
Architecture and Design Intent in Component & COTS Based Systems

Dewayne E Perry and Paul S Grisham
Empirical Software Engineering Laboratory (ESEL)

ECE, The University of Texas at Austin
{perry,grisham}@ece.utexas.edu

Abstract

Architecture and design intent are critical elements
in the development and evolution of software systems.
They are critical in two ways. First, there must be a
shared understanding of them to adequately and
effectively build and evolve our systems. Second, this
shared understanding is needed to coordinate the
various developers and teams of developers, especially
in evolving our systems. The lack of access to internal
implementation details makes the issue of architecture
and design intent even more critical in COTS and
component based systems. We explore the issues
involved in supporting the reification and use of
architecture and design intent, discuss a selection of
approaches, and present some ideas we have about its
use in both planned and agile contexts.

1. Introduction

In creating software systems we make choices
throughout the entire development process with certain
intent in mind. We select objects and processes from
the problem domain and exclude others because we
have a certain intent as to the focus of the problem we
want to solve. In our specification of the requirements
we try to capture the intent we have in mind relative to
the problem we want to solve. We choose one
architecture over another because of some intent that
favors the one over the other. We use specific
algorithms and data structures because of specific
design intent; we use specific representations for
similar intentional reasons.

When we create a product or a component, we also
have an idea of how we intend it to be used and
express that intent in the documentation as well as in
the interface descriptions. Our intent may be specific
or general relative to the product or component.
Certainly when we use a specific product or
component we do so intentionally. Moreover, our

intent is often directed to only a part of what the
product or component provides. Seldom do we rely on
the entire functionality of that component or product.
The mere fact of use only conveys a small part of our
intent.

This problem of intent is compounded when we use
COTS or other components where the internal details
are unavailable for use in the discovery process. In
these cases, architectural mismatch [11] poses a
significant problem. There are often conflicting intents
relative to the control and use of resources, how
interactions are controlled and managed, what the
nature of the global architecture is, and how things are
to be constructed and in what order.

And, of course, in evolving our systems and
components we are dependent on understanding the
original intentions that led to the current state that we
need to change. Indeed, we spend as much as 80% of
our time in discovery or rediscovery in legacy systems
[9]. Much of this time is spent trying to determine the
original intent of the architecture, design and code.

In one person or very small group developments,
understanding issues of intent rarely pose much of a
problem. However, even there problems can arise from
when the underlying intent is forgotten or
misunderstood. Most of our developments, however,
are not of these very-small group-variety but range
from tens to hundreds to thousands (in extremely large
projects) of developers.

Coordination of multiple developers, then, is a
fundamental problem we face when creating or
maintaining a software system. Software engineering
involves developing correctly functioning software,
despite uncertain requirements, languages and tools
that do not always relate to the problem domain, and
an environment with conflicting priorities, policies,
viewpoints, and expectations for the product.
Technology, market forces, and the problem domain
constantly evolve, leading to changes in the underlying
assumptions behind the software development.

Software developers and managers rely on many
technologies and processes to manage change.
However, the core problem is how to capture, express,
and utilize intent. Intent is critical in coordinating a
team of developers so that team development is
choreographed effectively and economically. Intent is
critical in evolving a software system from one release
to another so that the original intent is maintained
while new intentions are added, or so that only the
appropriate intent changes where the system needs to
be corrected or improved. Intent also facilitates reuse
of system assets, such as code modules or components,
by allowing developers to compare the context of the
original intent of the asset to the current problem.
Without this necessary coordinating intent, we set
ourselves up for failure in system creation and
evolution.

Traditionally, intention has been conveyed by
means of documentation artifacts, such as system
requirements, architecture, design, code, test
documentation, and user documentation.
Documentation is often voluminous, ambiguous,
incomplete and out of date. For instance, Brooks’
report [8] on the OS360 project described how 6
months of the project workbook measured 5 feet and
daily change distributions averaged 2 inches. In one
release of AT&T/Lucent’s 5ESS system [28] 11.8% of
the design and implementation faults were due to
ambiguous requirements and design. An additional
30.6% of the design and implementation faults were
due to incomplete or omitted requirements or design.
That is, 42.4% of the root causes of design and
implementation faults were ambiguity and
incompleteness – traditional problems of
documentation.

The primary benefit of documentation is that it
provides a shared model of intent. Requirements
documents provide a shared model of the problem [16]
to be solved and what the customer wants.
Architecture documents provide a shared model of the
basic structure of the solution (the machine), the
constraints on the various components and their
interactions, etc. Design and code documentation
provide shared models of the machine in greater detail.
These shared models are what provide the coordination
mechanism in building and evolving software
systems.In creating software systems we make choices
throughout the entire development process with certain
intent in mind. We select objects and processes from
the problem domain and exclude others because we
have a certain intent as to the focus of the problem we
want to solve. In our specification of the requirements
we try to capture the intent we have in mind relative to
the problem we want to solve. We choose one

architecture over another because of some intent that
favors the one over the other. We use specific
algorithms and data structures because of specific
design intent; we use specific representations for
similar intentional reasons.

When we create a product or a component, we also
have an idea of how we intend it to be used and
express that intent in the documentation as well as in
the interface descriptions. Our intent may be specific
or general relative to the product or component.
Certainly when we use a specific product or
component we do so intentionally. Moreover, our
intent is often directed to only a part of what the
product or component provides. Seldom do we rely on
the entire functionality of that component or product.
The mere fact of use only conveys a small part of our
intent.

This problem of intent is compounded when we use
COTS or other components where the internal details
are unavailable for use in the discovery process. In
these cases, architectural mismatch [11] poses a
significant problem. There are often conflicting intents
relative to the control and use of resources, how
interactions are controlled and managed, what the
nature of the global architecture is, and how things are
to be constructed and in what order.

And, of course, in evolving our systems and
components we are dependent on understanding the
original intentions that led to the current state that we
need to change. Indeed, we spend as much as 80% of
our time in discovery or rediscovery in legacy systems
[9]. Much of this time is spent trying to determine the
original intent of the architecture, design and code.

In one person or very small group developments,
understanding issues of intent rarely pose much of a
problem. However, even there problems can arise from
when the underlying intent is forgotten or
misunderstood. Most of our developments, however,
are not of these very-small group-variety but range
from tens to hundreds to thousands (in extremely large
projects) of developers.

Coordination of multiple developers, then, is a
fundamental problem we face when creating or
maintaining a software system. Software engineering
involves developing correctly functioning software,
despite uncertain requirements, languages and tools
that do not always relate to the problem domain, and
an environment with conflicting priorities, policies,
viewpoints, and expectations for the product.
Technology, market forces, and the problem domain
constantly evolve, leading to changes in the underlying
assumptions behind the software development.

Software developers and managers rely on many
technologies and processes to manage change.

However, the core problem is how to capture, express,
and utilize intent. Intent is critical in coordinating a
team of developers so that team development is
choreographed effectively and economically. Intent is
critical in evolving a software system from one release
to another so that the original intent is maintained
while new intentions are added, or so that only the
appropriate intent changes where the system needs to
be corrected or improved. Intent also facilitates reuse
of system assets, such as code modules or components,
by allowing developers to compare the context of the
original intent of the asset to the current problem.
Without this necessary coordinating intent, we set
ourselves up for failure in system creation and
evolution.

Traditionally, intention has been conveyed by
means of documentation artifacts, such as system
requirements, architecture, design, code, test
documentation, and user documentation.
Documentation is often voluminous, ambiguous,
incomplete and out of date. For instance, Brooks’
report [8] on the OS360 project described how 6
months of the project workbook measured 5 feet and
daily change distributions averaged 2 inches. In one
release of AT&T/Lucent’s 5ESS system [28] 11.8% of
the design and implementation faults were due to
ambiguous requirements and design. An additional
30.6% of the design and implementation faults were
due to incomplete or omitted requirements or design.
That is, 42.4% of the root causes of design and
implementation faults were ambiguity and
incompleteness – traditional problems of
documentation.

The primary benefit of documentation is that it
provides a shared model of intent. Requirements
documents provide a shared model of the problem [16]
to be solved and what the customer wants.
Architecture documents provide a shared model of the
basic structure of the solution (the machine), the
constraints on the various components and their
interactions, etc. Design and code documentation
provide shared models of the machine in greater detail.
These shared models are what provide the coordination
mechanism in building and evolving software systems.

2. Managing Evolutionary Systems

The kinds of systems we are generally interested in
are evolutionary systems. Lehman & Belady [21] tell
us that these systems are in a constant state of change.
Requirements change, technologies change, and the
systems themselves change the operating environments
they were originally designed to operate within

change. For any reasonably sized problem, the system
has evolved at least once before the initial version of
the system can be deployed.

During the traditional software development cycle,
requirements are reified into an architecture which
influences the design and eventually guides the coding
process. In practice, it is often only the code that is
kept current with respect to the state of the problem
domain. Code is the desiccated relic of a long decision-
making process during which various design trade-offs
and decisions about functional and non-functional
requirements are made. Unfortunately, in the process
of abstracting actual requirements into models and
converting those models into code, only the end result
of the design process is reflected in the code, leaving
intent to be represented in the external documentation.
It is difficult, if not impossible, to reconstruct the
thought process which generated the resulting system
from the requirements. As a consequence it is not clear
how requirements changes impact the system. As
system requirements become more complex, we look
for ways to manage these changes and deliver high-
quality, high-value systems to our customers.

3. Modeling Design Rationale and Intent

An early approach to capturing design rationale and

intent is to be found in the Potts and Bruns [30]
generic model for delineating the generic elements of a
design rationale. These elements include artifacts,
issues, alternatives, justifications and the relationships
among them. A design deliberation is represented by
an issue, a set of alternatives and a justification for the
determined decision. This deliberation process begins
with an initial design represented as an artifact, which
raises one or more issues about the evolving design.
These issues lead to a discussion of various
alternatives, one of which is selected on the basis of a
justification and which yields a new or evolved
artifact. The process iterates until all issues have been
resolved and all the necessary design artifacts have
been created and reached a stable state. The result is a
design history that can be used as the basis for
evolving the design as needed by changing
requirements, etc.

While the Perry/Wolf [29] software architecture
model explicitly (first in 1989, about the same time as
the work of Potts and Bruns mentioned above) called
for rationale in addition to elements and form, the
focus of research has been primarily architecture
description languages to describe components and
form.

An exception to this is the work of Gruenbacher,
Egyed and Medovitch [12, 13]. Support for
architecture decisions is introduced in their CBSP
(Component, Bus, System, Property) model to bridge
the gap between requirements and architectures using
intermediate models. The intermediate CBSP model
captures architectural decision in terms of CBSP
dimensions: components (C), bus/connectors (B),
system-wide features (S), component properties (CP),
bus properties (BP), and system or subsystem
properties (SP). CBSP provides a lightweight way of
transforming requirements into architectures “using a
small but extensible set of key architectural concepts”
as well as a high degree of control over this
transformation process. For example, bus properties
include: synchronous, asynchronous, local, distributed,
and secure. Given these bus properties we can
characterize their usefulness with respect to various
well-known styles. For example, synchronous
connectors provide extensive support for a client
service style but virtually no support for a pipe and
filter style.

More recently, Bosch [4] has lamented the general
lack of support for architecture rationale. Among the
problems he sees that need to be solved are the
following: design decisions are not first class entities;
design decision are often cross cutting and intertwined;
design rules are easily violated; obsolete design
decisions and their artifacts are rarely removed; and
high maintenance costs result because of these
problems. He then claims that we should, as a
community, “take the next step and adopt the
perspective that that a software architecture is,
fundamentally, a composition of architectural design
decisions.” Dueñas and Capilla [10] responded to this
exhortation by proposing a “set of elements,
information and graphical notations to record the
decisions during the modeling process” and thus
“detail the idea of considering the architecture as a
composition of architectural design decisions.”

4. Intent in the Face of Change and
Uncertainty

One of the major problems in trying to capture and
maintain architecture and design decisions and intent is
the context of uncertainty. No matter how hard we try
to keep our development context constant and without
change, change and the resulting uncertainty is a
fundamental fact of development life. Indeed, change
and uncertainty are interdependent, each causing the
other.

Requirements uncertainty and change often have far
reaching effects, especially if they occur in or persist
until the later stages of a development project.
Technology changes may have significant impact on
developments, at times rendering them obsolete while
at other times making their development simpler by an
order of magnitude. Environmental and business
changes can create significant uncertainty and further
change as well.

While late binding is a superb technique to create
dynamically adaptable systems, the uncertainty of
deferred design decisions can cause significant
problems if not handled and managed well. And it is
unfortunately the case that we often have to delay
decisions until we find a useful rationale for resolving
those deferred decisions.

Thus, we as architects and designers face significant
uncertainty and change in the process of attempting to
build and evolve a stable product. The methods,
techniques, processes and tools needed to support our
design decisions and convey our architectural and
design intent need to be robust and usable in the face
of constant change and uncertainty. It is in this rich
problem context that we want to find useful and
practical solutions to ease the job of the software
engineer in creating and evolving complex software
systems. We believe that intent is a means that will
provide this ease.

5. Applying Intent to Manage Evolution

We are currently looking at how to create formal
and semi-formal representations of intent as a means of
documenting requirements and their relationships to
the resulting software system, and testing these
representations in two domain areas: a traditional,
planned development with architectural design, and an
agile software development based on Extreme
Programming. We believe that by demonstrating the
efficacy of intent-based models in such disparate
development domains, we can generalize our results to
many other software engineering domains and
processes.

We are developing a design approach called
Rationale Reification [14] that utilizes formal models
of architectural rationale to represent the architect’s
intent in transforming requirements into system
architectures. The approach will support iterative
modeling of requirements, reified rationale, and
abstract (that is, prescriptive) architectures. We are
using ontological models of intent and developing tool
support for visualizing and configuring architectural
components with intent. This approach allows

designers to identify emergent changes and reuse
elements from requirements, rationale, and
architectures.

We believe that agile software development
methods can benefit greatly from intent-based
requirements modeling. Our approach is a technique
called Intent-First Design that is analogous to the
approach known as Test First Design. Intent First
design provides developers with a means of
embedding comprehensible, maintainable, and
lightweight requirements models into the source code.
The approach uses semi-formal models of intent to
capture problem domain requirements in terms of
goals. Code is enriched with links between models and
code assets, and tool support facilitates maintenance
and validation of these links. Version management of
both code and requirements is classified and organized
with respect to rationale and intent changes.

6. Initial Approaches

6.1 Perry/Wolf Architecture Model

The Perry/Wolf [29] model of software architecture
focused on capturing basic structural intention. The
Perry/Wolf model defines a software architecture as
elements, form, and rationale. Components and
connectors are the basic architectural elements. Form
prescribes the properties of the elements, their
relationships with each other, and constraints on the
elements and relationships. Rationale provides the
justification for both the elements and the form.
Architectural styles are the implicit mechanism by
which basic aspects of intent are captured. Rationale
and style are critical in managing evolutionary
systems.

6.2 Inscape

The Inscape Environment [23-25] bases its
constructive approach to managing the relationship
between implementations and their interfaces on
formal interface specifications and a propagation logic
[26]. We use the term constructive in the sense that as
each piece of the implementation is constructed,
Inscape maintains the semantic interconnections based
on constraint satisfaction. The formal interface
specifications can be viewed as pre-conditions, post-
conditions, and obligations (constraints that must be
eventually satisfied to guarantee correct functionality).
The basic rule about pre-conditions and obligations is
that they must be satisfied within a specific
implementation scope or propagated to the interface of

that scope. There are scoping rules that define the
construct granularity for which the propagation rules
apply. Thus, intent is expressed constructively and is
then reified in the satisfied and propagated
preconditions and obligations.
One of Inscape’s useful extensions to interface
specifications was the possibility of multiple results
(that is, multiple sets of post-conditions and
obligations) that are often useful in representing
multiple normal as well as exceptional results. Inscape
incorporated a set of rules for handling these multiple
results. For practical systems, exceptions are necessary
in building fault tolerant and reliable systems.
Implementation intent is expressed constructively by
choosing the exception handling technique for the
individual exception results.

Another feature of Inscape was constraint-based
retrieval of components [27]. One is able to retrieve
single as well as multiple components on the basis of
their constraints (typically on the basis of their post-
conditions since one usually is trying to satisfy
unpropagated constraints in an implementation).
Unification was added to the basic theorem proving
substrate as a mechanism for accomplishing this task
of intent-based retrieval.

6.3 Architectural Prescriptions

In our work on transforming software requirements
into architectural prescriptions, the intent of the
methods and techniques [5-7, 17-19, 32] used is to
create a constraint-based architectural specification.
The starting point for transforming requirements into
architectural prescriptions is van Lamsweerde's KAOS
goal-oriented requirements specification language
[20]. KAOS’s stratified goals provide a useful way of
expressing multiple levels of requirements intent. We
use the KAOS logical language to specify architectural
intent by means of constraints in the architectural
prescription language Preskiptor. An architectural
prescription then is a means of expressing architectural
intent by means of a set of constraints about the
architecture components and connectors as well as its
structure and form.

Architectural styles are a particularly important
form of constraint codification. Architectural styles (as
defined by [29]) are incomplete architectural
prescriptions that focus on some specific components,
structures, and/or constraints. These styles are then
applied as constraints to components, connectors and
structures. They may be applied to specific elements,
collections of elements or the entire system. In
summary, they capture specific architectural intent.

6.4 Intent-based Architectures

In our WOSS’04 paper [15], we extended current
requirements engineering and prescriptive architectural
approaches by introducing architectural intent as the
key concept that enables the creation of abstract intent-
based architectures. The intent of an architectural
element encapsulates its functional purpose in
unambiguous terms, so that any architectural element
with a given intent may play a given role in the
architecture. Intent-based architectures enable the
system to be defined at higher levels of abstraction
than current approaches, using a requirements-domain,
or problem-domain, language, providing a direct link
from the requirements to the system architecture, and
enabling the same architecture to be reified by one or
more functionally equivalent implementations.

Intent-based architectural prescriptions provide the
basis for our design of a prototype self-configuring
adaptive system that is able to respond to changing
environmental or operational conditions or failures by
reconfiguring itself on the basis of a high-level abstract
understanding of the functional goals and non-
functional constraints of the system., By utilizing the
intent of each available architectural element, we build
new architectural configurations that will enable the
system to perform its required functionality, while
conforming to any non-functional constraints (e.g.,
performance, security, dependability).

7. Using Rationale to Transform
Requirements into Architectures

A key problem with current system architecture and
design practices is that there is no direct connection
between the requirements, the high-level design, and
the implementation. Transforming a set of
requirements into the architecture and design of a
system is basically fundamentally a creative process.
Requirements are usually captured in problem domain
terms using human language, while architecture and
design are defined using implementation domain
constructs (e.g., classes, components, connectors, etc.).
The lack of direct connection between requirements
and architecture not only makes verification of
architectures difficult, but also makes it difficult to
incorporate requirement evolution into existing
architectural designs.

The technical goal of requirements gathering is to
convey to the architects, designers and developers the
intent of the system under development -- that is, to
define the functional purpose of the system by
describing the set of real-world problems that are to be

solved by the system. For the purposes this discussion,
we assume that all the various system drivers such as
user needs, corporate business strategies, etc., are
incorporated into the requirements. However, no
matter how accurately the requirements express the
functional and non-functional intent of the system, the
process of mapping or translating this intent into a
system architecture and design continues to be
problematic.

To date, software architecture research has largely
focused on various aspects of elements and form; the
limited research related to the role of rationale in
architecture has tended toward general, informal
treatments. Rationale is intended to capture the
relationship between requirements and architectural
prescriptions. Reifying the rationale is a critical
element in realizing our general goal of intent-based
systems and intent-based architecture in particular.
Rationale captures the refinements and transformations
used by the architects to transform requirements
specifications into architectural prescriptions. They
provide the formal link between requirements and
architectural specifications.

This intent model of rationale reification provides
the basis for systematic requirements-based evolution,
where changing the requirements (i.e., the intent of the
system) lead to changes to the architectural rationale,
and associated changes in the system architecture. This
means that in rationale-based architecture, the
requirements are a directly connected and primary
source for the system architecture (along with the
rationale derived from the requirements), throughout
the useful life of the system. This approach is different
from the usual situation where the requirements are
usually maintained (if at all) separately from the
system itself.

Rationale reification, then, is an approach that uses
architectural rationale to transform requirements into
an architecture. The rationale determines the mapping
from a set of functional and non-functional
requirements to an abstract architecture taking into
account functional requirements and their
interrelations, non-functional requirements, and
relations between non-functional and functional
requirements. The abstract architecture is defined in
terms of the problem domain terminology of the
requirements, and is a model of the functional intent of
the system as expressed by the requirements. The
abstract elements in the architecture are implemented
by one or more concrete architectural elements. Like
the requirements themselves, this concrete architecture
is related to the abstract architecture according to
intent.

A rationale model represents a formalization of the
mapping from requirements to system architecture.
Rationale reification depends on requirements analysis,
in which the system requirements are divided into
functional goals and non-functional constraints, and
iteratively refined into discrete units of functionality
[33]. The refinement process results in stratified goal
hierarchies, in which higher-level (coarser-grained)
goals are decomposed into lower-level (finer-grained)
goals. Rationale reification relies on this kind of
refinement approach to transform high-level
requirements into functional units that are at the right
level of functional granularity to be mapped across to
existing or newly designed components.

In rationale-based architecture, the rationale model
encapsulates both the semantics and conditions for all
the mappings and transformations from requirements
to architecture, and the reasons for making each
transformation. This enables every functional and non-
functional requirement to be traced to one or more
architectural elements, and also enables every
architectural element to be traced backwards to one or
more requirements. And all the rules and reasons for
architectural mappings and transformations may also
be viewed and refined as needed.

Tool support is an important factor in enabling
software architects and engineers to fully leverage the
benefits of using rationale-based architectures on a
daily basis to design and evolve software systems.
Specific tools include a requirements modeler, that will
enable developers to create, view, and refine the
requirements goals, constraints, and interrelations
among requirements; a rationale modeler that will
enable developers to create, view, and refine mappings
and transformations from the requirements model to a
system architecture; and an architecture modeler,
enabling developers to edit, view, and refine the
architectural model. Finally, an intent modeling and
visualization tool will enable developers to view, edit,
and extend ontologically rich models of functional
intent. Ultimately, to enhance support for flexible
cross-platform implementation configurations based on
abstract rationale-based architectures, as well as
provide better support for self-configuring systems,
additional tools such as a component intent
classification tool would also be desirable to make it
easier for developers to build the necessary metadata
models to support implementation configurations for
rationale-based architectures.

8. Agile Software Development
Environments

Agile software development techniques provide
means for developing software systems in the presence
of changing or uncertain requirements [1]. We
consider agility to refer to how a development activity
responds to change and evolution. There are many
strategies for responding to such changes: feature-
oriented milestones, short iterations with frequent
deliveries, close interactions with the customer, and
deferring design decisions as late as possible. Instead
of emphasizing process-supporting activities,
developers are encouraged to actively resolve
requirements uncertainties through working portions of
software. Studies suggest that that the sooner in the
development process the customer can provide
feedback, the better the product will be in terms of
both customer satisfaction and quality [22].

In one of the most popular agile software
development approaches, Extreme Programming (XP)
[3], requirements are captured in terms of acceptance
and unit test cases that are written by, or with the
assistance of, the customer representative, an approach
referred to as Test-First Design [2]. Test cases are
written before code in order to ensure that the new
requirement is not already satisfied by the current state
of the implementation. Code is written to meet the
minimum needs of the new requirement. As
requirements change, test cases are added or modified.
As code and design change, these test cases can ensure
that the original requirements are met.

These test cases provide a view into the
requirements of an ongoing, evolving project. Unlike
requirements captured formally in a notebook
somewhere, these requirements are living, active
artifacts of the requirements gathering and
development process. Unfortunately, maintaining test
cases over an evolving project in the absence of
information about design intent is just as difficult as
maintaining any other artifact. Unit tests are not
semantically rich enough to capture these design
decisions. Perhaps even more importantly to an agile
development effort, the relationship between
implementation artifacts and rationale can inform
developers about which goals and intentions are still
valid, and which have been abandoned or changed as
the project evolves.

We believe that agile approaches are an ideal
environment for a semi-formal intent annotation
method because they require lightweight, maintainable
documentation of requirements that offer long-lasting
benefit without burdening developers with extra
process tasks. Because many agile software developers
are already incorporating principles of Test-First
Design, we believe that if the intentional model is
sufficiently comprehensible and the tools sufficiently

usable, then Intent-First Design should meld easily
with any agile process.

Moreover, intent, expressed in terms of goals, is an
appropriate abstraction for ensuring quality of test
cases. Goal and intent modeling can help maintain the
evolution of both code artifacts and requirement
artifacts (i.e., the test cases.) Binding intent with code
elements can yield positive benefits in terms of
productivity, quality, and maintainability of software
systems.

We are following the concept of the “programmer’s
assistant” [31] that can provide interactive feedback on
how to model intent and write code that meets the
requirements specified in our intent model. This work
is largely an extension to the previous work on the
Inscape development environment, both with respect
to how Inscape facilitated capturing the semantics of
code, but also with respect to how Inscape emphasized
coordination of software development teams.

The basic environment for Intent-First Design is an
integrated development environment (IDE) with a
language aware editor, plug-in tools to handle the
management and evolution of the intent model,
automation support for testing and validation, and
integration with version management. Tool support for
agile software development with intent is critical for
entering and visualizing the intent-based requirements
for the system, as well as providing a means of
communicating those requirements to the rest of the
team.

Changes to the requirements model, code, or test
cases flag revision notices in the intent model to
inform the developer of potential consistency problems
between code and intent model. In this way, the intent
model, and consequently the requirements, will be kept
up to date with the current state of development.

In order to navigate the wealth of new information
available to the developer and project manager, the
IDE must provide several views into the code. The
code view is view into the traditional program editor
environment, annotated with intent. Intent can be
displayed explicitly, or abstracted through graphical
visual cues. The intent view displays a more
comprehensive view of the state of the requirements as
represented by use stories, features, non-functional
goals, or whatever requirements abstraction is
appropriate to the developer’s process. Code elements
are abstracted down to modules, objects, or whatever
partitioning method the code and programming
language support. Code and intent views are easily
navigable through hypertext links.

The status view presents the intent model with
respect to the current level of implementation and
correctness. In the status view, user requirements can

be prioritized and assigned. The change view is tied to
version management and gives a view of the
requirements and the code in terms of volatility. In the
change view, code and requirements changes can be
expressed in terms of intent, which helps identify
uncertain requirements or unstable code modules.
Intent provides a meaningful abstraction for talking
about the status of the ongoing development effort, and
for placing current efforts in context.

9. Conclusions

Architecture and design intent are a critical
elements in both creating and evolving software
systems. Without a shared understanding of intent it is
all to easy to introduce faults in the software system
and create failures in the development processes. This
problem is exacerbated in the context of COTS and
other components that must be treated as black boxes.
In the context of custom components, we can spend
time (re)discovering and (re)constructing architectural
and design intent using internal details. However, in
the context of COTS components we have less to go
on and hence must have more explicit descriptions to
enable us to use these components both correctly and
effectively.

We have explored some of the issues involved in
supporting the reification and use of architecture and
design intent, discussed a selection of approaches, and
presented some ideas we have about its use in both
planned and agile contexts.

10. Acknowledgements

Some of the work presented here is exploratory
work we have done with Matthew Hawthorne as part
of his preparation for his PhD thesis proposal [14], in
particular that of architecture rationale reification.

11. References

[1] The Agile Alliance. Manifesto for Agile

Software Development. 2001.
http://www.agilemanifesto.org

[2] Beck, K. Test-Driven Development by
Example. Addison-Wesley, 2003.

[3] Beck, K. and Andres, C. Extreme
Programming Explained: Embrace Change.
Addison-Wesley, 2004.

[4] Bosch, J., Software Architecture: The Next
Step. In Proceedings of the First European
Workshop on Software Architecture (EWSA

2004), (St. Andrews, UK, May 21-22, 2004),
194-199.

[5] Brandozzi, M. From Goal Oriented
Requirements to Architecture Prescriptions,
Master's Thesis, Department of Electrical and
Computer Engineering, The University of
Texas at Austin, Supervisor: Perry, D.E.,
2001.

[6] Brandozzi, M. and Perry, D.E., Transforming
Goal Oriented Requirement Specifications
into Architectural Prescriptions. In
Proceedings of the Software Requirements to
Architectures Workshop (STRAW'01),
(Toronto, ON, Canada, May 14, 2001), 54-60.

[7] Brandozzi, M. and Perry, D.E., Architectural
Prescriptions for Dependable Systems. In
Proceedings of the Proceedings of the
International Workshop on Architecting
Dependable Systems (WADS 2002), (Orlando
FL, May 25, 2002), 25-29.

[8] Brooks, F. The Mythical Man Month:
Anniversary Edition. Addison-Wesley, 1995.

[9] Davison, J.W., Mancl, D.M. and Opdyke,
W.F. Understanding and Addressing the
Essential Costs of Evolving Systems. Bell
Labs Technical Journal, 5 (2), August, 2000.
44-54.

[10] Dueñas, J.C. and Capilla, R., The Decision
View of Software Architecture. In
Proceedings of the 2nd European Workshop
on Software Architecture (EWSA 2005), (Pisa,
Italy, June 13-14, 2005), 222-230.

[11] Garlan, D., Allen, R. and Ockerbloom, J.
Architectural Mismatch: Why Reuse is So
Hard. IEEE Software, 12 (6), November,
1995. 17-26.

[12] Grunbacher, P., Egyed, A. and Medvidovic,
N., Reconciling Software Requirements and
Architectures: The CBSP Approach". In
Proceedings of the 5th IEEE International
Symposium on Requirements Engineering,
(Toronto, ON, Canada, August 27-31, 2001).
IEEE, 202-211.

[13] Grunbacher, P., Egyed, A. and Medvidovic,
N. Reconciling Software Requirements and
Architectures with Intent Modeling. Software
and Systems Modeling, 3 (3), August, 2004.
235-253.

[14] Hawthorne, M.J. The Rationale Reification
Approach to Architectural Design in
Software-Based Systems, Dissertation
Proposal, Department of Electrical and
Computer Engineering, The University of

Texas at Austin, Supervisor: Perry, D.E., In
Progress.

[15] Hawthorne, M.J. and Perry, D.E., Exploiting
Architectural Prescriptions for Self-Adaptive,
Self-Managing Systems: A Position Paper. In
Proceedings of the Workshop on Self-
Managed Systems (WOSS’04), (Newport
Beach CA, October 31 - November 01, 2004).

[16] Jackson, M., The World and the Machine
(Keynote Address). In Proceedings of the
17th International Conference on Software
Engineering (ICSE 17), (Seattle WA, April
23-30, 1995).

[17] Jani, D. Deriving Architecture Specifications
from Goal Oriented Requirement
Specifications, Department of Electrical and
Computer Engineering, The University of
Texas at Austin, Supervisor: Austin,
T.U.o.T.a., 2004.

[18] Jani, D., Vanderveken, D. and Perry, D.E.,
Deriving Architectural Specifications from
KAOS Specifications: A Research Case
Study. In Proceedings of the 2nd European
Workshop on Software Architecture (EWSA
2005), (Pisa Italy, June13-14, 2005).

[19] Jani, D., Vanderverken, D. and Perry, D.E.
Experience Report: Deriving Architecture
Specifications from KAOS Specifications.
The University of Texas at Austin, 2003.
http://www.ece.utexas.edu/~perry/work/paper
s/R2A-ER.pdf

[20] van Lamsweerde, A. and Willemet, L.
Inferring Declarative Requirements
Specifications from Operational Scenarios.
IEEE Transactions on Software Enginering,
24 (12), December 1998. 1089-1114.

[21] Lehman, M.M. and Belady, L.A. Program
Evolution: Processes of Software Change.
Academic Press, 1985.

[22] MacCormack, A., Verganti, R. and Iansiti, M.
Developing Products on ‘Internet Time’: The
Anatomy of a Flexible Development Process.
Journal of Management Science, 47 (1),
January 2001. 133-150.

[23] Perry, D.E., Software Interconnection
Models. In Proceedings of the 9th
International Conference on Software
Engineering (ICSE 9), (Monterey, CA, March
30 - April 2, 1987), 61-69.

[24] Perry, D.E., Version Control in the Inscape
Environment. In Proceedings of the 9th
International Conference on Software
Engineering (ICSE 9), (Monterey, CA, March
30 - April 2, 1987), 142-149.

[25] Perry, D.E., The Inscape Environment. In
Proceedings of the 11th International
Conference on Software Engineering (ICSE
11), (Pittsburgh, PA, May 15-18, 1989), 2-11.

[26] Perry, D.E., The Logic of Propagation in The
Inscape Environment. In Proceedings of the
SIGSOFT '89: Testing, Analysis and
Verification Symposium, (Key West FL,
December 13 - 15, 1989), 114-121.

[27] Perry, D.E. and Popovich, S.S., Inquire:
Predicate Based Use and Reuse. In
Proceedings of the 8th Knowledge-Based
Software Engineering Conference (KBSE),
(Chicago IL, September 20-23, 1993), 144-
151.

[28] Perry, D.E. and Stieg, C.S., Software Faults in
Evolving a Large, Real-Time System: a Case
Study. In Proceedings of the 4th European
Software Engineering Conference (ESEC’93),
(Garmisch-Partenkirchen Germany,
September 13-17, 1993), 48-67.

[29] Perry, D.E. and Wolf, A.L. Foundations for
the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17
(4), October 1992. 40-52.

[30] Potts, C. and Bruns, G., Recording the
Reasons for Design Decisions. In
Proceedings of the 10th International

Conference on Software Engineering (ICSE
10), (Singapore, April 11-15, 1988), 418-427.

[31] Rich, C. and Waters, R.C. The Programmer's
Apprentice. Addison-Wesley, 1990.

[32] Vanderveken, D. Deriving Architectural
Descriptions from Goal-Oriented
Requirements, Master's Thesis, Departement
d'Ingenierie Informatique, Universite
Catholique de Louvain, Supervisors: van
Lamsweerde, A. and Perry, D.E., 2004.

[33] Vanderveken, D., van Lamsweerde, A., Perry,
D.E. and Ponsard, C. Deriving Architectural
Descriptions from Goal-Oriented
Requirements Models. 2005.
http://www.ece.utexas.edu/~perry/work/paper
s/R2A-05-damien.pdf

