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ABSTRACT 
We present highlights of an process improvement project at a 
software center in preparation for CMM Level 3, with applicable 
examples given that relate to CMM level 2, level 3, and the effort 
needed in transitioning between level 2 and 3.  For the efforts 
taken at this particular software center, the work documented is 
divided into two parts: the process definition and the process 
database.  Finally, some qualitative and quantitative analysis, 
suggestions for future work, and conclusions regarding overall 
lessons learned from the experience are provided.    

Categories and Subject Descriptors 
 D.2 [Software Engineering]: D.2.9 Management  

General Terms 
Process improvement, CMM, Process Experience  
Keywords 
Software Engineering, Process Improvement 

1. INTRODUCTION 
For the sake of non-disclosure, the specific details about the 
company and the projects and technologies being developed in 
them are intentionally left vague and ambiguous.  What can be 
said is this: the company is not involved in the business of selling 
mass-marketed software to the general public.  Their primary 
customers are other corporations, and while software is not their 
end-product per se, the technologies developed by the company 
almost always require a strong software component.  As a 
multinational corporation, this particular company has several 
“centers of excellence” in different parts of the world, each with 
individual focus.  The focus for this particular center is the 
development of software that interacts with or supports the tools 
and technologies developed at other centers. 

The center is a relatively new center (compared to the other 
centers within the company), having been established in Beijing, 
China in 1997 (starting with only a handful of engineers, but 
growing steadily in numbers).  The typical project engineer is 
relatively young in their career (typical work experience of 2-3 
years, with several fresh graduates), and many of the projects 
require a high level of interaction with other centers around the 
world.  For these reasons (among others), having a viable 
software process is a center-wide objective, with formal CMM 
level assessment being used as the yardstick to measure progress 
toward that objective (in fact, every employee’s year-end bonus in 
2004 was contingent upon passing the CMM Level 3 assessment).  
Upon joining the software center in August of 2003, certification 
for CMM level 2 had already been obtained (in the previous 

calendar year) and efforts were already underway to receive 
CMM level 3 certification by the end of 2004. 

Some of the challenges related to transitioning from CMM Level 
2 to CMM Level 3 included: 
• Defining new procedure documents and templates related to 

CMM level 3 KPAs 
• Revising existing process documents and templates (related 

to CMM level 2) in order to comply with CMM level 3 
requirements 

• Establishing a process database (to use historical data for 
project planning, among other reasons) 

These challenges will be explained in turn in more detail in the 
subsequent sections. 

2. LEVEL 2  BASES 
There are several important KPAs that are critical for moving to 
Level 3: software quality assurance, project planning and project 
tracking.  

2.1 Software Quality Assurance 
Software Quality Assurance is one of the KPAs for CMM level 2 
and essentially is a mechanism that helps ensure each individual 
project is following the defined process the way they are 
supposed to [7,8].  It is a sort of “police system” for checking up 
on project managers and their teams.  In getting prepared for the 
level 3 assessment, the process-related strengths and weaknesses 
as reflected in SQA reports served as an important indicator for 
how prepared the center was for the assessment (and what gaps 
had to be filled before the assessment).  

Selection and General Duties of SQA Engineers 

The software center had approximately 20 software projects under 
development organized under three different areas (where each 
area produced related software products).  For each project, an 
engineer from another project would be assigned to act as the 
“SQA engineer”.  In general, the duties were not supposed to take 
more than two calendar days per month (since the SQA engineers 
still had their own projects that they were responsible for).  
General SQA duties included participating in peer review 
(including pre-reviewing documents before wide distribution and 
serving as a moderator during review meetings), moderating 
particular milestone meetings, performing periodic (i.e., monthly) 
checks to identify issues (and following up on the project team to 
ensure they were resolved properly), and (occasionally) helping 
the project team perform testing. 

Playing the role of an SQA engineer brings to mind the phrase 
“it’s a tough job, but somebody’s got to do it”.  Much like 
software testers, SQA engineers typically only brings bad news to 
the project managers (in the form of a list of process non-



compliances).  This was not particularly enjoyable for either the 
project manager or the SQA engineer. 

SQA Reporting 

At one point during the process improvement project, it had been 
decided to merge the previously mentioned tailoring form and the 
SQA report into one template (See Figure 3).  More than just a 
move to reduce the number of documents by one, the idea was to 
minimize the confusion between SQA engineers and project 
managers as to what was considered “fair game” for the monthly 
SQA audit and what was not.  For example, if the approved 
version of the tailoring form reflected that a particular artifact 
needed a formal review (rather than an informal review which 
was used for shorter and/or less “critical” documents), then the 
SQA engineer would know from the form that they should look 
not only for the document itself but also the review record 
associated with the document (as well as checking up to see that 
all issues uncovered during the review were properly resolved).  
Alternatively, if an artifact was “waived” by the manager (e.g., a 
design document was waived because it was combined with an 
architecture document), then the SQA engineer would not need to 
waste time looking for an artifact that did not exist and was not 
supposed to exist.  In short, combining the tailoring form and 
SQA report helped project managers know what SQA engineers 
would be checking for and help SQA engineers ensure that the 
project was following the project-specific (tailored) process. 

 

Role of the SQA Coordinator 

At any given time one of the two full-time process engineers 
acted as an “SQA coordinator”.  The responsibilities basically 
included making sure that the SQA engineers were trained 
properly, collecting and reviewing monthly SQA reports, and 
helping follow-up on unresolved process non-compliances from 
the previous month (for example, if a reported process non-
compliance was not resolved within the specified time frame 
agreed upon between the SQA engineer and the project manager, 
the SQA coordinator might escalate issues by going to the project 
manager and/or their supervisor).   

The general goal was that the SQA coordinator would be able to 
have a compiled list of non-compliances from all projects in the 
center and try to prioritize them.  Much like a software product 
manager tries to systematically organize and prioritize software 
defects so that the most important ones are fixed in a timely 
manner, the SQA coordinator needs to have the judgment to do 
the same with software process defects (again, Osterweil’s claim 
that “Software Processes are Software Too” applies).  In this 
regard, the SQA coordinator often acted as a resource to the SQA 
engineers whenever there was disagreement or misunderstanding 
as to how a process non-compliance should best be handled. 

2.2 Project Planning and Tracking 
Project planning and tracking spans two KPAs within CMM level 
2.  Besides being critical for CMM level 2, project planning and 
tracking is important for CMM level 3 in the sense that estimates 
of effort and schedule had to be made on historical data (there is 
where a project database comes in, to be discussed in more detail 
later).  In order to have a consistency of data quality, having a 
standardized template for collecting project effort and calendar 
data was critical.  A template using an excel spreadsheet (portion 
of it shown in Figure 1 and 2) had been used and was in 
circulation but had been deemed by most project engineers as 
being less than user-friendly.  To help facilitate this, a new 
template was developed using Microsoft Project. 

 

Several “pilot projects” starting using Microsoft Project before it 
was distributed center-wide (in order to minimize deployment 
issues in tailoring the template to be useful across the whole 
center).   The template had all of the tasks dictated by the official 
process as well as important associated subtasks.  If the project’s 
tailored process had fewer required artifacts (and thus fewer 
required tasks) specified in the afore-mentioned tailoring form, 
the user would have to delete some tasks, but it was generally 
agreed upon that it was a better problem to have a project plan 
template with more tasks listed than necessary (and let users 
delete them as needed) than not enough (which would run the risk 
of having critical tasks overlooked).  Note that the final version of 
the template was considered fairly complete, with over 100 tasks 
and sub-tasks listed in the template.   

2.3 Other Key Process Areas 
The above sections highlight some major efforts taken to prepare 
the center for the CMM Level 3 assessment.  Note that not all of 
the Key Process areas from CMM level 2 and 3 are mentioned. 

Figure 1. An example Tailoring form/SQA Report (only 
Inception phase shown).  A complete report would list 

artifacts from all phases, although only artifacts from the 
current phase would be audited. 

Figure 2. Portion of an example list of tasks for a Project 
Plan Template (MS Excel shown above; both Excel and MS 

Project were implemented). 



The omitted are not mentioned because they were either not 
applicable or needed very little adjustments.  For example: 
• Peer Review – mostly involved minor tweaking to the peer 

review templates and making sure people were following the 
peer review process properly 

• Requirements Management—relatively few changes since 
CMM level 2 had been achieved. 

• Subcontract Management – was not really applicable since 
there were not any outside subcontractors (and those working 
inside the center were treated as normal employees in terms 
of following the software process). 

• Software Configuration Management—relatively few 
changes since CMM level 2 had been achieved. 

• Training Program—was coordinated by the human resources 
group rather than the Software Process Group (with SQA 
training being a notable exception). 

• Intergroup Coordination—had a procedure drafted to be 
reviewed by other centers but never reached formal 
agreement from the other centers that were involved in cross-
center projects.  Part of the problem was that we were the 
only center trying to achieve CMM.  However, the fact that 
other centers were following the same high-level product 
development procedure did help with Intergroup 
coordination.  

This concludes our discussion of the software process definition 
project, and we will now turn our attention to the process 
database. 

3. PROCESS DEFINITION 
The tasks for redefining the organizational process were 
organized as a project, with two full-time process engineers and 
some part-time help from some of the other project engineers.  
The major activities involved some definition of new processes 
and rework of existing processes.  We will take a few of those 
CMM level 2 and 3 KPAs (Organization Focus, Software Quality 
Assurance, Project Planning and Tracking, and Peer Review) and 
discuss them in more detail [2,3]. 

3.1 Organizational Process Focus and 
Definition 
Most of the documents revised or created during the life of the 
project were divided into three categories: high-level policies 
(broad in scope, giving the “big picture” view), procedure 
documents (providing a clear set of expected process inputs, 
outputs, steps, and measurements, if applicable), and templates 
(ready-to-go documents for project engineers to “fill in the 
blanks” with their project specific data).  Of these documents, the 
most important were the templates in the sense that the templates 
were used the most by project engineers; the artifacts that were 
created during the life of the projects were based on the templates.  
The policies and procedures were mostly for reference.  The 
templates were intended to be as consistent with the policy and 
procedure documents to the highest degree possible (the rationale 
being that taking this approach would lessen the learning curve 
required by project engineers to learn the new process; as long as 
they were filling in all the required fields in the templates, they 
would be in compliance with the official process). 

Another purpose of the high-level policy documents was to serve 
as an interface between this software center and the rest of the 

company (spread worldwide).  The company (which is a 
worldwide organization) had its own an official product 
development procedure that was imposed upon all centers; each 
center is required to have a process compliant with the company 
standard (note that not all of the other centers are software 
centers, or are trying to become CMM certified).  Externally, the 
highest-level policies gave some evidence and assurance to 
higher-level organizations that the center was compliant with the 
company-wide standard.  Internally, the policies served as a sort 
of “constitution” for all of the procedure and template documents 
to be developed; lower-level documents discovered to be in 
conflict with the high-level policies would have to be reworked 
(in practice this was rarely a problem, since the high-level 
policies allowed ample room for flexibility in process definition).   

Although peer review is not a CMM requirement until level 3, a 
fairly mature and established review procedure was already in 
place (it had long been part of the company culture long before 
the center had any interest in CMM).  This was a valuable asset 
when trying to revise the overall process, since it greatly 
facilitated valuable feedback from the “end-users” of the new 
process (i.e., project engineers, project managers, and resource 
managers).   

3.2 Process Deployment 
After process documents and templates were approved, they were 
made widely available via a website on the local intranet, where 
any engineer on the company network could view and download 
them.  Ideally, a newly revised process document (whether a 
procedure or a template) would go through a “beta” phase before 
being made available for wide distribution.  Specifically, a small 
number of projects would experimentally use a new template or 
procedure document, provide feedback, and necessary revisions to 
the document would be incorporated before widely publishing the 
new document.   

Due to time constraints, this was not always possible (i.e., there 
had to be evidence of certain processes being in use over a certain 
period of time before the assessment).   However, since many of 
the documents were simply newer versions of existing documents, 
the risk associated with not having a trial period was low.  Also, 
the risk exposure caused by not having a “beta” phase for a given 
document was lessened by the fact that only a small percentage of 
projects would be in the same phase at any given time.  For 
example, if major revisions were made to the project plan 
template, there might be only two or three projects in the planning 
phase at the time of deployment (who would often give feedback 
on the new processes).  Furthermore, a website was provided 
where any engineer could log on and make a suggestion for 
process improvement (which was either an enhancement or a true 
defect).  These suggestions would intermittently be examined, 
classified and prioritized by a process engineer or another AIT 
member (and if appropriate, incorporated into the process 
documents).  The practice of reviewing the process defects and 
enhancement suggestions, very similar to the procedure followed 
for defects filed against an actual software product, brings to mind 
Lee Osterweil’s contention that “software processes are software 
too” [4]. 

Besides posting new documents on the process webpage, weekly 
meetings served as a means to make center-wide, process-related 
announcements (e.g., if a new procedure was in place).  While 



these served a means for broadcasting information, often it was 
necessary to have follow-up sessions with a small group of 
engineers with more time for Q&A to effectively “train” 
engineers that were using a new process document (for example, 
making sure that a project team using a “beta” version of a 
document clearly understood the new procedure and the 
expectations associated with acting as a “pilot project”).   

In order to give the groups within the center more “ownership”, 
two engineers from each discipline were assigned by their 
managers part-time (i.e. two days a month) to serve on the 
previously mentioned “Action Improvement Team”.  This 
essentially amounted to part-time supplemental workers for the 
two full-time process engineers and helped tremendously during 
process definition and process deployment.  For example, several 
of the action improvement team members were project managers 
themselves, so having a deeper understanding of the process (by 
having helped contribute during the definition stage) greatly 
facilitated their ability to explain the process in turn to their team 
members. 

3.3 Similarity to RUP 
The process being followed was very similar to the Rational 
Unified Process (RUP—see figure 3).  For example, there were 
very distinct phases throughout the life-cycle of each project 
(inception, elaboration, construction, and transition), each with an 
associated set of phase-specific activities, and demarcated with 
distinct milestones that marked the end of one particular phase 
and the beginning of the next.  Within each phase, a certain set of 
artifacts had to be produced before moving on to the next phase; 
for example, having a formally reviewed and approved 
requirements document might be a requirement before moving 
from the elaboration phase to the construction phase. 

 

Figure 4 shows a graph generated with historical data from an 
actual project using the process database.  We discuss the process 
database in more detail in below; however, this graph is shown 
here to show the similarity to the RUP process, in that there are 
different disciplines (both development and support disciplines) 
spread across four different phases, with different levels of 
activity during each phase.  For example, the R&S (Requirements 
and Specification) task type shows the highest amount of activity 
during the Inception phase, while COD (coding) shows the most 
amount of effort in the second and third phases (both of these 
examples are about what one would expect).  Note that this type 

of view from the process database could give a higher-level 
manager an idea of how people were spending their time [5] (for 
example, if the inception phase showed little effort in 
Requirements and Specifications, and significant effort in coding, 
it could be an indicator that the project team was starting too early 
into development without a stable set of requirements).   

 

3.4 Tailoring Form 
One of the high-level policy documents would specify which 
artifacts were absolute requirements for each phase and which 
were “optional”.  Typically, while a given project was still in 
inception or elaboration phase, a resource manager would 
mutually decide with the assigned project manager what artifacts 
would be necessary for the given project and document them via a 
“tailoring” form.  For example, a manager might require a larger 
project to have more milestones and artifacts produced than a 
smaller project (i.e., the larger project required a “heavier” 
process than the smaller project). In this way the tailoring form 
served as a type of contract recording the agreement of what the 
project needed.  In addition, it helped serve as a barometer for 
project tracking, since all items agreed to be produced within a 
given phase had to be produced before officially moving to the 
next phase.  Furthermore, the tailoring form served as a means to 
provide some degree of flexibility between different projects.  
There are some tradeoffs to be managed between creating a 
process that satisfied the “organizational focus” requirement of 
CMM level 3 and allowing some flexibility to allow project 
managers to tailor the process to the specific needs of a project.  
A single process to be applied for all projects might end up being 
so over-specified that it would be unwieldy for a high percentage 
of projects.   On the other hand, making the process too loosely 
defined would make it difficult to have an easily understandable 
and repeatable process, and also might cause a low score on the 
organizational focus requirement of the formal CMM assessment.  

Figure 3. Model of the Rational Unified Process.  Different 
disciplines have different levels of activity depending on the 

phase of the project. 

Figure 4. Task Effort (in person-weeks) for an actual project 
within the center.  Phase (e.g. Inception, Elaboration) shown 
along the x-axis, effort (in person-weeks) shown along the y-
axis, and activity type (e.g. coding, documentation, etc.)  
shown along the z-axis. 



Providing a tailoring form with some required and some optional 
items helped manage these tradeoffs, giving a sufficient amount 
of structure to every project, while at the same time having some 
flexibility to modify to process to the specific needs of the 
project. 

4. PROCESS DATABASE 
The purpose of creating a process database was to create a central 
repository of historical project data off which to base estimates 
for future projects.  Pankaj Jalote in “CMM in Practice” [3] often 
gives examples of how the existence of a database proved helpful 
in project estimation.  Besides project estimation, project 
engineers within the center hoped to used the process database for 
tracking (during the lifetime of the project) and post-mortem 
analysis (after project completion).   

The process database had three main types of data which will be 
discussed in turn:  task effort data, defect data, and code size data. 

4.1 Task Effort Data 
A consultant who helped part-time during the assessment 
preparation had stressed that the task effort data was the most 
important in terms of being prepared for the assessment; one 
could not claim that project planning estimates were based on 
historical data without task effort data (even if defect and product 
size data were ready available).  It was also observed that the 
historical data collected on task effort was the least reliable of the 
three types mentioned.  This is presumably because the collection 
process was the most “human intensive” of the three; code size 
data was calculated automatically as developers checked in new 
revisions of code, and defect data, while requiring human input 
into a database once found, was more or less limited to particular 
phases of the project (mostly coming during alpha and beta 
testing), whereas task effort data required much more day-in, day-
out attention to detail on the part of the project manager. 

Besides the extra effort associated with data collection, 
standardization appeared as an issue.  For example, what level of 
granularity was most appropriate for reporting data?  Some 
project managers were reporting time in terms of hours (e.g. 3 
hours coding, 2 hours documentation, 3 hours testing, etc.) while 
others were in the habit of reporting in days (e.g. 0.5 days coding, 
0.25 days documentation, etc.)  Since different reports used 
different granularities, all effort data was “normalized” to person-
weeks when archived in the process database, where a 40-hour 

work-week was assumed.  This method still leaves room for 
discrepancies; namely, a team member who worked 60 hours in a 
given week, whose time was recorded at the hour level of 
granularity, would have the effort for that week calculated as 1.5 
person-weeks of effort before being archived in the database.  
Meanwhile, a team member on another project, who also put in 60 
hours but whose time was recorded at the “days” level of 
granularity, would only have 1 week of effort recorded, unless the 
project manager had the habit of taking overtime into account and 
recording the effort value for that week as 7.5 days (or 1.5 weeks, 
equivalent to 60 hours) of effort (an unlikely scenario, since 
discussions with project managers led to the belief that those 
interested in taking note of how much overtime was worked were 
more likely to record time in hours rather than days).   

This situation seemed unavoidable for data that was already 
collected.  Since this type of standardization had not been 
important previously (not a requirement for CMM level 2), the 
best method of dealing with it was to make people aware of 
possible discrepancies of older data, make them aware of the 
standards that would be reflected in the process database and 
encourage everyone to move in the same direction (for example, 
upon mutual agreement of project engineers, the newer versions 
of the Microsoft project templates had “days” as the default unit 
of time). 

 

Another problem with standardization centered around task type.  
For example, if two hours were spent reviewing a requirements 
document, a team member in one project might classify the effort 
as being a “requirements and specification”; in another project, a 
team member might reference it as a “documentation” activity; 
yet another engineer might reference it as “software quality 
assurance” since it was review.  All this would lead one to expect 
more commonality of task type breakdowns for projects that were 
different versions of the same product (and often had the same 
project manager), and less commonality for projects working on 
different products (see figure 6 for an illustration).  Similar to the 
issue of granularity previously mentioned, these sorts of 
discrepancies were not as much an issue when still at CMM level 
2.  Likewise, the goal was not so much to sort out discrepancies 
for data that had long ago been collected but to help ensure more 
standardization looking forward.  This was handled by giving 
each default task in the Microsoft Project template a default value 
for the task type category, as well as having more precise 

Figure 5. An example task effort breakdown by phase and 
by task type (phase on x-axis, effort in person-weeks on y-

axis) 

Figure 6.  Comparing task type breakdown for two versions 
of “Project A”.  Note the relative similarity in percentage 

allocations for each task type. 



definitions included in the template that would help sort out 
ambiguous situations like the ones mentioned above. 

While the task effort data was primarily designed for estimation 
(which obviously came in the early stages in the project), 
engineers were encouraged to use the available data in other ways 
if deemed helpful to their work.  For example, at least one project 
engineer used the data for post-mortem analysis in comparing the 
task type breakdown in a newly released product with the task 
type breakdown for the previous released version of the same 
product (after looking for trends, he noticed a relatively low 
percentage allocated to design, with a high percentage spent on 
testing and debugging, and based on his experience with the 
project, felt that the former was probably a root cause to the 
latter).  

 

4.2 Defect Data 
Like task effort data, defect data had to be manually collected; 
unlike task effort data, the tool used for data collection had been 
standardized globally (not just center-wide) for about a decade.  
Since use of this particular tool had been widely adopted for a 
relatively long period of time, the data quality was a bit more 
trustworthy than that of the task effort data.  

 
Figure 8.  Number of defects (and enhancements) for 
successive versions of the same product. 

Nothing changed regarding the data collection method a result of 
this project.  The one thing that did change was the data 
presentation.  Specifically, data was ported (once every evening) 
from a server located at a different center (that stored defect data 
for multiple centers worldwide) to a local server, thus allowing 
creation and manipulation of graphs similar to the ones shown for 
task effort data. While the other tool also permitted graphical 
report ability, the advantage of having a single tool for multiple 
data types was that it provided a “one-stop shop” for multiple 
types of project-related data, and also offered a lower learning 
curve (since the graphical query abilities of the local tool had the 
same look-and-feel, regardless of the type of data being viewed).  
Perhaps more importantly, having the data stored on the local 
intranet enhanced performance; even if the same type of data and 
graphs were already available on the previous tool, an engineer 
might use the tool accessing the local data simply because the 
web page could retrieve the data much more quickly. 

 

During beta testing of the tool, defect data was used by one 
project team for post-mortem analysis and by another for project 
tracking (during alpha testing).  The former involved using the 
tool to compare defectivity between different versions of an 
ongoing product release (see figure 15).  The latter involved 
tracking defect status (e.g. submitted, resolved, postponed, etc.) 
for various components as the project team tried to resolve several 
hundred defects uncovered during alpha testing in a timely 
manner (figure 16).  Due to the large number of defects to be 
resolved by a relatively small team (four to five project 
engineers), with status updates required more than once a week, 
the project manager found the process database to be an 
extremely useful tool to help analyze which components needed 
the most attention during bug-fixing. 

4.3  Code Size Data 
During requirements gathering for the process database, there was 
some debate over whether LOC was a viable metric for measuring 
growth of product over time.  (Some engineers argued that 
“function points” would be a better metric for measuring product 
size).   Nevertheless, most agreed that using lines of code, while 
perhaps crude, would be the easiest metric to collect; calculating 
these metrics involved writing a simple script that manipulated 
existing, readily-available metrics from the source code control 
system (the system calculated lines of code added, deleted, or 
changed for every revision; making these statistics available at a 
macro scale was achieved by calculating a sum of the individual 
values contained for all code revisions associated with a given 
product. 

Figure 7. Comparing task type breakdown for two versions 
of “Project E” (bar on right-hand side only includes data 

through the beginning of the testing period, which is why the 
effort for the “TST” task type is low).  Note the relative 

similarity in percentage allocations for each task type, but 
the difference with those shown in figure 6.  This particular 

project manager only used six of the available task type 
classifications. 

Figure 9. Defect Status versus Component (components on 
x-axis, with component names not shown intentionally) 



At least one project manager showed interest in looking at code 
quality (defects generated per LOC) and comparing it with figures 
published in industry (used for post-mortem project analysis).  
While the database did not automatically generate this type of 
information, it could be computed by collecting defect data and 
code size data individually, and then performing a manual 
computation. In preparing for beta testing of the product, product 
size tracking was the most anticipated use.  For example, a given 
project might base a project schedule on the assumption that the 
product to be constructed was relatively similar in size and scope 
as a previously completed project of a known size; during the life 
of the project, the code size would be monitored month-to-month 
and reported in a monthly report sheet.  If the code size exceeded 
a pre-defined threshold (agreed upon during early project 
planning), thus signaling that the project was perhaps larger than 
anticipated, then the project manager would need to take 
corrective action (hopefully getting a deadline extension for the 
project).  A prototype for an excel spreadsheet with some 
background VBA code that could download this information 
automatically from the database to the spreadsheet was used for 
this type of project tracking.  (The prototype was not made widely 
available due to some bugs found in beta testing, but the 
information could be gathered by looking at the code size graphs 
in the database webpage).   

 

Another way to get a feel for the project progress (based on code 
size data) was to look at the shape of the “net lines of code added” 
curve.  In general, a graph that showed a relatively linear climb 
upward was indicative of a project that was not yet “code 
complete” (the pace at which features were being added was not 
showing signs of slowing down), while a more “mature” product 
had a graph that indicated a “leveling-off” effect (figure 10) over 
time in terms of the lines of code being added (most changes 
being made were presumably defect-fixing, refining and 
refactoring rather than adding major pieces of new functionality). 

5. BEYOND LEVEL 3 
While not required for CMM level 3, it is never too early to 
provide a quantitative bases for process management and 
continuous improvement. 

5.1 Quantitative Analysis (See Figure 12) 
The following section provides some quantitative analysis 
regarding data collected into the process database.  Note that there 
are several project’s worth of data that are not reflected in these 
tables and figures.  In some cases, it was thrown out due to 
dubious quality.  In others cases, the project data was simply not 
available (for example, projects that were completed more than 
two years previously might not have had good collection 
mechanisms at the time to help with data collection; similarly, 
project starting more recently were still ongoing by the time the 
process project was finished; thus any data generated would not 
reflect a “complete” project).  However, there is still enough data 
available of reasonable quality to play around with and explore 
interesting trends.  Some of these are discussed below. 

Code Quality 

The first analysis involved defectivity.   Here we looked at the net 
LOC added during the life of the project compared with the 
number of defects found (similar to the common metric 
Defects/Kloc, except inverted).  Eight projects (with between one 
and four version releases each) were examined, for a total of 
eighteen projects’ worth of data.   

The first thing to be noted is the variability in the rates of 
defectivity.  A low value of 35.11 and a high value of 674.16 
(more than a order of magnitude difference) is shown in the table, 
with an average value of 252.71.  However, when looking at the 
project summaries, we notice that the variability is dampened 
substantially (a low value of 126.90, and a high value of 405.79).   
Note also that the standard deviation for the projects mentioned is 
also much lower than the standard deviation for the complete data 
set (106.52 versus 207.80).   

Another interesting note came when looking at multiple releases.  
For example, ten product release transitions (e.g., transitioning 
from Project A version 1 to version 2, Project A version 2 to 
version 3, Project B version 1 to version 2, etc.).  Typically, if the 
defectivity value of a given release was above the average value 
of 252.71, then the subsequent release had a value that was below 
the average value.  The inverse also typically held true (i.e., if the 
given release had a below average value, the subsequent release 
had an above average value).  Eight out of the ten transitions held 
to this pattern of “centering around the mean”.  

This trend seems akin to the studies of Lehman and Belady [6], 
who studied the dynamics of successive releases, finding (among 
other things) that one could predict by looking at the expansion of 
a system from release to release when a “clean-up” release would 
be necessary (in order to provide a more stable platform for 
continued evolution).  Another interesting thing is that in four of 
the six projects, the defectivity increased (i.e. the net LOC 
added/defect decreased) from the first release to the second 
release.  This could possibly explained by two phenomena 
explained by Brooks Mythical Man-Month [1]: a) the “second 
system effect”, in which a designer’s second system almost 
always has more bugs than the first, and b) the increased maturity 
of users of the system (attained by time spent using the product) 
and thus increased ability over time to find bugs (some of which 
may have existed in the first release but remained undiscovered 
until the second release).   

Figure 10.  Code Growth over time for a project during 
entire product life-cycle (note the “leveling-off” effect 

that occurs over time). 



Whether or not the two factors mentioned are the primary issue, 
or whether it is due to other causes, the applicability is the same: 
the defectivity of the initial release of a product can be 
misleading, and thus should be taken into account when allocating 
schedule time for testing and bug-fixing during the second 
release.  One example of “bucking the trend”: project C version 1 
had a relatively high defectivity (low value of Net LOC 
added/Defect).  From discussions with the project manager and 
the second-line manager, it was known that more serious “early-
testing” efforts were put into that particular project, which led to 
higher end-user satisfaction.  Thus, the low value of 142.39 is 
probably less indicative of low code quality and more indicative 
of a better job of finding all of the bugs in the early stages. 

Productivity 

The second metric we look at is productivity.  The number we are 
most interested in is Net LOC Added per day per team member.  
Note that days is simply the number of days from beginning the 
beginning of the project till the end of the project (i.e., it is 
“calendar days” rather than “working days”).  Note also that Net 
LOC Added is simply LOC Added minus LOC Deleted 
(including commented LOC).   

Similar to what we discussed in the previous section, we notice 
that variability is much lower when comparing the “project 
subtotal” values—eight data points (shown in the green rows in 
Figure 20), each of which is a summary value of the given 
project—than when comparing  all of the data points individually 
(again reflected in the a lower standard deviation value—35.74 
versus 57.75).  Also similar to the previous section is the fact that 
four of the six multiple-release products had a drop-off in 
productivity between the first and second release (presumably 
because they had their hands full doing bug-fixing in the second 
version, a trend discussed in the above “defectivity” section); of 
the two projects that did not hold to this trend, one of them 
(Project A) did show a significant drop-off by the third release 
(from 115.28 LOC/day/team member to 39.22).  The other 
(Project E) had a productivity rating that was so low that one 
suspects that a significant percentage of the calendar time was 
taken up by requirements-gathering activities rather than 
development activities.  Perhaps to avoid “comparing apples to 
oranges”, it would be better to look only at the productivity for a 
given project during the development phase, or only during the 
development and transition phases; this would dampen the effect 
of larger projects (with longer schedules) needing more time to 
perform proper requirements gathering. 

The applicability to these statistics are also similar to what we 
mentioned above in the sense that it is easier to base estimates off 
of previous releases from the same project rather than completely 
different projects.  This is common sense, to some extent; having 
the same project team, the same manager, the same domain-
specific and project-specific issues, as well as the same user base 
should lead to higher inter-correlation between data sets with the 
same project than between data sets of different projects.  And it 
offers little help to project managers taking on the first release of 
a new product.  However, perhaps the variability could serve as a 
reminder to both project team members and managers to be wary 
of making optimistic schedule projections for the first release 
(since every product is different) and for the second release (since 
there tends to be a drop-off in productivity, when one might 
expect to see the opposite). 

5.2 Next Steps: Focusing on Measurable 
Benefits vs. CMM Certification 
The fact that CMM Level 3 certification was achieved can be a 
double-edged sword: on the one hand, the project could be 
deemed successful; on the other, there is a viable danger that after 
achieving certification, complacency would set in and undermine 
the work done on process improvement (For example, [8] reports 
that two-thirds of software process improvement programs started 
in the late 1980’s died sometime after a formal assessment was 
performed).   If the entire motivation for software process 
improvement activities is simply a nice certificate to hang on the 
wall, then one could almost expect some sort of backsliding after 
the assessment.  If, however, concrete numbers can be shown 
measuring the payoff that comes with the investment of a 
software process improvement program, a center has a much 
better chance of overcoming post-assessment complacency.  
Indeed, if numbers can be shown that convinces upper 
management of the added bottom-line value of a software process 
improvement program, certification almost becomes secondary.  
While measuring the cost of process is not a requirement for the 
CMM model until level 4, one could argue that it is in the best 
interest of organizations to start making these measurements 
much earlier. 

For the center described in this paper, time effort data (like that 
shown in figures 11) was collected for process-related projects as 
well as normal software projects.  This data should provide a good 
baseline for the cost of software improvement activities in terms 
of staff-hours.  The next question is, how can one measure the 
savings derived from good process?  [8] suggests at least one 
major (and measurable) benefit is the reduced cost of rework.  In 
the previous section, we noted that time recorded in the TST 
(testing) category including not only testing, but also bug-fixing.   
If the results found here are a reliable indicator, then the center 
should probably see an overall decrease in the percentage of 
project time spent in the TST category over time; if appropriate, 
additional categories could be added to separate testing time and 
debugging time (or possibly other types of rework), if it helped to 
provide more precise measurements. 

 

Another way to measure added business value can come from 
utilizing extra field entries in the defect database.  The database 
entry form has fields for items such as “time to analyze”, “time to 
fix” and “time to validate”, along with the risk associated with 
implementing the fix for a given defect.  Unfortunately, many of 

Figure 11. Cost of rework and Software Process 
Improvement (SPI) investments over time.  Shaded area 

represents savings from reduced rework. 



these fields are not required entries (i.e., the user can leave these 
fields blank and still submit a defect report). Other fields exist 
(which are mandatory) that assign business value to a given defect 
or feature.  (It can also be thought of as a “end-user pain index”; 
in other words, how unhappy will the end user be if a particular 
defect is unresolved or if an enhancement suggestion is ignored?)  
One software process consultant encouraged the use of these two 
sets of fields (possibly making the first set mentioned “required” 
fields) in conjunction in order to make more intelligent, business-
based decisions for which defects got fixed for a given product 
and which did not (e.g., defects with low cost to fix and high 
business value were always fixed, those with high cost to fix and 
low business value were ignored, and the in-between cases would 
be judgment calls).   If every project in the center recorded this 
type of data and made use of it for decision-making, one would 
expect an overall drop in time measured on bug-fixing and 
rework, while retaining (or perhaps even improving) the overall 
business value of the delivered product. 

Yet another measurement that could be added would be defects 
found before coding or testing even began—for example, defects 
uncovered during the requirements or design phase.  A simple 
way to measure this would be to take the defects recorded during 
peer review (as shown in figure 4) and include the data in the 
process database. Since peer review (including use of templates 
such as the one shown in figure 4) is already well incorporated in 
the company culture, one would expect the data to be of 
reasonable quality.  Furthermore, by organizing this type of data 
centrally in the process database, one could compare projects and 
see if those projects with “good review” (i.e. high number of 
defects found in the early phases) had a lower percentage of 
project time spent on rework—a trend which, if backed up with 
numbers, would provide ample justification for the business value 
of process-related activities such as peer review, training (e.g., for 
requirements gathering and design), and software quality 
assurance audits, among others.  

6. CONCLUSIONS 
The project overall was deemed successful in the sense that CMM 
Level 3 certification was in fact achieved (and as a result, all the 
engineers were happy to receive their year-end bonus).  At the 
same time, while much was accomplished, a lot of work remains 
in terms of “maintaining” the new process (to avoid the pitfall of 
achieving certification, only to regress in process maturity once 
the incentive to actively improve the process is removed).  
Making more measurements for the return on investment 
associated with process-related activities might be the best 
solution to this problem. 

A number of important lessons emerged or were reinforced during 
the process project execution: 
• Lee Osterweil’s tenet that “software processes are software 

too” was reinforced throughout the project: defining, 
modifying, deploying, improving, and maintaining processes 
have many similarities to the process that one goes through 
for creating software products. 

• Changing the culture takes significant time.  Several process 
books indicate there is a long lead time associated with 
getting a return on investment from process-directed 
initiatives, and the experience of this particular project was 
no exception (take for example, the time it takes to generate 

each one of the data points shown in figure 11; even a 
product that has a relatively short cycle time of one release 
every six months will only generate 6 new sets of data points 
in three years, making some significant statistical analyses 
problematic).   

• An established peer review process can be a valuable asset in 
the overall process of achieving CMM level 3. 

• Risk exposure can reduced by introducing improvements 
incrementally to a few projects before full release 

• Ownership of processes provides significant motivation for 
their definition and deployment success.  Involving project 
management facilitates that success significantly 

• Tailoring Forms were critical  to avoid the one size fits all 
problem where processes are either so over-constrained as to 
be unwieldy or so under-constrained as to be unrepeatable. 

• It is better to have a full project plan where items can be 
deleted in tailoring the plan to the needs of the project.  
Critical tasks are less likely to be overlooked this way. 

• Standardization of project data is critical in achieving 
comparable results.  Hence, use default measurements in the 
project template. 

• The use of a single data presentation tool for “one stop 
shopping” provides a lower learning curve, uniform 
presentation and a higher likelihood of  being used 
extensively. 

• When frequently updated, the project database was found to 
be an extremely useful tool to help analyze which 
components need the most attention during the development 
process. 

• Brook’s prediction of a drop-off in productivity for the 
second release was reinforced throughout the project. 

• Continuing process improvement is primary, certification is 
secondary. 

• Finally, while measuring process costs is not required until 
CMM level 4, it is in the best interests of organizations to 
begin measurements as early as possible. 

 
In summary, despite of the expense associated with investing in a 
good software process, it is still an investment worth making, 
knowing that the expenses resulting from not having a process are 
even higher. 
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Project Net LOC Added Defect Count 
Net LOC 
added/Defect 

Project 
Length (days) 

Net LOC 
added /day 

# of team 
members 

Net LOC 
Added/day/ 

team member 
Project A.1 70570 141 500.5 168 420 4 105 

Project A.2 83005 460 180.45 144 576 5 115 

Project A .3 37806 211 179.18 241 157 4 39 

Project A.4 146189 389 375.81 436 335 4 84 

A subtotal 337570 1201 281.07 989 341   86 
Project B.1 51393 90 571.03 102 504 2 252 

Project B.2 3125 89 35.11 184 17 1.5 11 

B subtotal 54518 179 304.57 286 191   132 
Project C.1 102946 723 142.39 203 507 4.5 113 

C subtotal 102946 723 142.39 203 507   113 
Project D.1 60674 90 674.16 112 542 4 135 

Project D.2 33488 652 51.36 199 168 4 42 

D subtotal 94162 742 126.9 311 303   89 
Project E.1 10117 200** 50.59 325 31 2 16 

Project E.2 283820 649** 436.65 714 398 7 57 

Project E.3* 86800 400** 217 492 176 4 44 

E subtotal 380737 1249 304.83 ### 249   39 
Project F.1 41339 71 582.24 115 359 4 90 

Project F.2 45848 192 238.79 218 210 4 53 

Project F.3 77562 143 542.39 327 237 4 59 

F subtotal 164749 406 405.79 660 250   67 
Project G.1 52968 361 146.73 459 115 4 29 

Project G.2 14849 83 178.9 437 34 2 17 

G subtotal 67817 444 152.74 896 76   23 
Project H.1 154059 424 363.35 392 393 5 79 

H subtotal 154059 424 363.35 392 393   79 
 Total 1356558 5368        

Mean   252.71   294   78 
 Std Dev    207.8/106.52   131  58/36 

 

Figure 12. Net LOC added/Defect for various projects (*Project E Version 3 shows data through beginning of testing period 
only). Net LOC added/Defect for various projects (*Project E Version 3 shows data through beginning of testing period 
only; **estimated values for these individual product releases; the total number of defects for all releases in the project is 
accurate). 


