
1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

focus
Integrating COTS into the
Development Process

B
uilding and evolving software systems is an arduous, costly,
lengthy, and complex task. The resulting systems are similarly
complex. We’re thus constantly searching for ways to reduce
such costs, time, and complexity while increasing system func-

tionality and quality. Not surprisingly, our quest for “silver bullets,” as de-
scribed by Frederick Brooks back in 1987,1 hasn’t produced significant

guest editors’ introduction

Alexander Egyed, Teknowledge Corp.

Hausi A. Müller, University of Victoria, Canada

Dewayne E. Perry, The University of Texas at Austin

improvements. Instead, we’ve achieved steady,
incremental improvements in the enterprise of
building and evolving software systems.

The complexity of “simple”
One strategy that seemed promising when

Brooks wrote his article was the notion of
“buy not build.” Using COTS products is one
way to implement this strategy, because soft-
ware development then becomes the process
of “simply” integrating COTS components.
However, it turns out that dealing with COTS
is a high-risk activity for a variety of reasons.

The initial manifestation that integrating is
something other than a simple integration ac-
tivity appears in the form of the architecture
mismatch problem.2 COTS components make
several assumptions about architectural issues.
Then, when these assumptions conflict or don’t
match, the simplicity of using COTS quickly
disappears in a cloud of complexity and inte-
gration scaffolding. The root of the problem is
the lack of access to the components’ source
code and developers.

Moreover, we seldom find ourselves in a
pure COTS component integration environ-
ment, because we usually use a hybrid of spe-
cially developed components mixed with
COTS components or products. Thus, instead
of an endgame activity, using COTS products
becomes an integral part of the entire software
development life cycle. It transcends social,
economic, and development concerns and af-
fects all traditional aspects of software develop-
ment—requirements engineering, architecture,
design, implementation, testing, and long-term
maintenance.

Over the past decade, data- and control-
integration mechanisms and standards have
matured significantly. Moreover, COTS prod-
ucts have become end-user programmable,
extensible, and interoperable. Although we
shouldn’t hype the combination of these im-
provements as a silver bullet, they have led to
new avenues for incorporating COTS into
software systems.

Innovative COTS integration
The idea for this special issue of IEEE Soft-

ware grew out of two recent COTS work-
shops. The first was the International Work-
shop on Incorporating COTS into Software
Systems (IWICSS), held at the International
Conference of COTS-Based Software Systems

(ICCBSS 2004). The motivation behind IWICSS
was to address the integration of COTS into the
entire development life cycle. The second was
the Fourth Workshop on Adoption-Centric
Software Engineering (ACSE), held at the Inter-
national Conference on Software Engineering
(ICSE 2004). The motivation behind the series
of ACSE workshops was to investigate how to
extend COTS products to build software engi-
neering research tools. Users are more likely to
evaluate and adopt such research tools if they’re
already familiar with the host COTS, so we
need to leverage the COTS products’ function-
ality, cognitive support, and interoperability.

The focus articles in this issue explore in-
novative ways of integrating COTS products
into software systems for purposes often
unimagined by their creators. They investigate
the challenges, risks, and benefits of building
COTS-based software systems.

“An Active Architecture Approach to
COTS Integration,” by Brian Warboys, Bob
Snowdon, R. Mark Greenwood, Wykeen Seet,
Ian Robertson, Ron Morrison, Dharini Bala-
subramaniam, Graham Kirby, and Kath
Mickan, presents a mechanism for recognizing
COTS products as integral parts of any infor-
mation system’s environment. The authors’
ArchWare framework addresses the integra-
tion problems of COTS and other components
using an active architectural model that cap-
tures the composition and integration of these
elements and changes as the system evolves.
The goal is to manage both the predicted and
emergent changes that result from using
COTS components as elements in a system’s
architecture.

Addressing the critical issue of coordinating
COTS components is the focus of the next arti-
cle, “Coordinating COTS Applications via a
Business Event Layer,” by Wilfried Lemahieu,
Monique Snoeck, Frank Goethals, Manu De
Backer, Raf Haesen, Guido Dedene, and
Jacques Vandenbulcke. Recognizing the need
for a dynamic structure within which compo-
nents can execute and interact, the authors
raise the level of the coordination mecha-
nisms. Moving away from the message-
oriented middleware prevalent today, the au-
thors use a more appropriate level of abstrac-
tion—namely that of business events. These
events reside in the problem space and provide
an appropriate domain-specific model for co-
ordination and concurrent execution.

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 1 7

Using COTS
products

transcends
social,

economic, and
development
concerns and

affects all
aspects of

development.

Another prominent issue in software systems
is performance, which is typically addressed at
the architecture, design, and implementation lev-
els. Maximizing performance usually requires
making trade-offs in the various components
when the code is available for manipulation, but
this is difficult with COTS components. In “Per-
formance Techniques for COTS Systems,” Erik
Putrycz, Murray Woodside, and Xiuping Wu use
new tracing techniques as the basis for building
performance models of COTS components.
These models can then be used when reasoning
about performance trade-offs in the architecture
planning, design, implementation, and deploy-
ment stages of built systems incorporating COTS
components.

A variety of issues are involved in selecting
appropriate components for a system, whether
they’re pre-existing product-line assets, COTS
components, or COTS products. As in per-
formance, the problem is exacerbated by the
fact that the code isn’t available for evaluation

the way it is for other assets that we use and
reuse. In “Evaluating COTS Components De-
pendability in Context,” Paolo Donzelli, Mar-
vin Zelkowitz, Victor Basili, Dan Allard, and
Kenneth N. Meyer provide an empirical
COTS evaluation process that addresses risk
issues by focusing on the context in which the
component will be used. A case study illus-
trates their approach.

Traditional process models assume that de-
velopment and evolution processes are largely
based on a fresh beginning and internal con-
trol of the architecture, design, and source
code. Based on their experiences of empirically
analyzing COTS-based applications, in
“Value-Based Processes for COTS-Based Ap-
plications,” Ye Yang, Jesal Bhita, Daniel N.
Port, and Barry Boehm describe a set of value-
based processes to minimize the risks of inte-
grating COTS components into an applica-
tion. They provide guidelines, an associated
framework, and a set of processes to support
COTS-based application development.

I n the future, COTS products will play an
increasingly important role in not only
software product engineering but also

software engineering tool development. Over
the past decade, we’ve witnessed a consolida-
tion of data, control, and presentation integra-
tion techniques, which will significantly ease
the integration difficulties of COTS. Investigat-
ing the challenges and risks involved in lever-
aging COTS products in systems and tools will
be a hot research topic for years to come.

References
1. F.P. Brooks, “No Silver Bullet: Essence and Accidents of

Software Engineering,” Computer, vol. 20, no. 4, 1987,
pp. 10–19.

2. D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
Mismatch or Why It’s Hard to Build Systems out of Ex-
isting Parts,” Proc. 17th IEEE/ACM Int’l Conf. Soft-
ware Eng. (ICSE 95), IEEE CS Press, 1995, pp.
179–185.

1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Alexander Egyed is a research scientist at Teknowledge Corp. His research interests in-
clude requirements engineering, incremental and iterative software modeling (transformation
and analysis), traceability, and simulation. He received his PhD in computer science from the
University of Southern California. He’s a member of the IEEE, IEEE Computer Society, ACM, and
ACM SIGSOFT. Contact him at Teknowledge Corp., 4640 Admiralty Way, Ste. 1010, Marina Del
Rey, CA 90292; aegyed@ieee.org.

Hausi A. Müller is a professor of computer science and director of the Bachelor of Soft-
ware Engineering Program at the University of Victoria, Canada. He is also a visiting scientist at
the Center for Advanced Studies at the IBM Toronto Laboratory and the Carnegie Mellon Soft-
ware Engineering Institute. He’s a principal investigator and chair of the technical steering com-
mittee of Canada’s Consortium for Software Engineering Research. His research interests include
investigating methods, models, architectures, and techniques for autonomic computing applica-
tions. He also concentrates on building adoption-centric software engineering tools and on mi-
grating legacy software to autonomic and network-centric platforms. He received his PhD in
computer science from Rice University. He’s on the editorial board for IEEE Transactions on Soft-
ware Engineering and is vice chair of the Technical Council on Software Engineering. He’s also a member of the IEEE and
ACM. Contact him at hausi@cs.uvic.ca.

Dewayne E. Perry is a professor and the Motorola Regents Chair in Software Engi-
neering in the Department of Electrical and Computer Engineering at the University of Texas at
Austin. His research interests include rigorous empirical studies, transforming requirements into
architecture, architecture modeling and evaluation, and program analysis. He received his PhD
in computer science from Steven’s Institute of Technology. He’s a member of the IEEE and ACM.
Contact him at The Univ. of Texas at Austin, Electrical and Computer Eng. Dept., Mailstop
C0803, Austin, TX 78712; perry@ece.utexas.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

