function call, a control point such as the entry point for
a subprocedure, or a “hidden” program point such as
assignment for formal/actual parameters and return values
from subprocedures [4].

A Program Dependency Graph (PDG) is a directed
graph for a single procedure in a program. Several PDGs
representing the control components (subprocedures, etc.)
of a system are interconnected in a System Dependency
Graph (SDG). The vertices of such graphs are program

points while the edges represent control and data
dependencies. Computing a program slice is the process
of determining a subset of the vertices of one SDG whose
members influence, or are influenced by, a particular
slicing criterion. This duality corresponds to the choice
of computing a forward or a backward slice. [3] The
intersection between a forward and a backward program
slice is called a chop between two program points. [4]

Fig. 6 shows a flow-chart of the steps involved in
detecting semantic conflicts among parallel changes. The
process assumes that two deltas have been chosen; the
data available are therefore two chosen deltas, 1δ and 2δ .

Here we describe the process step by step, through
the aid of examples. For simplicity, we start by discussing
the general case in a pessimistic change management
system. The general case also applies when two deltas are
parallel in an optimistic CMS environment.

Fig. 6 – The flow diagram for the interference detection process4.

As discussed earlier, for two generic deltas, δ1 and δ2,
ordered in time5, four different versions of the software
system under development are referenced, ordered
progressively according to their time sequence. If two
deltas are greatly separated in time, V2 and V3 (i.e. the
version generated by the older delta and the one from
which the newer in time starts) will in general be
different. Only when the two deltas are adjacent will
these versions be identical. This distinction will be
relevant below.

4 The process shown is applied to two given deltas which are analyzed
for interference. Note that two deltas that are concurrent in an optimistic
CMS scenario always qualify as parallel changes, but in general two non
concurrent changes may qualify as parallel and analyzed following the
left branch of the diagram.
5 Assuming 21 δδ tt <

t

4 84 76),,(

321

2222

...,,
rai

j

µ

δδδδ

44 344 21
),,(

321

1111

...,,
rai

n

µ

δδδδ

vk vk+1

vk+1 vk+2 vk+2 vk+3

vk+3 vk+6 vk+j+n-2 vk+j+n-1

vk+j+n vk+4 vk+5 vk+j+n-1

21,δδ),,(21 Df δδ εδδ >),,(21 Df No

CMS

Yes

{ }εδδδδ ,, 21∈∀ i

Pessimistic or

Non Concurrent

)(ii II δ=

εIII ⊗= 22

Υ),(iii IFSS δ=

{ }2,1:, ∈∀ iIiiδ

{ }*
2

*
121 ,,, δδδδδ ∈∀

)(ii II δ=

Υ),(IFSS δ=

I,δ∀

Optimistic and

Concurrent

END

Interfering Changes

Non Interfering Changes

212)(SSAA ∩⋅ε

∅==

No ∅==∩ *
11

*
1)(SSA

∅==∩ *
22

*
2)(SSA

∨
No

∈
{ } { }*

2
*
121

*
2

*
121 ,,,,,,, IIIIδδδδ

Yes Yes

Next, we construct a fictitious delta, δε, which
describes the sum of the changes made in the time lapsed
between the two deltas under analysis. It can be simply
shown that the combination of deltas is a closed operation
in such a space, because the subsequent application of
deltas can be seen as a combination of line insertions and
line deletions. The role of δε will be key in determining
possible interferences between the two deltas.

Basic Defintions: ∆, A and NIV

The central question that then arises is when do two
deltas, rather than two versions, interfere semantically?
We first define more formally how versions interfere
semantically with each other.

Let V be a version of the source code of a software
program. We can define the dependency set ∆ as the set
of the triples (v,d,u) as follows,

{ }udv α:=∆
where v is a variable, u is a use of such a variable and d is
the definition of the value for v that is effectively used in
u. Such a set is fairly straightforwardly derivable from the
program’s SDG. d and u are by all definitions program
points in the software dependency graph. In the simple
examples used within this scope, they will always
translate to source lines and will therefore be referenced
by means of line numbers. Bear in mind however that
several program points are often generated from the same
source. Therefore program points in an SDG may not
always show a one-to-one correspondence with source
code lines.

For each delta δ then, two dependency sets ∆1 and ∆2
can be determined, as well as an injection 21: SDGSDGA →
that transforms each program point in V1 into a program
point in V2, thus codifying the changes in terms of
program points.

Now, it should appear clear that the application A can
only be an injection in SDG2 when the only changes
made from V1 to V2 are line insertions. Since a line
change is a deletion followed by an insertion, it remains
to be defined what happens in case of removed lines. A
line deletion from V1 to V2 with t2>t1 is equivalent to a
line insertion where V1 follows V2 in time. For the
purpose of determining semantic interferences a deletion
is equivalent to an insertion reversed in time. In order to
determine whether or not V2 interferes semantically with
V1 over a set of deletions, we must therefore establish if
V1 interferes semantically with V2 over the equivalent set
of line insertions.

Consequently, the application A is logically an
injection from SDG1 to SDG2 where the latter is the
potentially interfering graph and the former is the one that
is potentially interfered with.

In determining a condition of non-interference for
versions a and b in Fig. 7, we argue that a version

interferes semantically with another when for any
preserved use of a common variable, the immediate data
predecessor or definition thereof, is not preserved.

In this example, the variable b is common to both
versions and a use of such variable is preserved in the
program point pair (4,5) linked through application A.
The immediate data predecessor relative to b - (3) for the
former version and (4) for the latter - are not linked via A
and therefore the variable definitions concerning a
preserved use do not apply.

Fig. 7 – A simple program in two interfering versions and the
corresponding SDG shown for additive and subtractive types of
changes. The solid connectors represent flow dependencies, the black
dashed ones represent data dependencies and the green pointed
connectors show the application A from graph to graph. The blue
connectors show the equivalence between the programs by looking at
subtractive changes as additive changes in a reversed timeframe. Note
that A is an injection in the case of additive changes (every node in (a) is
connected to some node in (b)) and the inverse injection in case of
subtractive changes (some node in (a’) are connected to nodes in (b’)
exhausting the node space in (b’).

The latter version, however, does therefore interfere
semantically with the former. Let V2 and V1 be two
versions of code. Consider the case in which the
modifications made to the code are generic, consisting of
insertions, deletions and modifications. We must
therefore verify that V1 does not interfere with V2 over the
set of line deletions, and that V2 does not interfere with
V1 over the set of line insertions. We do so using the
following condition of non interference.

Let V = V1 ∩ V2 be the intersection of the sets of
variables used in V1 and V2, and

21,VVA be the injection

from V1 to V2.

1

write c

program

a:=2 b:=3 c:=a*b write c

program

a:=2 b:=3 c:=a*b write cb:=4

1

2 3 4 5

2 3 4 5 6

program
 a:=2
 b:=3
 c:=a*b
 write c
end

program
 a:=2

 b:=3
 b:=4
 c:=a*b
 write c

Additive
Change

program

a:=2 b:=3 c:=a*b write c

program

a:=2 b:=3 c:=a*bb:=4

1

1

2 3 4 5

2 3 4 5

program
 a:=2
 b:=3
 b:=4
 c:=a*b
 write c
end

program
 a:=2

 b:=3
 c:=a*b
 write c
end

Subtractive
Change

6

(b)

(a’)

(b’)

(a)

21,212112),(),,,(,, VVAuudduuv ∈∃∀∈∀ V :

[] []
21,21222111),(:: VVAddudvudv ∈⇒∆∈∧∆∈ αα (NIV)

Thus, NIV means that for every variable v common to
both versions and for each use of that variable made in
the latter version, if there exist an A-equal use in the
dependency set of the former version, governed by an A-
equal definition, the latter version does not interfere with
the former.

Handling Deleted Lines

It could seem that the distinction between additive
and subtractive changes is unnecessary and that the above
definition could be applied regardless of the nature of the
changes being made. While this may sometimes be the
case, it does not hold when the cardinality of the
dependency sets is not maintained6. This may happen
when programs show more complicated flow diagrams
than those we have shown. The versions of the program
in Fig. 8 interfere semantically. The latter version
removes two lines from the original version. Nonetheless,
were NIv to be directly applied, no interference would be
caught. Since the changes are subtractive, in order to be
sure to catch all possible interferences, NIv has to be
applied switching the versions.

Once again, for sake of clarity and simplicity we
refer to program points in the following example by
means of line numbers, binding each program point to the
source code line that generated it.

1: program(b) program(b)
2: a:=0 a:=0
3: c:=0 c:=0
4: if (b==0) if (b==0)
5: a:=2 a:=2
6: else Í fi
7: c:=2 Í d:=a*b*c
8: fi write c
9: d:=a*b*c end
10: write d

end

Fig. 8 – A change that removes lines from a precedent version ought
to be checked for interference by applying the non-interference
condition NIv switching the role of each version. This is equivalent to
check for interference in line additions by considering a reversed
timeframe.

A relatively straightforward analysis of the SDG of
each of the two versions will reveal that:

[] [] [] [] [] [] []{ }109:,97:,93:,91:,41:,95:,92:1 ααααααα dccbbaa=∆
[] [] [] [] [] []{ }87:,73:,71:,41:,75:,72:2 αααααα dcbbaa=∆

Since the dependency set is computed statically, one
variable can allow multiple definitions to one use. In our
approach code is sliced statically. There is therefore no

6 i.e. dependencies are not simply modified but are introduced or
removed

way to predict what the data that drives the execution
flow will be. In fact, if we sliced the code dynamically,
the cardinality of each dependency set would be exactly
equal to the number of uses made of all variables
involved in that execution path, and therefore for every
preserved use only one dependency in each set could be
found.

An analysis of the information relative to the changes
made (available through the change management system
and associated with each delta) defines the function A as:

{ })8,10(),7,9(),6,8(),,7(),,6(),5,5(),4,4(),3,3(),2,2(),1,1(εε=A
To try to determine whether V2 interferes with V1 by

applying NIv directly would erroneously lead to the
conclusion that the two versions do not interfere. In fact
for each preserved use7 of c in V2, the relative definitions
(3,3) are preserved. However, if b equaled 0 in V1 c
would carry the value 2 instead of 0.

Simply reversing the roles of the dependency sets
will do the trick. The universal quantifier is scoped over
the version from which the lines were removed
guaranteeing that the interference will be discovered.
Since this phenomenon is triggered by the subtractive
change, we argue that NIv must be applied in a reverse
fashion for line deletions. In fact we argued that a
deletion is a line insertion in a reversed timeframe. If the
original version subject to subtractive changes would
interfere with the modified version over the set of
complementary additions, then the deletions in the
modified version interfere semantically with the original
version.

Interference Sets: Conflicting Deltas

We have at this point defined a formal condition for
non interfering versions. We now define an interference
set which describes how two versions interfere with each
other. Such set represents the interferences that the latter
version in time induced over the former independent of
how NIv is applied.

For a generic set of line insertions, deletions and
modifications between two versions V1 and V2, one set of
deletions and one set of insertions can be constructed. We
will call these two sets CDel and CIns.

We start applying NIv to (VDel,V1) where VDel is the
version of code generated from the changes from CDel
applied to V1, i.e. CDel(V1) . We then apply NIV to
(V1,VIns) where analogously, VIns is CIns(V1). In both cases
we define two sets, IDel and IIns of interferences. Each
element in an interference set is a dependency triple
extracted from the dependency set of the “potentially
interfering” version, which causes NIv to be not satisfied.

The interference set I for (V1,V2) is the union set of
IDel and IIns where each element is only taken once.

7 the only use in V2 is at program point 7 and (9,7) belongs to A

We now go back to the problem from which we
started. In the context of this work we are interested in
determining interfering deltas rather than interfering
versions. The conclusion that we reach on the condition
of non-interference for deltas stems from the idea that
when two changes – no matter how separated in time –
are found to be parallel and should therefore not
interfere, the latter change should have no semantic
impact on the program points affected by the former
change. When we check a new delta for possible
interferences we ask that the modifications introduced do
not affect the same program points affected by the earlier
change in an interfering fashion.

 V1 V2=V3 V4
1: program program program
2: a:=1 a:=1 a:=1
3: b:=2 b:=2 a:=2
4: c:=a+b b:=3 b:=2
5: return c c:=a+b b:=3
6: end return c c:=a+b
7: end return c
8: end

Fig. 9 – Two deltas that are adjacent in time will only refer to
three different versions since V2 and V3 will be identical.

Let us consider first the case of two parallel adjacent
changes8. Fig. 9 shows two adjacent deltas for a simple
program similar to the ones analyzed so far.

Using the discussed technique we can determine ∆1,
∆2, A1, A2 and the interference sets I1 and I2.

[] [] []{ } [] [] []{ }
[] [] []{ }

{ } { }
{ } []{ } []{ }63: ,54:)7,5(),6,4(),5,(),4,3(),3,(),2,2(

)7,6(),6,5(),5,4(),4,3(),3,(),2,2(,)6,5(),5,4(),4,(),3,3(),2,2(
,76:,65:,63:

65:,54:,52: ,54:,43:,42:

2121

21

3

21

αα

ααα
αααααα

aIbIAA
AA

cba
cbacba

===•
==

=∆
=∆=∆

εε
εε

We also compute the composition of A1 and A2 which
transforms the program points of V1 in program points of
V4 as if only one composed delta had been applied.

The generic element of an interference set, as
discussed, is a variable dependency, i.e. a variable and its
effective definition for a use made thereof. It therefore
defines a reference to two program points, the one in
which the variable is defined and the one in which the
variable is used. A variable definition associated with a
program point, as in this case, is a valid candidate for a
slicing criterion. A forward slice of such a criterion will
compute exactly the set of program points affected by
such a definition, i.e. the set of program points
corresponding to that part of code on which the change
had impact.

Since in general a set of program points is produced
for each interference, we define the set S, called impact
set as ()Υ

Ii

iVFSS
∈

= ,

8 In this case the artificial delta δε is irrelevant since V2 and V3
will be identical

i.e. the union set of all the impact sets created by
computing forward slices of a version V of the code,
using each interference in an interference set as the
slicing criteria. When impact sets are computed, the
version that is being sliced is the version produced by the
change. For our example:

()Υ
1

1
,21

Ii

iVFSSS
∈

== δ
 ()Υ

2

2
,42

Ii

iVFSSS
∈

== δ

The domains from which the elements of each set are
drawn therefore are not the same. While the first impact
set will be made of program points of V2, the second
impact set will accommodate program points of V4. We
define a particular composition of an A-application as

() { }ApqSqpSA ∈∈∀=),(,: δδ

with proper extensions for composed applications.
The non-interference condition for adjacent deltas

will thus be the following.
() ∅=∩

21 δδ SSA (NIδ)
i.e. the set of program points impacted by the original
change and the set of program points affected by the
second change ought to be separated.

The General Case: Non-Adjacent Changes

Fig. 6 shows the flow graph for the general case of
non-adjacent changes. In this case the number of versions
involved grows to four, but we must also adjust the
definition of semantic interferences between changes.

 V1 V2

1: program program
2: a:=2 a:=2
3: b:=&a b:=&a
4: c:=a+2 a:=3 Í
5: d:=*b c:=a+2
6: e=c*d d:=*b
7: write e e:=c*d
8: end write e
9: end

 V3 V4
1: program program
2: a:=2 a:=2
3: b:=&a b:=&a
4: a:=3 a:=3
5: c:=a+2 a:=4 Í
6: c:=4 c:=a+2
7: d:=*b c:=4
8: e:=c*d c:=5 Í
9: write e d:=*b
10: end e:=c*d
11: write e
12: end

Fig. 10 - Two generic deltas involve four different versions of
code. In general, the differences between the intermediate versions
will be consistent, especially when the deltas are greatly separated
in time. In the example,δ2 inserts two lines and while both
manifestly interfere with V3, only the insertion of line 5 interferes
with the changes made in δ1.

When two deltas are not adjacent, the intermediate
versions V2 and V3 will usually be very different.
Specifically, V3 will often interfere semantically with V4
accordingly to NIv because of the many deltas that may
not have been parallel in the original context and that
occurred in the lapsed time. Since the latter delta, which
must be guaranteed not to interfere with the former delta,
starts from a consolidated version V3, it is reasonable to
assume that the interferences introduced by V3 over V2
have been tested, accepted and integrated in the system.

These interferences, independently from whether or
not they conflict with the intended changes made in δ1,
should be intentionally prevented from being the trigger
of a positive assessment of interference between δ1 and
δ2. With this rationale in mind, we define an operation
between interference sets: the variable subtraction
operation between interference sets, indicated by ⊗ is
therefore defined as follows.

Let I1 and I2 be two interference sets. 9

[] [] [](){ }22222121 :),,(::: IudvudIudvudvII ∉∀∧∈=⊗ ααα

An example will greatly simplify the understanding
of this very simple operation.

[] [] [] [] []{ }
[] [] [] [] []{ }

[] []{ } []{ }98: ,54:,31:
98:,76:,129:,109:,82:

87:,76:,32:,54:,31:

1221

2

1

ααα
ααααα

ααααα

dIIaaII
dcbbbI

cbbaaI

=⊗=⊗
=
=

In other words the operation deletes from the first
interference set the dependencies defined over variables
for which some dependency is also defined in the second
operand. I2, in the example above, has dependencies
defined for b and c and so does I1. Therefore the
dependencies relative to these variables are removed from
I1. The example also shows clearly that this operation is
not commutative.

As it is shown in the flow chart of Fig. 7, the process
of detecting semantic interferences between generic
changes is a three step process. First, three interference
sets are determined. These three sets represent the
semantic interferences introduced by δ1 and δ2 by
modifying V1 and V3 and the set of interferences
introduced by the combination δε of all changes submitted
between δ1 and δ2.

In a second step, the set of interferences caused by
2δ is ⊗ -filtered of those interferences which overlap with

interferences introduced by any of the intermediate deltas.
εIII ⊗= 22

By means of this operation we are indeed avoiding to
look at those variables whose dependencies have already
been affected by some change which occurred before δ2.

9 This formula reads as following: the variable subtraction set between
two interference sets is an interference set whose members are members
of the first operand, for which there are no members of the second
operand set that specify a dependency for the same variable.

Such changes have been submitted at some point in the
past and yet they have been assimilated in the version
history and accepted (admittedly, we do not know
whether they interfered or not with δ1 and if they did, if
the did so with good reason); therefore we argue that any
further change that affects semantically what has already
been affected by some δε cannot constitute a semantic
interference of δ2 on δ1.

Applying this procedure to the example of Fig. 11,
we compute the four dependency sets,

[] [] [] [] [] [] []{ }
[] [] [] [] [] [] []{ }
[] [] [] [] [] [] []{ }
[] [] [] [] [] [] []{ }1110:,109:,108:,93:,95:,65:,31:

98:,87:,86:,73:,74:,54:,31:
87:,76:,75:,63:,64:,54:,31:
76:,65:,64:,53:,52:,42:,31:

4

3

2

1

ααααααα

ααααααα
ααααααα
ααααααα

edcbaaa
edcbaaa
edcbaaa
edcbaaa

=∆

=∆
=∆
=∆

and the three A-applications that transform program
points from one version to the next,

() () () () () () () (){ }
() () () () () () () () (){ }9,8,8,7,7,6,6,,5,5,4,4,3,3,2,2,1,1

8,7,7,6,6,5,5,4,4,,3,3,2,2,1,11
ε

ε

ε =
=

A
A

() () () () () () () () () () (){ }11,9,10,8,9,7,8,,7,6,6,5,5,,4,4,3,3,2,2,1,12 εε=A
The four dependency sets show some particularities.

The different versions of the program of Fig. 11 show for
the first time in our analysis the use of pointers. We
mentioned how pointers and pointer analysis affect the
classification of semantic interferences and how special
operations with these objects greatly affect the degree of
side-effects that can be manifest in code and the
difficulty, therefore, of detecting interferences. If we look
at V1 as the version we refer to, we notice that the
variable a has a dependency from program point (1) to
program point (3), in which variable b is defined as a
pointer to a. In the model we present, we use program
point (1) to indicate the allocation of local variables on
the stack along with their respective memory addresses.
What is used at line 3 therefore is a memory address that
was defined at such a program point, in order to be
assigned to b. Under the same assumptions, we have two
further dependencies, for a and for b, from program
points (2) and (3) respectively, to program point (5). At
line 5, only variable b is explicitly mentioned.
Nonetheless, by dereferencing b, a use of both its direct
value (defined at (3)) and indirect value (the value of a,
defined at (2)) is made. This particularity is present in all
further versions and is a characteristic of how we describe
dependencies when pointers are involved.

Following the flow diagram of Fig. 7 and the process
that we described this far, we compute the three
interference sets, I1, Iε , and I2.

[] []{ } []{ } [] [] []{ }108:,95:,65: ,86: ,64:,54: 21 αααααα caaIcIaaI === ε

We can easily see that the cumulative change δε
from V2 to V3 introduces a semantic interference on
variable c. The potentially interfering delta in our
inspection process (δ2) also interferes on variable c. Such
interference should not be considered a possible cause of
conflict between 2δ and δ1 as c has been already

interfered upon by changes that – one way or the other –
have been successfully integrated in the version history.
Following once again the process described in Fig. 7 we
⊗ -subtract the set of intermediate interferences from the
interferences introduced by δ2.

[] []{ }95:,65:22 αα aaIII =⊗= ε
Looking at δ2 and at the modifications it makes to the

code, and considering the previous versions altogether,
we recognize that while the insertion of a:=4 disrupts the
intended flow on the original data successors of a:=3, the
same cannot hold for the interference on the variable c, as
the data flow on this variable’s definition’s successors has
already been disrupted by the cumulative change δε. If we
were trying to investigate the interferences between δ2
and that particular change that originally changed the data
flow for c we might be likely to reach the conclusion that
the two deltas do indeed interfere; nonetheless in our
particular case, the effects of δε have made so that the
impact of δ2 on δ1 is reduced. We indeed expect our
technique to show that, only the addition of a:=4
introduced a semantic conflict with δ2.

We now ought to compute the impact that each
interference set has on the global system dependency
graph. The first impact set, S1 is created as the union set
of the forward slices of V2 when each interference in I1 is
used as a slicing criterion.

1: program
2: a:=2
3: b:=&a [] []{ }64:,54:1 αα aaI =
4: a:=3
5: c:=a+2 → { }8,7,6,51 =S
6: d:=*b
7: e:=c*d
8: write e
9: end

In this case, since the two interferences are related to
the same definition program point, the impact set and the
only forward slice computed, coincide. In general, a set of
program points for each interference set will be produced.

Similarly for S2,

1: program
2: a:=2
3: b:=&a [] []{ }95:,65:2 αα aaI =
4: a:=3
5: a:=4
6: c:=a+2 → { }11,10,9,62 =S
7: c:=4
8: c:=5
9: d:=*b
10: e:=c*d
11: write e
12: end

Naturally, the example that we are discussing is a
very simple one. In general though, the slicing operation
will reveal more subtle data dependencies and less
obvious impact sets. As extensions to this work we plan

to adapt and analyze more complicated and interesting
examples. It should be easy to imagine though that the
interferences introduced by two deltas can be completely
unrelated and the respective impact sets completely
separated. In this case we deem that the two changes do
not conflict with each other. In our example though,

() () () () () () () () () () (){ }11,8,10,7,9,6,8,,7,,6,5,5,,4,4,3,3,2,2,1,12 εεεε =⋅= AAA
{ } { } { } ∅≠=∩== 11,10,9,6)(,11,10,9,6 ,11,10,9,6)(2121 SSASSA

The two impact sets are not separated – in our
example, as a matter of fact they completely overlap –
showing that the considered interferences have impact on
common program points. We decide that δ2 interferes
with δ1 under the assumptions and definitions used this
far.

Optimistic CMS and Concurrent Changes

While two deltas that are submitted for integration in
a concurrency situation are simpler to classify as parallel,
they also are rather counter-intuitive to define in terms of
inter-deltas interference.

While being not simpler than the sequential one,
the concurrent case is not particularly harder. There still
are four versions involved: the original version, two
concurrent modified versions, and a unified version
produced by a chosen merging algorithm. These
versions are not linearly ordered on a time scale, and
four deltas (δ1

,δ2
,δ1

*,δ2
*) govern the variations between

the versions.
First, when concurrent changes are made to the code,

a merging strategy is necessary. At any given time there
ought to be only one consistent version of the code which
is allowed to be modified, and all modifications stemming
from the same reference version are considered
concurrent.

Fig. 11 – Merging versions which do not present local conflicts but
affect each other impact slices, may produce a version that defies
the original changes or conflicts with the behavior expected by
each or either one of the developers that submitted the changes.

Several merging strategies and algorithms have been
proposed [9] and while some involve looking at syntactic
conflicts and slicing for delineating local interferences in
the program flow, they produce integrated versions which
might include elements that defy the original intents of
either one or both the authors of the concurrent versions.
Fig. 12 shows an example of such a phenomenon.

program
 sub op(number)
 return number * number
 end sub
 a:=2
 b:=op(a)
 write b
end

program
 sub op(number)
 return number + number
 end sub
 a:=3
 b:=op(a)
 write b
end

program
 sub op(number)
 return number + number
 end sub
 a:=2
 b:=op(a)
 write b
end

program
 sub op(number)
 return number * number
 end sub
 a:=3
 b:=op(a)
 write b
end

Merging
1δ

δ

δ1
*

δ2
*

We believe that deciding whether or not two
concurrent changes interfere is equivalent to deciding
whether or not the merged version interferes semantically
with them.

The last flow block of the rightmost branch of Fig. 7
incorporates this duality. We argue that δ1 interferes with
the concurrent change δ2 if and only if the respective
changes necessary to construct the merged version
starting from V1 and V2 interfere semantically with either
one of the original deltas.

In symbols, δ1 and δ2 are concurrent changes, δ1
* and

δ2
* are the changes that bring each concurrent version in

the merged one, and the symbol <> indicates semantic
interference (see Fig. 12),

() ()2
*
21

*
121 δδδδδδ <><><> ∨⇔

Note that while the leftmost part of the above
expression is a commutative interference between
concurrent changes, the interference relations contained
in the rightmost part of the equivalence are non
commutative interferences between adjacent time-ordered
changes.

One could easily verify that the process sketched in
Fig. 6 realizes the equivalence above. In doing so, one
should remember that A1

* is the application that links
program points of Vi to program points of the merged
version VU.

Conclusion

In this paper, we showed how parallel changes may
interfere semantically, subverting intended modifications
and causing unintended behavior. We described some
ways in which software changes may interact and
interfere at a semantic, rather than syntactic, level, and we
showed that semantic interferences derive from intrusions
in the established data flow of an execution slice, through
def-use overlapping. We then described a technique based
on code slicing and dataflow analysis to detect semantic
conflicts at a local level among parallel changes. We
extended the notion of semantic interferences between
versions of source code to that of conflicts between
changes and we defined a formal notion of parallel
changes as modifications to the code that work against the
intent of the author of the original modification.

For future directions of this research, we plan to
build a prototype of the SCA [19], to perform empirical
studies [20] to evaluate the efficacy of our technique and
its performance under different sets of environmental
conditions and constraints, and to use the prototype to
determine the extent of both interfering and non-
interfering parallel changes.

Bibliography

[1] D. E. Perry, H. P. Siy and L.G. Votta. Parallel Changes in Large-

Scale Software Development: An Observational Case Study, ACM

Transactions on Software Engineering and Methodology, 10:3
(July 2001), 308-337.

[2] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and
Audris Mockus. Does Code Decay? Assessing the Evidence from
Change Management Data in IEEE Transactions on Software
Engineering, Vol. 27, No. 1, January 2001

[3] Frank Tip. A survey of program slicing techniques, Journal of
Programming Languages 3 (1995) 121-189, 1995

[4] P. Anderson, and T. Teitelbaum. Software Inspection Using
CodeSurfer. Workshop on Inspection in Software Engineering
(CAV 2001), Paris, France., July 18-23, 2001.

 [6] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of
software engineering. IEEE Computer pages 10 19, April 1987

[7] David B. Leblang. The {CM} Challenge: Configuration
management That Works in Walter F. Tichy, editor, Configuration
Management. Trends in Software, John Wiley and Sons, 1994

[8] Gregor Kiczales, John Lamping, Anurag Menhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, John Irwin. Aspect-
Oriented Programming. Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland, Springer-
Verlag LNCS 1241. June 1997

[9] Susan Horwitz, Jan Prins, Thomas Reps. Integrating
Noninterfering Versions of Programs ACM Transactions on
Programming Languages and Systems, Vol. 11, No. 3, July 1989,
Pages 345-387

[10] Ulf Asklund and Boris Magnusson. A Case-Study of Configuration
Management with ClearCase in an Industrial Environment.
System Configuration Management, 1997.

[11] M.M. Lehman, D.E. Perry and J.F. Ramil. Implications of
Evolution Metrics on Software Maintenance. ICSM’98, November
1998.

[12] Ranjith Purushothaman, Dewayne E. Perry, Towards
Understanding Software Evolution: One-Line Changes, To appear
in 2002 International Conference on Software Engineering,
Portland, June 2002

[13] Dewayne E. Perry, Harvey P. Siy, Challenges in Evolving a Large
Scale Software Product, Proceedings of the International
Workshop on Principles of Software Evolution, 1998 International
Software Engineering Conference, Kyoto, Japan, April 1998

[14] Audris Mockus, Lawrence G. Votta, Identifying Reasons for
Software Changes using Historic Databases, in International
Conference on Software Maintenance, San Jose, California,
October 14, 2000, Pages 120-130

[15] Yamin Wang, Wei-Tek Tsai, Xiaoping Chen, Sanjai Rayadurgam,
The role of Program Slicing in Ripple Effect Analysis, 8th
International Conference on Software Engineering and Knowledge
Engineering, 1996, 369-376.

[16] Tom Mens, A State-of-the-art Survey on Software Merging, IEEE
Transactions on Software Engineering, Vol. 28, No. 5, May 2002

[17] GrammaTech Inc, CodeSurfer User Guide and Technical
Reference.

[18] Wuu Yang, Susan Horwitz and Thomas Reps, A Program
Integration Algorithm that Accomodates Semantics-Preserving
Transformations, ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 3, July 1992, Pages 310-354

[19] G. Lorenzo Thione, Detecting Semantic Conflicts in Parallel
Changes, Master’s Thesis, University of Texas at Austin,
December 2002

[20] Danhua Shao, Sarfraz Khurshid and Dewayne E. Perry. "Mining
Change and Version Management Histories to Evaluate an
Analysis Tool - Extended Abstract -" February 2005, submitted for
publication

[21] X. Ren, F. Tip, B.G. Ryder, O. Chesley. “Chianti: A Tool for
Change Impact Analysis for Java Programs”, OOPSLA 2004,
Vancouver, October 2004, pp 432-448.

