
Software Process Definition & Improvement: An Industry Report
Michael Jester, Herb Krasner, and Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin

mgibjester@hotmail.com, {hkrasner, perry}@ece.utexas.edu

ABSTRACT
We present highlights of an process improvement project at a
software center in preparation for CMM Level 3, with applicable
examples given that relate to CMM level 2, level 3, and the effort
needed in transitioning between level 2 and 3. For the efforts
taken at this particular software center, the work documented is
divided into two parts: the process definition and the process
database. Finally, some qualitative and quantitative analysis,
suggestions for future work, and conclusions regarding overall
lessons learned from the experience are provided.

Categories and Subject Descriptors
 D.2 [Software Engineering]: D.2.9 Management

General Terms
Process improvement, CMM, Process Experience
Keywords
Software Engineering, Process Improvement

1. INTRODUCTION
For the sake of non-disclosure, the specific details about the
company and the projects and technologies being developed in
them are intentionally left vague and ambiguous. What can be
said is this: the company is not involved in the business of selling
mass-marketed software to the general public. Their primary
customers are other corporations, and while software is not their
end-product per se, the technologies developed by the company
almost always require a strong software component. As a
multinational corporation, this particular company has several
“centers of excellence” in different parts of the world, each with
individual focus. The focus for this particular center is the
development of software that interacts with or supports the tools
and technologies developed at other centers.

The center is a relatively new center (compared to the other
centers within the company), having been established in Beijing,
China in 1997 (starting with only a handful of engineers, but
growing steadily in numbers). The typical project engineer is
relatively young in their career (typical work experience of 2-3
years, with several fresh graduates), and many of the projects
require a high level of interaction with other centers around the
world. For these reasons (among others), having a viable
software process is a center-wide objective, with formal CMM
level assessment being used as the yardstick to measure progress
toward that objective (in fact, every employee’s year-end bonus in
2004 was contingent upon passing the CMM Level 3 assessment).
Upon joining the software center in August of 2003, certification
for CMM level 2 had already been obtained (in the previous

calendar year) and efforts were already underway to receive
CMM level 3 certification by the end of 2004.

Some of the challenges related to transitioning from CMM Level
2 to CMM Level 3 included:
• Defining new procedure documents and templates related to

CMM level 3 KPAs
• Revising existing process documents and templates (related

to CMM level 2) in order to comply with CMM level 3
requirements

• Establishing a process database (to use historical data for
project planning, among other reasons)

These challenges will be explained in turn in more detail in the
subsequent sections.

2. LEVEL 2 BASES
There are several important KPAs that are critical for moving to
Level 3: software quality assurance, project planning and project
tracking.

2.1 Software Quality Assurance
Software Quality Assurance is one of the KPAs for CMM level 2
and essentially is a mechanism that helps ensure each individual
project is following the defined process the way they are
supposed to [7,8]. It is a sort of “police system” for checking up
on project managers and their teams. In getting prepared for the
level 3 assessment, the process-related strengths and weaknesses
as reflected in SQA reports served as an important indicator for
how prepared the center was for the assessment (and what gaps
had to be filled before the assessment).

Selection and General Duties of SQA Engineers

The software center had approximately 20 software projects under
development organized under three different areas (where each
area produced related software products). For each project, an
engineer from another project would be assigned to act as the
“SQA engineer”. In general, the duties were not supposed to take
more than two calendar days per month (since the SQA engineers
still had their own projects that they were responsible for).
General SQA duties included participating in peer review
(including pre-reviewing documents before wide distribution and
serving as a moderator during review meetings), moderating
particular milestone meetings, performing periodic (i.e., monthly)
checks to identify issues (and following up on the project team to
ensure they were resolved properly), and (occasionally) helping
the project team perform testing.

Playing the role of an SQA engineer brings to mind the phrase
“it’s a tough job, but somebody’s got to do it”. Much like
software testers, SQA engineers typically only brings bad news to
the project managers (in the form of a list of process non-

compliances). This was not particularly enjoyable for either the
project manager or the SQA engineer.

SQA Reporting

At one point during the process improvement project, it had been
decided to merge the previously mentioned tailoring form and the
SQA report into one template (See Figure 3). More than just a
move to reduce the number of documents by one, the idea was to
minimize the confusion between SQA engineers and project
managers as to what was considered “fair game” for the monthly
SQA audit and what was not. For example, if the approved
version of the tailoring form reflected that a particular artifact
needed a formal review (rather than an informal review which
was used for shorter and/or less “critical” documents), then the
SQA engineer would know from the form that they should look
not only for the document itself but also the review record
associated with the document (as well as checking up to see that
all issues uncovered during the review were properly resolved).
Alternatively, if an artifact was “waived” by the manager (e.g., a
design document was waived because it was combined with an
architecture document), then the SQA engineer would not need to
waste time looking for an artifact that did not exist and was not
supposed to exist. In short, combining the tailoring form and
SQA report helped project managers know what SQA engineers
would be checking for and help SQA engineers ensure that the
project was following the project-specific (tailored) process.

Role of the SQA Coordinator

At any given time one of the two full-time process engineers
acted as an “SQA coordinator”. The responsibilities basically
included making sure that the SQA engineers were trained
properly, collecting and reviewing monthly SQA reports, and
helping follow-up on unresolved process non-compliances from
the previous month (for example, if a reported process non-
compliance was not resolved within the specified time frame
agreed upon between the SQA engineer and the project manager,
the SQA coordinator might escalate issues by going to the project
manager and/or their supervisor).

The general goal was that the SQA coordinator would be able to
have a compiled list of non-compliances from all projects in the
center and try to prioritize them. Much like a software product
manager tries to systematically organize and prioritize software
defects so that the most important ones are fixed in a timely
manner, the SQA coordinator needs to have the judgment to do
the same with software process defects (again, Osterweil’s claim
that “Software Processes are Software Too” applies). In this
regard, the SQA coordinator often acted as a resource to the SQA
engineers whenever there was disagreement or misunderstanding
as to how a process non-compliance should best be handled.

2.2 Project Planning and Tracking
Project planning and tracking spans two KPAs within CMM level
2. Besides being critical for CMM level 2, project planning and
tracking is important for CMM level 3 in the sense that estimates
of effort and schedule had to be made on historical data (there is
where a project database comes in, to be discussed in more detail
later). In order to have a consistency of data quality, having a
standardized template for collecting project effort and calendar
data was critical. A template using an excel spreadsheet (portion
of it shown in Figure 1 and 2) had been used and was in
circulation but had been deemed by most project engineers as
being less than user-friendly. To help facilitate this, a new
template was developed using Microsoft Project.

Several “pilot projects” starting using Microsoft Project before it
was distributed center-wide (in order to minimize deployment
issues in tailoring the template to be useful across the whole
center). The template had all of the tasks dictated by the official
process as well as important associated subtasks. If the project’s
tailored process had fewer required artifacts (and thus fewer
required tasks) specified in the afore-mentioned tailoring form,
the user would have to delete some tasks, but it was generally
agreed upon that it was a better problem to have a project plan
template with more tasks listed than necessary (and let users
delete them as needed) than not enough (which would run the risk
of having critical tasks overlooked). Note that the final version of
the template was considered fairly complete, with over 100 tasks
and sub-tasks listed in the template.

2.3 Other Key Process Areas
The above sections highlight some major efforts taken to prepare
the center for the CMM Level 3 assessment. Note that not all of
the Key Process areas from CMM level 2 and 3 are mentioned.

Figure 1. An example Tailoring form/SQA Report (only
Inception phase shown). A complete report would list

artifacts from all phases, although only artifacts from the
current phase would be audited.

Figure 2. Portion of an example list of tasks for a Project
Plan Template (MS Excel shown above; both Excel and MS

Project were implemented).

The omitted are not mentioned because they were either not
applicable or needed very little adjustments. For example:
• Peer Review – mostly involved minor tweaking to the peer

review templates and making sure people were following the
peer review process properly

• Requirements Management—relatively few changes since
CMM level 2 had been achieved.

• Subcontract Management – was not really applicable since
there were not any outside subcontractors (and those working
inside the center were treated as normal employees in terms
of following the software process).

• Software Configuration Management—relatively few
changes since CMM level 2 had been achieved.

• Training Program—was coordinated by the human resources
group rather than the Software Process Group (with SQA
training being a notable exception).

• Intergroup Coordination—had a procedure drafted to be
reviewed by other centers but never reached formal
agreement from the other centers that were involved in cross-
center projects. Part of the problem was that we were the
only center trying to achieve CMM. However, the fact that
other centers were following the same high-level product
development procedure did help with Intergroup
coordination.

This concludes our discussion of the software process definition
project, and we will now turn our attention to the process
database.

3. PROCESS DEFINITION
The tasks for redefining the organizational process were
organized as a project, with two full-time process engineers and
some part-time help from some of the other project engineers.
The major activities involved some definition of new processes
and rework of existing processes. We will take a few of those
CMM level 2 and 3 KPAs (Organization Focus, Software Quality
Assurance, Project Planning and Tracking, and Peer Review) and
discuss them in more detail [2,3].

3.1 Organizational Process Focus and
Definition
Most of the documents revised or created during the life of the
project were divided into three categories: high-level policies
(broad in scope, giving the “big picture” view), procedure
documents (providing a clear set of expected process inputs,
outputs, steps, and measurements, if applicable), and templates
(ready-to-go documents for project engineers to “fill in the
blanks” with their project specific data). Of these documents, the
most important were the templates in the sense that the templates
were used the most by project engineers; the artifacts that were
created during the life of the projects were based on the templates.
The policies and procedures were mostly for reference. The
templates were intended to be as consistent with the policy and
procedure documents to the highest degree possible (the rationale
being that taking this approach would lessen the learning curve
required by project engineers to learn the new process; as long as
they were filling in all the required fields in the templates, they
would be in compliance with the official process).

Another purpose of the high-level policy documents was to serve
as an interface between this software center and the rest of the

company (spread worldwide). The company (which is a
worldwide organization) had its own an official product
development procedure that was imposed upon all centers; each
center is required to have a process compliant with the company
standard (note that not all of the other centers are software
centers, or are trying to become CMM certified). Externally, the
highest-level policies gave some evidence and assurance to
higher-level organizations that the center was compliant with the
company-wide standard. Internally, the policies served as a sort
of “constitution” for all of the procedure and template documents
to be developed; lower-level documents discovered to be in
conflict with the high-level policies would have to be reworked
(in practice this was rarely a problem, since the high-level
policies allowed ample room for flexibility in process definition).

Although peer review is not a CMM requirement until level 3, a
fairly mature and established review procedure was already in
place (it had long been part of the company culture long before
the center had any interest in CMM). This was a valuable asset
when trying to revise the overall process, since it greatly
facilitated valuable feedback from the “end-users” of the new
process (i.e., project engineers, project managers, and resource
managers).

3.2 Process Deployment
After process documents and templates were approved, they were
made widely available via a website on the local intranet, where
any engineer on the company network could view and download
them. Ideally, a newly revised process document (whether a
procedure or a template) would go through a “beta” phase before
being made available for wide distribution. Specifically, a small
number of projects would experimentally use a new template or
procedure document, provide feedback, and necessary revisions to
the document would be incorporated before widely publishing the
new document.

Due to time constraints, this was not always possible (i.e., there
had to be evidence of certain processes being in use over a certain
period of time before the assessment). However, since many of
the documents were simply newer versions of existing documents,
the risk associated with not having a trial period was low. Also,
the risk exposure caused by not having a “beta” phase for a given
document was lessened by the fact that only a small percentage of
projects would be in the same phase at any given time. For
example, if major revisions were made to the project plan
template, there might be only two or three projects in the planning
phase at the time of deployment (who would often give feedback
on the new processes). Furthermore, a website was provided
where any engineer could log on and make a suggestion for
process improvement (which was either an enhancement or a true
defect). These suggestions would intermittently be examined,
classified and prioritized by a process engineer or another AIT
member (and if appropriate, incorporated into the process
documents). The practice of reviewing the process defects and
enhancement suggestions, very similar to the procedure followed
for defects filed against an actual software product, brings to mind
Lee Osterweil’s contention that “software processes are software
too” [4].

Besides posting new documents on the process webpage, weekly
meetings served as a means to make center-wide, process-related
announcements (e.g., if a new procedure was in place). While

these served a means for broadcasting information, often it was
necessary to have follow-up sessions with a small group of
engineers with more time for Q&A to effectively “train”
engineers that were using a new process document (for example,
making sure that a project team using a “beta” version of a
document clearly understood the new procedure and the
expectations associated with acting as a “pilot project”).

In order to give the groups within the center more “ownership”,
two engineers from each discipline were assigned by their
managers part-time (i.e. two days a month) to serve on the
previously mentioned “Action Improvement Team”. This
essentially amounted to part-time supplemental workers for the
two full-time process engineers and helped tremendously during
process definition and process deployment. For example, several
of the action improvement team members were project managers
themselves, so having a deeper understanding of the process (by
having helped contribute during the definition stage) greatly
facilitated their ability to explain the process in turn to their team
members.

3.3 Similarity to RUP
The process being followed was very similar to the Rational
Unified Process (RUP—see figure 3). For example, there were
very distinct phases throughout the life-cycle of each project
(inception, elaboration, construction, and transition), each with an
associated set of phase-specific activities, and demarcated with
distinct milestones that marked the end of one particular phase
and the beginning of the next. Within each phase, a certain set of
artifacts had to be produced before moving on to the next phase;
for example, having a formally reviewed and approved
requirements document might be a requirement before moving
from the elaboration phase to the construction phase.

Figure 4 shows a graph generated with historical data from an
actual project using the process database. We discuss the process
database in more detail in below; however, this graph is shown
here to show the similarity to the RUP process, in that there are
different disciplines (both development and support disciplines)
spread across four different phases, with different levels of
activity during each phase. For example, the R&S (Requirements
and Specification) task type shows the highest amount of activity
during the Inception phase, while COD (coding) shows the most
amount of effort in the second and third phases (both of these
examples are about what one would expect). Note that this type

of view from the process database could give a higher-level
manager an idea of how people were spending their time [5] (for
example, if the inception phase showed little effort in
Requirements and Specifications, and significant effort in coding,
it could be an indicator that the project team was starting too early
into development without a stable set of requirements).

3.4 Tailoring Form
One of the high-level policy documents would specify which
artifacts were absolute requirements for each phase and which
were “optional”. Typically, while a given project was still in
inception or elaboration phase, a resource manager would
mutually decide with the assigned project manager what artifacts
would be necessary for the given project and document them via a
“tailoring” form. For example, a manager might require a larger
project to have more milestones and artifacts produced than a
smaller project (i.e., the larger project required a “heavier”
process than the smaller project). In this way the tailoring form
served as a type of contract recording the agreement of what the
project needed. In addition, it helped serve as a barometer for
project tracking, since all items agreed to be produced within a
given phase had to be produced before officially moving to the
next phase. Furthermore, the tailoring form served as a means to
provide some degree of flexibility between different projects.
There are some tradeoffs to be managed between creating a
process that satisfied the “organizational focus” requirement of
CMM level 3 and allowing some flexibility to allow project
managers to tailor the process to the specific needs of a project.
A single process to be applied for all projects might end up being
so over-specified that it would be unwieldy for a high percentage
of projects. On the other hand, making the process too loosely
defined would make it difficult to have an easily understandable
and repeatable process, and also might cause a low score on the
organizational focus requirement of the formal CMM assessment.

Figure 3. Model of the Rational Unified Process. Different
disciplines have different levels of activity depending on the

phase of the project.

Figure 4. Task Effort (in person-weeks) for an actual project
within the center. Phase (e.g. Inception, Elaboration) shown
along the x-axis, effort (in person-weeks) shown along the y-
axis, and activity type (e.g. coding, documentation, etc.)
shown along the z-axis.

Providing a tailoring form with some required and some optional
items helped manage these tradeoffs, giving a sufficient amount
of structure to every project, while at the same time having some
flexibility to modify to process to the specific needs of the
project.

4. PROCESS DATABASE
The purpose of creating a process database was to create a central
repository of historical project data off which to base estimates
for future projects. Pankaj Jalote in “CMM in Practice” [3] often
gives examples of how the existence of a database proved helpful
in project estimation. Besides project estimation, project
engineers within the center hoped to used the process database for
tracking (during the lifetime of the project) and post-mortem
analysis (after project completion).

The process database had three main types of data which will be
discussed in turn: task effort data, defect data, and code size data.

4.1 Task Effort Data
A consultant who helped part-time during the assessment
preparation had stressed that the task effort data was the most
important in terms of being prepared for the assessment; one
could not claim that project planning estimates were based on
historical data without task effort data (even if defect and product
size data were ready available). It was also observed that the
historical data collected on task effort was the least reliable of the
three types mentioned. This is presumably because the collection
process was the most “human intensive” of the three; code size
data was calculated automatically as developers checked in new
revisions of code, and defect data, while requiring human input
into a database once found, was more or less limited to particular
phases of the project (mostly coming during alpha and beta
testing), whereas task effort data required much more day-in, day-
out attention to detail on the part of the project manager.

Besides the extra effort associated with data collection,
standardization appeared as an issue. For example, what level of
granularity was most appropriate for reporting data? Some
project managers were reporting time in terms of hours (e.g. 3
hours coding, 2 hours documentation, 3 hours testing, etc.) while
others were in the habit of reporting in days (e.g. 0.5 days coding,
0.25 days documentation, etc.) Since different reports used
different granularities, all effort data was “normalized” to person-
weeks when archived in the process database, where a 40-hour

work-week was assumed. This method still leaves room for
discrepancies; namely, a team member who worked 60 hours in a
given week, whose time was recorded at the hour level of
granularity, would have the effort for that week calculated as 1.5
person-weeks of effort before being archived in the database.
Meanwhile, a team member on another project, who also put in 60
hours but whose time was recorded at the “days” level of
granularity, would only have 1 week of effort recorded, unless the
project manager had the habit of taking overtime into account and
recording the effort value for that week as 7.5 days (or 1.5 weeks,
equivalent to 60 hours) of effort (an unlikely scenario, since
discussions with project managers led to the belief that those
interested in taking note of how much overtime was worked were
more likely to record time in hours rather than days).

This situation seemed unavoidable for data that was already
collected. Since this type of standardization had not been
important previously (not a requirement for CMM level 2), the
best method of dealing with it was to make people aware of
possible discrepancies of older data, make them aware of the
standards that would be reflected in the process database and
encourage everyone to move in the same direction (for example,
upon mutual agreement of project engineers, the newer versions
of the Microsoft project templates had “days” as the default unit
of time).

Another problem with standardization centered around task type.
For example, if two hours were spent reviewing a requirements
document, a team member in one project might classify the effort
as being a “requirements and specification”; in another project, a
team member might reference it as a “documentation” activity;
yet another engineer might reference it as “software quality
assurance” since it was review. All this would lead one to expect
more commonality of task type breakdowns for projects that were
different versions of the same product (and often had the same
project manager), and less commonality for projects working on
different products (see figure 6 for an illustration). Similar to the
issue of granularity previously mentioned, these sorts of
discrepancies were not as much an issue when still at CMM level
2. Likewise, the goal was not so much to sort out discrepancies
for data that had long ago been collected but to help ensure more
standardization looking forward. This was handled by giving
each default task in the Microsoft Project template a default value
for the task type category, as well as having more precise

Figure 5. An example task effort breakdown by phase and
by task type (phase on x-axis, effort in person-weeks on y-

axis)

Figure 6. Comparing task type breakdown for two versions
of “Project A”. Note the relative similarity in percentage

allocations for each task type.

definitions included in the template that would help sort out
ambiguous situations like the ones mentioned above.

While the task effort data was primarily designed for estimation
(which obviously came in the early stages in the project),
engineers were encouraged to use the available data in other ways
if deemed helpful to their work. For example, at least one project
engineer used the data for post-mortem analysis in comparing the
task type breakdown in a newly released product with the task
type breakdown for the previous released version of the same
product (after looking for trends, he noticed a relatively low
percentage allocated to design, with a high percentage spent on
testing and debugging, and based on his experience with the
project, felt that the former was probably a root cause to the
latter).

4.2 Defect Data
Like task effort data, defect data had to be manually collected;
unlike task effort data, the tool used for data collection had been
standardized globally (not just center-wide) for about a decade.
Since use of this particular tool had been widely adopted for a
relatively long period of time, the data quality was a bit more
trustworthy than that of the task effort data.

Figure 8. Number of defects (and enhancements) for
successive versions of the same product.

Nothing changed regarding the data collection method a result of
this project. The one thing that did change was the data
presentation. Specifically, data was ported (once every evening)
from a server located at a different center (that stored defect data
for multiple centers worldwide) to a local server, thus allowing
creation and manipulation of graphs similar to the ones shown for
task effort data. While the other tool also permitted graphical
report ability, the advantage of having a single tool for multiple
data types was that it provided a “one-stop shop” for multiple
types of project-related data, and also offered a lower learning
curve (since the graphical query abilities of the local tool had the
same look-and-feel, regardless of the type of data being viewed).
Perhaps more importantly, having the data stored on the local
intranet enhanced performance; even if the same type of data and
graphs were already available on the previous tool, an engineer
might use the tool accessing the local data simply because the
web page could retrieve the data much more quickly.

During beta testing of the tool, defect data was used by one
project team for post-mortem analysis and by another for project
tracking (during alpha testing). The former involved using the
tool to compare defectivity between different versions of an
ongoing product release (see figure 15). The latter involved
tracking defect status (e.g. submitted, resolved, postponed, etc.)
for various components as the project team tried to resolve several
hundred defects uncovered during alpha testing in a timely
manner (figure 16). Due to the large number of defects to be
resolved by a relatively small team (four to five project
engineers), with status updates required more than once a week,
the project manager found the process database to be an
extremely useful tool to help analyze which components needed
the most attention during bug-fixing.

4.3 Code Size Data
During requirements gathering for the process database, there was
some debate over whether LOC was a viable metric for measuring
growth of product over time. (Some engineers argued that
“function points” would be a better metric for measuring product
size). Nevertheless, most agreed that using lines of code, while
perhaps crude, would be the easiest metric to collect; calculating
these metrics involved writing a simple script that manipulated
existing, readily-available metrics from the source code control
system (the system calculated lines of code added, deleted, or
changed for every revision; making these statistics available at a
macro scale was achieved by calculating a sum of the individual
values contained for all code revisions associated with a given
product.

Figure 7. Comparing task type breakdown for two versions
of “Project E” (bar on right-hand side only includes data

through the beginning of the testing period, which is why the
effort for the “TST” task type is low). Note the relative

similarity in percentage allocations for each task type, but
the difference with those shown in figure 6. This particular

project manager only used six of the available task type
classifications.

Figure 9. Defect Status versus Component (components on
x-axis, with component names not shown intentionally)

At least one project manager showed interest in looking at code
quality (defects generated per LOC) and comparing it with figures
published in industry (used for post-mortem project analysis).
While the database did not automatically generate this type of
information, it could be computed by collecting defect data and
code size data individually, and then performing a manual
computation. In preparing for beta testing of the product, product
size tracking was the most anticipated use. For example, a given
project might base a project schedule on the assumption that the
product to be constructed was relatively similar in size and scope
as a previously completed project of a known size; during the life
of the project, the code size would be monitored month-to-month
and reported in a monthly report sheet. If the code size exceeded
a pre-defined threshold (agreed upon during early project
planning), thus signaling that the project was perhaps larger than
anticipated, then the project manager would need to take
corrective action (hopefully getting a deadline extension for the
project). A prototype for an excel spreadsheet with some
background VBA code that could download this information
automatically from the database to the spreadsheet was used for
this type of project tracking. (The prototype was not made widely
available due to some bugs found in beta testing, but the
information could be gathered by looking at the code size graphs
in the database webpage).

Another way to get a feel for the project progress (based on code
size data) was to look at the shape of the “net lines of code added”
curve. In general, a graph that showed a relatively linear climb
upward was indicative of a project that was not yet “code
complete” (the pace at which features were being added was not
showing signs of slowing down), while a more “mature” product
had a graph that indicated a “leveling-off” effect (figure 10) over
time in terms of the lines of code being added (most changes
being made were presumably defect-fixing, refining and
refactoring rather than adding major pieces of new functionality).

5. BEYOND LEVEL 3
While not required for CMM level 3, it is never too early to
provide a quantitative bases for process management and
continuous improvement.

5.1 Quantitative Analysis (See Figure 12)
The following section provides some quantitative analysis
regarding data collected into the process database. Note that there
are several project’s worth of data that are not reflected in these
tables and figures. In some cases, it was thrown out due to
dubious quality. In others cases, the project data was simply not
available (for example, projects that were completed more than
two years previously might not have had good collection
mechanisms at the time to help with data collection; similarly,
project starting more recently were still ongoing by the time the
process project was finished; thus any data generated would not
reflect a “complete” project). However, there is still enough data
available of reasonable quality to play around with and explore
interesting trends. Some of these are discussed below.

Code Quality

The first analysis involved defectivity. Here we looked at the net
LOC added during the life of the project compared with the
number of defects found (similar to the common metric
Defects/Kloc, except inverted). Eight projects (with between one
and four version releases each) were examined, for a total of
eighteen projects’ worth of data.

The first thing to be noted is the variability in the rates of
defectivity. A low value of 35.11 and a high value of 674.16
(more than a order of magnitude difference) is shown in the table,
with an average value of 252.71. However, when looking at the
project summaries, we notice that the variability is dampened
substantially (a low value of 126.90, and a high value of 405.79).
Note also that the standard deviation for the projects mentioned is
also much lower than the standard deviation for the complete data
set (106.52 versus 207.80).

Another interesting note came when looking at multiple releases.
For example, ten product release transitions (e.g., transitioning
from Project A version 1 to version 2, Project A version 2 to
version 3, Project B version 1 to version 2, etc.). Typically, if the
defectivity value of a given release was above the average value
of 252.71, then the subsequent release had a value that was below
the average value. The inverse also typically held true (i.e., if the
given release had a below average value, the subsequent release
had an above average value). Eight out of the ten transitions held
to this pattern of “centering around the mean”.

This trend seems akin to the studies of Lehman and Belady [6],
who studied the dynamics of successive releases, finding (among
other things) that one could predict by looking at the expansion of
a system from release to release when a “clean-up” release would
be necessary (in order to provide a more stable platform for
continued evolution). Another interesting thing is that in four of
the six projects, the defectivity increased (i.e. the net LOC
added/defect decreased) from the first release to the second
release. This could possibly explained by two phenomena
explained by Brooks Mythical Man-Month [1]: a) the “second
system effect”, in which a designer’s second system almost
always has more bugs than the first, and b) the increased maturity
of users of the system (attained by time spent using the product)
and thus increased ability over time to find bugs (some of which
may have existed in the first release but remained undiscovered
until the second release).

Figure 10. Code Growth over time for a project during
entire product life-cycle (note the “leveling-off” effect

that occurs over time).

Whether or not the two factors mentioned are the primary issue,
or whether it is due to other causes, the applicability is the same:
the defectivity of the initial release of a product can be
misleading, and thus should be taken into account when allocating
schedule time for testing and bug-fixing during the second
release. One example of “bucking the trend”: project C version 1
had a relatively high defectivity (low value of Net LOC
added/Defect). From discussions with the project manager and
the second-line manager, it was known that more serious “early-
testing” efforts were put into that particular project, which led to
higher end-user satisfaction. Thus, the low value of 142.39 is
probably less indicative of low code quality and more indicative
of a better job of finding all of the bugs in the early stages.

Productivity

The second metric we look at is productivity. The number we are
most interested in is Net LOC Added per day per team member.
Note that days is simply the number of days from beginning the
beginning of the project till the end of the project (i.e., it is
“calendar days” rather than “working days”). Note also that Net
LOC Added is simply LOC Added minus LOC Deleted
(including commented LOC).

Similar to what we discussed in the previous section, we notice
that variability is much lower when comparing the “project
subtotal” values—eight data points (shown in the green rows in
Figure 20), each of which is a summary value of the given
project—than when comparing all of the data points individually
(again reflected in the a lower standard deviation value—35.74
versus 57.75). Also similar to the previous section is the fact that
four of the six multiple-release products had a drop-off in
productivity between the first and second release (presumably
because they had their hands full doing bug-fixing in the second
version, a trend discussed in the above “defectivity” section); of
the two projects that did not hold to this trend, one of them
(Project A) did show a significant drop-off by the third release
(from 115.28 LOC/day/team member to 39.22). The other
(Project E) had a productivity rating that was so low that one
suspects that a significant percentage of the calendar time was
taken up by requirements-gathering activities rather than
development activities. Perhaps to avoid “comparing apples to
oranges”, it would be better to look only at the productivity for a
given project during the development phase, or only during the
development and transition phases; this would dampen the effect
of larger projects (with longer schedules) needing more time to
perform proper requirements gathering.

The applicability to these statistics are also similar to what we
mentioned above in the sense that it is easier to base estimates off
of previous releases from the same project rather than completely
different projects. This is common sense, to some extent; having
the same project team, the same manager, the same domain-
specific and project-specific issues, as well as the same user base
should lead to higher inter-correlation between data sets with the
same project than between data sets of different projects. And it
offers little help to project managers taking on the first release of
a new product. However, perhaps the variability could serve as a
reminder to both project team members and managers to be wary
of making optimistic schedule projections for the first release
(since every product is different) and for the second release (since
there tends to be a drop-off in productivity, when one might
expect to see the opposite).

5.2 Next Steps: Focusing on Measurable
Benefits vs. CMM Certification
The fact that CMM Level 3 certification was achieved can be a
double-edged sword: on the one hand, the project could be
deemed successful; on the other, there is a viable danger that after
achieving certification, complacency would set in and undermine
the work done on process improvement (For example, [8] reports
that two-thirds of software process improvement programs started
in the late 1980’s died sometime after a formal assessment was
performed). If the entire motivation for software process
improvement activities is simply a nice certificate to hang on the
wall, then one could almost expect some sort of backsliding after
the assessment. If, however, concrete numbers can be shown
measuring the payoff that comes with the investment of a
software process improvement program, a center has a much
better chance of overcoming post-assessment complacency.
Indeed, if numbers can be shown that convinces upper
management of the added bottom-line value of a software process
improvement program, certification almost becomes secondary.
While measuring the cost of process is not a requirement for the
CMM model until level 4, one could argue that it is in the best
interest of organizations to start making these measurements
much earlier.

For the center described in this paper, time effort data (like that
shown in figures 11) was collected for process-related projects as
well as normal software projects. This data should provide a good
baseline for the cost of software improvement activities in terms
of staff-hours. The next question is, how can one measure the
savings derived from good process? [8] suggests at least one
major (and measurable) benefit is the reduced cost of rework. In
the previous section, we noted that time recorded in the TST
(testing) category including not only testing, but also bug-fixing.
If the results found here are a reliable indicator, then the center
should probably see an overall decrease in the percentage of
project time spent in the TST category over time; if appropriate,
additional categories could be added to separate testing time and
debugging time (or possibly other types of rework), if it helped to
provide more precise measurements.

Another way to measure added business value can come from
utilizing extra field entries in the defect database. The database
entry form has fields for items such as “time to analyze”, “time to
fix” and “time to validate”, along with the risk associated with
implementing the fix for a given defect. Unfortunately, many of

Figure 11. Cost of rework and Software Process
Improvement (SPI) investments over time. Shaded area

represents savings from reduced rework.

these fields are not required entries (i.e., the user can leave these
fields blank and still submit a defect report). Other fields exist
(which are mandatory) that assign business value to a given defect
or feature. (It can also be thought of as a “end-user pain index”;
in other words, how unhappy will the end user be if a particular
defect is unresolved or if an enhancement suggestion is ignored?)
One software process consultant encouraged the use of these two
sets of fields (possibly making the first set mentioned “required”
fields) in conjunction in order to make more intelligent, business-
based decisions for which defects got fixed for a given product
and which did not (e.g., defects with low cost to fix and high
business value were always fixed, those with high cost to fix and
low business value were ignored, and the in-between cases would
be judgment calls). If every project in the center recorded this
type of data and made use of it for decision-making, one would
expect an overall drop in time measured on bug-fixing and
rework, while retaining (or perhaps even improving) the overall
business value of the delivered product.

Yet another measurement that could be added would be defects
found before coding or testing even began—for example, defects
uncovered during the requirements or design phase. A simple
way to measure this would be to take the defects recorded during
peer review (as shown in figure 4) and include the data in the
process database. Since peer review (including use of templates
such as the one shown in figure 4) is already well incorporated in
the company culture, one would expect the data to be of
reasonable quality. Furthermore, by organizing this type of data
centrally in the process database, one could compare projects and
see if those projects with “good review” (i.e. high number of
defects found in the early phases) had a lower percentage of
project time spent on rework—a trend which, if backed up with
numbers, would provide ample justification for the business value
of process-related activities such as peer review, training (e.g., for
requirements gathering and design), and software quality
assurance audits, among others.

6. CONCLUSIONS
The project overall was deemed successful in the sense that CMM
Level 3 certification was in fact achieved (and as a result, all the
engineers were happy to receive their year-end bonus). At the
same time, while much was accomplished, a lot of work remains
in terms of “maintaining” the new process (to avoid the pitfall of
achieving certification, only to regress in process maturity once
the incentive to actively improve the process is removed).
Making more measurements for the return on investment
associated with process-related activities might be the best
solution to this problem.

A number of important lessons emerged or were reinforced during
the process project execution:
• Lee Osterweil’s tenet that “software processes are software

too” was reinforced throughout the project: defining,
modifying, deploying, improving, and maintaining processes
have many similarities to the process that one goes through
for creating software products.

• Changing the culture takes significant time. Several process
books indicate there is a long lead time associated with
getting a return on investment from process-directed
initiatives, and the experience of this particular project was
no exception (take for example, the time it takes to generate

each one of the data points shown in figure 11; even a
product that has a relatively short cycle time of one release
every six months will only generate 6 new sets of data points
in three years, making some significant statistical analyses
problematic).

• An established peer review process can be a valuable asset in
the overall process of achieving CMM level 3.

• Risk exposure can reduced by introducing improvements
incrementally to a few projects before full release

• Ownership of processes provides significant motivation for
their definition and deployment success. Involving project
management facilitates that success significantly

• Tailoring Forms were critical to avoid the one size fits all
problem where processes are either so over-constrained as to
be unwieldy or so under-constrained as to be unrepeatable.

• It is better to have a full project plan where items can be
deleted in tailoring the plan to the needs of the project.
Critical tasks are less likely to be overlooked this way.

• Standardization of project data is critical in achieving
comparable results. Hence, use default measurements in the
project template.

• The use of a single data presentation tool for “one stop
shopping” provides a lower learning curve, uniform
presentation and a higher likelihood of being used
extensively.

• When frequently updated, the project database was found to
be an extremely useful tool to help analyze which
components need the most attention during the development
process.

• Brook’s prediction of a drop-off in productivity for the
second release was reinforced throughout the project.

• Continuing process improvement is primary, certification is
secondary.

• Finally, while measuring process costs is not required until
CMM level 4, it is in the best interests of organizations to
begin measurements as early as possible.

In summary, despite of the expense associated with investing in a
good software process, it is still an investment worth making,
knowing that the expenses resulting from not having a process are
even higher.

7. REFERENCES
[1] Fred Brooks, The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition, Addison-Wesley,
1995

[2] Kim Caputo, CMM Implementation Guide: Choreographing
Software Process Improvement, Addison-Wesley, 2003

[3] Pankaj Jalote, CMM in Practice: Processes for Executing
Software Projects at Infosys, Addison-Wesley, 2000

[4] Leon J. Osterweil, “Software Processes are Software Too,
Revisited: An Invited Talk on the Most Influential Paper of
ICSE 9”, ICSE 1997

[5] Dewayne E. Perry, Nancy A. Staudenmayer, Lawrence G.
Votta, “People, Organizations, and Process Improvement”,
IEEE 1994

[6] M.M. Lehman and L.A. Belady, Program Evolution:
Processes of Software Change, Academic Press, New York,
1985

[7] Herb Krasner, “Using the Cost of Quality Approach for
Software”, Crosstalk: The Journal of Defense Software
Engineering, November 1998

[8] Herb Krasner, “Accumulating the Body of Evidence for the
Payoff of Software Process Improvement”, Software Process
Improvement, IEEE Computer Society Press, 2001

Project Net LOC Added Defect Count
Net LOC
added/Defect

Project
Length (days)

Net LOC
added /day

of team
members

Net LOC
Added/day/

team member
Project A.1 70570 141 500.5 168 420 4 105

Project A.2 83005 460 180.45 144 576 5 115

Project A .3 37806 211 179.18 241 157 4 39

Project A.4 146189 389 375.81 436 335 4 84

A subtotal 337570 1201 281.07 989 341 86
Project B.1 51393 90 571.03 102 504 2 252

Project B.2 3125 89 35.11 184 17 1.5 11

B subtotal 54518 179 304.57 286 191 132
Project C.1 102946 723 142.39 203 507 4.5 113

C subtotal 102946 723 142.39 203 507 113
Project D.1 60674 90 674.16 112 542 4 135

Project D.2 33488 652 51.36 199 168 4 42

D subtotal 94162 742 126.9 311 303 89
Project E.1 10117 200** 50.59 325 31 2 16

Project E.2 283820 649** 436.65 714 398 7 57

Project E.3* 86800 400** 217 492 176 4 44

E subtotal 380737 1249 304.83 ### 249 39
Project F.1 41339 71 582.24 115 359 4 90

Project F.2 45848 192 238.79 218 210 4 53

Project F.3 77562 143 542.39 327 237 4 59

F subtotal 164749 406 405.79 660 250 67
Project G.1 52968 361 146.73 459 115 4 29

Project G.2 14849 83 178.9 437 34 2 17

G subtotal 67817 444 152.74 896 76 23
Project H.1 154059 424 363.35 392 393 5 79

H subtotal 154059 424 363.35 392 393 79
 Total 1356558 5368

Mean 252.71 294 78
 Std Dev 207.8/106.52 131 58/36

Figure 12. Net LOC added/Defect for various projects (*Project E Version 3 shows data through beginning of testing period
only). Net LOC added/Defect for various projects (*Project E Version 3 shows data through beginning of testing period
only; **estimated values for these individual product releases; the total number of defects for all releases in the project is
accurate).

