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I. Introduction 

The software-intensive exploration systems of the future will be highly complex, and 
their operation will be exceptionally visible to the nation. In addition to providing 
complex functionality, they must tolerate the subtle faults of asynchronous systems 
running in a hostile environment and be affordable, reliable, flexible, robust, and 
gracefully upgradeable, among other things. In addition to all the usual problems of 
complex software, exploration systems will have to accommodate, for example: (in some 
missions) significant communication latencies, requiring more autonomy; diminished 
communication windows and bandwidth, requiring improved data reduction and 
compression; the need to reduce the number of in-flight updates, because of the risk at 
each update; and the need to reduce the systems-administration burden on astronauts, 
because their time is a scarce resource. 
 
Achieving all these characteristics using the current generation of techniques and 
engineering-support technologies for building software-intensive systems would be too 
expensive and time-consuming, and the cost and time required would severely limit 
system capability. We must find ways to engineer dependable and resilient exploration 
architectures that significantly reduce risk. 
 
Our research group is developing ways to engineer “product lines” of sophisticated 
software/hardware testbeds to support: (1) the iterative improvement of new architectural 
techniques for building software-intensive exploration systems; (2) evaluations of the 
techniques and support technologies to help understand the risk, cost, scope of 
applicability, and benefit of using them; and (3) for mission operators, a knowledge-base 
of testbed-generated information and support technology to isolate the cause of bugs that 
emerge during flight and remove them quickly and precisely. 
 
This work builds on results from the NASA-sponsored High Dependability Computing 
Program (HDCP), which has helped mature the concept of testbeds for software-intensive 
systems, demonstrating both their use and their value. [1, 2, 3, 4] Our testbeds combine 
hardware and software, especially embedded control systems, to represent relevant 
mission functions. To be a testbed and not merely a capability demonstration, the 
combination must be instrumented for gathering operational data to assess reliability, 
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effectiveness, and other important characteristics, which will help when deciding among 
candidate solutions to a mission problem. 
 
Two HDCP testbeds are especially relevant to this work: the Dependable Real-Time 
Software testbed, which controls a rover that is helping us investigate the effectiveness of 
new approaches to programming real-time-control systems, and the Dependable 
Automated Air-Traffic Management testbed, which helps evaluate and improve software 
for automating critical flight activities. These projects led to the creation of our Testbed 
Engineering Platform (TEP), allowing us to rapidly build just-in-time testbeds for a large 
variety of mission applications. TEP substantially reduces cost and time in creating 
testbeds. 
 
TEP and the testbeds it helps create are part of an experimental methodology we are 
developing to assess and improve new software-engineering techniques and technologies. 
This paper is a progress report on our approach. 
 

II. Architecture 
Software architecture (SA) represents the structure of a software system and defines the 
essential components in a system, their critical constraints and interactions. SA is the 
system blueprint and the engineering basis for design, coding, testing, integration, 
estimation, and planning. Without an explicit and carefully defined architecture, risk 
assessment and mitigation is infeasible.  
 
The importance of SA here is two-fold: first, it is of critical importance for the test-bed 
itself; second, it is important for NASA and the software systems to be used in coming 
missions. It is of particular importance for the testbed technology, because it provides a 
means—using a product-line architecture—of quickly responding to the needs of new 
testbeds. Engineering the testbeds into a product-line framework will give NASA an even 
more agile and cost-effective capability for evaluating new technologies, designs, and 
engineering processes for exploration missions. 
 
Within NASA itself there is a recognition that software architecture is a critical 
ingredient in its software-intensive systems. In the Fall of 2003, the Texas Tech 
Workshop on NASA Control Architectures determined that the architectures discussed 
have not been formally studied—an important precursor to understanding and mitigating 
risk. Since that time, effort has been put into organizing the elements of control systems 
better. This improved organization together with the use of the industrial-proven 
techniques mentioned below allows for a more-refined deployment of capabilities of 
varying complexity, making it easier to develop, verify, and maintain control systems. 
 
Four software-architectural themes are important for mission-software developments: 
  
1. software architecture as an industry best practice; 
  
2. software architecture as a development-coordination principle; 
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3. product-line architecture as an engineering mechanism for managing diverse but 
related software-intensive systems; and 
  
4. model-based, self-managing software architectures as a promising mechanism for 
mission support. 
  
Just as software architecture plays a critical role in the development and evolution of all 
successful complex systems, software architects play a fundamentally important role in 
the development and evolution of such systems. They structure and integrate the system 
in both the technical and the political sense. 
  
Architecture-driven development is widely considered to be a best practice in industry. 
AT&T/Lucent, for example, defined the requirements that had to be satisfied by various 
development processes to be considered in the best-practice class of processes. The most 
critical of those process requirements was the need for an architecture-driven 
development and evolution process. Indeed, studies have shown [5] that architecture-
driven development and evolution results in faster development and higher quality. 
  
Furthermore, empirical studies have shown [5] that a software architecture is a critical 
element in coordinating distributed development and evolution of software systems. The 
architectural interfaces, in particular, become the critical coordinating element in 
developing software systems by geographically separated teams, organizations, and 
companies. A prime advantage of such an organizing structure is that the different 
participants can use independent operating environments—they do not need to have the 
same processes and tools. Nor do they need to have the same project-management and 
-quality structures. Architecture-based coordination can accommodate different cultures 
and organizational structures. (See, for example, [5].) 
  
Real-world software-engineering projects have demonstrated repeatedly that the product-
line architecture approach can be extremely useful for building and evolving diverse 
systems. For example, one industrial project [6] used the product-line concept to create a 
reference architecture that represented an extremely diverse set of architectures, ranging 
from a simple centralized system to a complex, distributed multi-processor system. By 
focusing the reference architecture on critical issues, collecting the common components 
into an asset base for the individual architectures, and explicitly managing individual-
product diversity, product-line architecture could provide a cost-effective mechanism for 
related NASA software-intensive systems. 
  
In the workshop on Software Engineering Technology, held at the Lunar and Planetary 
Institute in April 2004, the development of model-based approaches that automatically 
discover correct algorithms and solutions from very high-level specifications was 
recommended as necessary for the anticipated exploration missions, which are less pre-
scripted than previous missions. They will, therefore, require the rapid development of 
capabilities between—and possibly even during—missions. Not only will model-based 
approaches reduce the risk associated with software, they will allow for new approaches 
to risk management focused on the capability level rather than the software level.  
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These model-based and product-line approaches then provide the foundation for self-
managing architecture, a highly promising (if not yet fully proven) concept that may 
become fundamentally important. Exploration missions, which will be long-lived and 
will frequently have significant communication latency, need on-board software-
intensive systems that can dynamically manage repair and reconfiguration without the 
presence of a highly knowledgeable software staff. The flight team can concentrate on 
other critical mission issues while the self-managing architectures concentrate on keeping 
the systems fully functional and available. 
 

III. Example Architecture Testbed 
In a companion paper [7] we present a language architecture for the rapid development of 
flight- and mission-control software. The architecture grew out of the observation that 
although the controls architectures, 3-T, CLARAty, and MDS, have worked well in the 
past, a formal understanding of the architectures had not been developed. The Texas Tech 
architecture also grew out of the observation that future systems will require continual 
modification in order to respond to unforeseen emergencies and exploration 
opportunities. The components of the language architecture are shown in Figure 1. 
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Figure 1. Language Architecture and Its Planned Environment. 
 
 
The CSM, SequenceL, and A-Prolog [8, 9, 10, 11, 12] languages have been developed by 
the Declarative Language Group at Texas Tech University. The A-Prolog effort has 
resulted in a high-level language in which onboard systems can be modeled. For 
example, working with United Space Alliance, the group has developed the USA-
Advisor. This system includes a model of the Reaction Control System and is capable of 
finding in a matter of seconds, provably correct work-arounds in the presence of multiple 
subsystem failures. Systems such as these will need to be deployed onboard future 
missions to provide some of the mission-control capabilities when time delays will make 
it difficult to communicate with the ground when certain emergencies occur. 
 
The SequenceL language [13, 14, 15, 16] is a Turing-complete executable requirements 
language. We are currently using it to develop the Shuttle Abort Flight Management 
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System requirements (SAFM). Although SAFM, is already in final revisions, the 
SequenceL effort will provide a testbed to show that in the future it may be unnecessary 
to develop costly and time-consuming programming-level implementations of prototype 
Guidance, Navigation, and Control systems. Instead, through the use of the concise 
SequenceL language, simple requirements can be formulated and then executed in the 
language architecture. The SequenceL language translator automatically discovers much 
of the control-structure content of the algorithms satisfying the requirements.  
 
Many prototype validation tasks can be accomplished using SequenceL in isolation. 
However, to move the system requirements into a testbed environment requires the CSM 
language, which facilitates I/O for A-Prolog and SequenceL. This language is the only 
part of the Texas Tech language suite that allows for assignment to variables. It is based 
upon Gurevich’s [17] abstract state machines. The language provides only the concurrent, 
conditional control of input-output. CSM is extremely small, invoking SequenceL for 
computations and A-Prolog for deliberation. Since it is small and based upon an excellent 
semantic foundation, the major difficulties involved in verifying traditional procedural or 
Object-Oriented codes are avoided. SequenceL produces the lion’s share of the resulting 
programs, but does so in such a way as to prevent the programmer from having to write 
much of the error-prone nested control structures. Instead SequenceL discovers the 
correct control structures automatically. 
 
We plan to use the Testbed Engineering Platform to create testbeds to facilitate the 
evolution of the SequenceL/CSM requirements—providing high-fidelity simulations 
prior to committing the developed systems to the more costly simulators at Johnson 
Space Center. In other words, the testbeds will provide Texas Tech researchers with the 
ability to evaluate their results at the university, prior to more extensive testing in the 
Shuttle Engineering Simulator at JSC. More generally, our architecture testbeds will 
evaluate and improve both the SequenceL language concepts and compilers for 
generating efficient, maintainable implementations. 
 

IV. Future Plans 
In the following, we describe testbed projects currently under development or discussion. 
Depending on funding, some subset of these will emerge as full-blown testbeds over the 
next several years: 
 
1. Identifying weak points in software-intensive exploration systems for thorough testing. 
Testbed evaluation of new architectural principles, algorithms, and technology employed 
on a software project will help make Verification & Validation more productive by 
identifying the weak points that need to be investigated in implementation testing. We’ve 
explored all of these issues on previous testbeds but not yet for the purpose of localizing 
potential problems in a final implementation. This project should lead to a new problem-
driven approach to V&V. 
 
2. Debugging of very complex asynchronous systems. Debugging of asynchrony is 
notoriously difficult, because you cannot obtain an instantaneous snapshot of the global 
state without “freezing” the system and eliminating its asynchrony. Testbeds that abstract 
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away the clutter will help pinpoint likely problem areas in the implemented system and 
make debugging simpler (though certainly not simple).  
 
3. Software reuse and integration of systems with other complex systems. We will 
investigate and evaluate proposed integration styles at decreasing levels of abstraction on 
a systematic succession of testbeds.  
 
4. Fault tolerance. We plan to use testbeds to adapt and mature novel approaches to fault 
tolerance such as self-healing and self-stabilizing systems. 
 
5. Tolerating communication latencies. The existence of significant communication 
latencies implies at least two interesting problems. Exploration systems will require: (1) 
various kinds of autonomy; and (2) out-of-phase software components to work together 
efficiently. We will evaluate autonomy claims using flight and robotics testbeds. We’ve 
explored time-criticality in other testbeds and will apply lessons-learned on testbeds 
when latencies are in minutes rather than seconds. 
 
6. Minimizing the number of software upgrades, because of the danger of mid-flight 
changes. You minimize the need for upgrades through a careful engineering process. 
We’ve already shown that testbeds provide the right controlled environment for exploring 
new engineering techniques (for example, our Dependable Real-Time Software testbed). 
 
7. Making software upgrades fail-safe. This is a primary application of testbeds, and we 
plan to use testbeds to evaluate formal approaches to failure-proofing. 
 
8. On-board ability to repair software for working around in-flight problems. 
“Testbedding” to identify and solve in-flight problems in real time by combining data 
from testbed evaluations and V&V testing is an exciting idea. It could have great value in 
long-lived exploration missions. 
 
9. Hardware could be years out-of-date by the time a mission reaches Mars. We will use 
testbeds to evaluate software renderings of new functionality that would otherwise be 
implemented in hardware. Realistic testbeds will help us understand the special stresses 
on the implementations. 
 
10. Minimizing communication. We need new approaches to communication 
minimization, given the massive amount of science data generated and the limited 
bandwidth. We plan to put together testbeds for evaluating new data-compression and 
communication-protocol ideas as they emerge. 
 
11. Maturating and evaluating new approaches to software architecture. Because the 
exploration missions will last into the distant future, they must use leading-edge (but not 
bleeding-edge) architectural styles. Therefore, they need rigorous testbed evaluations of 
the applicability and efficacy of new architectures. For example: (a) Service-oriented 
architectures of the type we are helping build for Integrated System Health Management. 
(b) Advanced fault-tolerant architectures. (c) The product-lines architectural approach, 
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now widely used in industry, which enables the generation of individual “products” from 
a generic and common architectural base. 
 
12. In particular, developing architectures for long-lived mission software. Exploration 
software will be much longer-lived than for other manned missions. This is both an 
engineering-process and a fault-tolerance issue. We are developing testbeds, such as the 
SequenceL testbeds described previously, to evaluate and certify the new ideas. 
 
13. Integrating human and technology activities that occur at great distances or in hostile 
environments. Well-instrumented testbeds are also the right framework for evaluating 
computer-human interfaces, because of the ease of data collection from experiments. 
 
14. Prototyping, from requirements to implementations. We use testbeds to prototype at 
every stage of the development to answer such questions as: Is this requirement 
achievable with the resources envisioned? Does this architectural style meet the specified 
reliability needs (again, cost-effectively)? Is this programming language appropriate 
under precisely specified constraints? Do these algorithms perform as required? Our 
Dependable Real-Time Software and Dependable Automated Air-Traffic Management 
testbeds are good examples that we plan to elaborate. 
 
15. Determining whether a technology meets human-rating requirements. To evaluate 
whether a space software system has the right design features for protecting astronauts 
and recovering from emergencies, we plan to create evaluation testbeds and measure the 
results of critical scenarios, both emergency and routine. Again, because of the 
exceptional level of instrumentation and the ease of data collection, our testbeds are well 
suited for determining and documenting whether a software technology: (a) tolerates two 
failures; (b) properly monitors critical functions and informs the crew of problems; (c) 
detects, isolates, and recovers from faults; and (d) has the appropriate capability for 
autonomous operation of critical functions. 
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