
On Evidence Supporting the FEAST Hypothesis

and the Laws of Software Evolution

M. M. Lehman, D. E. Perry and J. F. Ramil

Abstract|As part of its study of the impact of feed-
back in the global software process on software product
evolution, the FEAST/1 project has examined metric
data relating to various systems in di�erent application
areas. High level similarities in the growth trends of the
systems studied support the FEAST hypothesis. Inter
alia, the results provide evidence compatible with the
laws of software evolution, subject only to minor ad-
justments of the latter.

Keywords| Laws of software evolution, system dy-
namics, feedback, FEAST hypothesis, E-type systems

1 Introduction

The FEAST/1 project [5] is examining metric and
other records of E -type software systems addressing a
variety of applications. Such systems model the beha-
viour of people and/or machines active in a real world
domain. The system studied include ICL's VME op-
erating system kernel, Logica's FW banking transac-
tion system and a Lucent Technologies real time sys-
tem. All these have been (and continue to be) evolved
by their respective organisations. Their growth over
more than 15 years, in sequences of between 17 and
29 releases, display short and long term trends that
are similar to each other and also to those observed in
the study of OS/360 and three other 1970s systems. It
was study of the latter that led to the �rst �ve laws of
software evolution [3]. On the basis of a recent formu-
lation [6], [8] with some re�nements, this paper restates
the laws and summarises the support provided by ana-
lysis of the above data. Other re�nements are likely to
follow as future studies yield further insight [11].

2 Support for the Laws of Software Evolution

2-1 Continuing Change (I) and Growth (VI)

[I] E-type systems must be continually adapted else they become
progressively less satisfactory.
[VI] The functional content of E-type systems must be continu-
ally increased to maintain user satisfaction over their lifetime.

The �rst and sixth laws re
ect complementary phe-
nomenological interpretations. They are treated to-
gether since in practice, it is di�cult to isolate their

M. M. Lehman and J. F. Ramil are with Imperial Col-
lege of Science, Technology and Medicine, Dept. of Comput-
ing, London SW7 2BZ, E-mail: fmml,jcf1g@doc.ic.ac.uk, tel:
+44 (0)171 594 8214, fax: +44 (0)171 594 8215, http://www-
dse.doc.ic.ac.uk/�mml/
D. E. Perry is with Lucent Technologies, Bell Laboratories,

Murray Hill, NJ 07974, E-mail: dep@research.bell-labs.com, tel:
+1 908 582 2529, fax: +1 908 582 5809, http://www.bell-
labs.com/user/dep/
Grateful thanks are due to our academic and industrial col-

laborators and to the UK EPSRC for their support.

individual contribution to system change and growth
as a system evolves from release to release. Their
separation requires detailed examination of change
records (not always available) and interrogation of
maintenance personnel. Fig. 1 shows the long term
growth trends (system size in modules per release se-
quence number (RSN)) of the above mentioned sys-
tems. These growth plots illustrate the striking sim-
ilarity referred to above, that is, close to linear long
term growth with a superimposed ripple. The devi-
ation from smooth growth is addressed in section 2-5.

0 5 10 15 20 25

2k

4k

6k
OS/360

0 5 10 15 20 25

2.5k

5k

7.5k ICL VME Kernel

5 10 15 20

1.2k

1.8k

2.4k
Logica FW

5 10 15

60k

80k

100k Lucent Sys 1

M
od

ul
es

 RSN

Fig. 1. Software system growth plots

We note that the �rst law discusses system beha-
viour and does not refer to changes in the operational
domain. Such change is inevitable for E -type systems.
It is driven in part by installation and operation of
the system, in part by exogenous forces. This leads
to a need for continuing system adaptation to main-
tain it satisfactory as a model of the application in its
operational (user) domain and so to maintain system
behaviour satisfactory to the user [3].
E -type applications in their operational domains are

countably in�nite in their attributes while the imple-
mentation is �nite, that is bounded, valid only for a
bounded domain. Properties excluded by the bounds
eventually become a source of performance limitation,
irritation and error. These must be eliminated by
adding system capability and functionality to achieve
a satisfactory system [4]. The sixth law follows.

2-2 Increasing Complexity or Entropy (II)

[II] As an E-type system evolves its complexity increases unless
work is done to maintain or reduce it.

The second law arises from both local and global
phenomena. On the one hand, most local enhance-
ments require, inter alia, the insertion of mechanisms
such as calls to new procedures or the insertion of
objects. This adds branch points to the system, in-
creasing its complexity however de�ned. At the other
extreme, functional extension such as the addition of
a new device or a functional subsystem will increase
functional complexity of the system as well as its global
structural complexity. It will also increase complexity
at lower levels because of calls, references, object and
communication links required to achieve functional and
operational integration with the rest of the system.
As systems evolve complexity growth at many levels
is inevitable. Awareness of this, including occasional
maintenance activity speci�cally directed to complex-
ity reduction, is needed if this is to be controlled.
Locally it may be appropriate to recode elements de-
structured through the addition of change upon change
upon change. Globally complexity reduction may be
achievable by architectural restructuring, the creation
of new subsystems and/or the reallocation of function
amongst, modules or subsystems, for example.
In the absence of appropriate metrics consistently

applicable across the systems studied, complexity
change could not be directly measured. The law is,
however, supported by the fact that the growth of
the Logica [14], Lucent Technologies and ICL systems
can be closely modelled by an inverse square relation-
ship [14], [8]. Fig. 2 shows inverse square models (Ap-
pendix) of the three systems, along with a linear least
squares growth model for OS/360. The factors associ-
ated with the discontinuity of the VME Kernel trend
are still being investigated. The reasons for the di�er-
ent behaviour of OS/360 has not yet been determined.
The inverse square relationship yields precisely the

growth trend to be expected if growth is constrained
by growing complexity. So while not proving the law,
this model is consistent with it. Having been observed
in several instances adds to the con�dence in its valid-
ity. It may be noted in passing that the inverse square
relationship has also appeared in a system dynamics [2]
model of the Matra-BAe process, another system stud-
ied [15] as part of the FEAST/1 project.
Con�dence in the validity of the second law is thus

strengthed by both rationalisation and empirical evid-
ence. The former comes through recognition of in-
trinsic complexity growth that accompanies all soft-
ware evolution as described above. The latter is
provided by complexity related behavioural patterns
that are modelled by inverse square relationships.

0 5 10 15 20 25

100%

250%

400%

550%

OS/360
Linear

0 5 10 15 20 25

100%

300%

500%

700%

900%
ICL VME Kernel
Inverse Square
(Two segments)

0 5 10 15 20

100%

150%

200%

250%

Logica FW
Inverse Square

0 5 10 15

100%

140%

180%

220%

Lucent Sys 1
Inverse Square

P
er

ce
nt

 RSN

Fig. 2. Growth models estimated using all the data points
(releases) available for each system.

2-3 Self Regulation (III)

[III] Global E-type system evolution processes are self regulating.

The phenomenon described by this law was �rst
identi�ed by the ripple in the growth trend plot of
OS/360 as reproduced in �g. 1. Similar ripples have
now been observed in the growth plots of systems stud-
ied since then (eg. [3], [8]) as illustrated in �g. 3 for
three of the most recently analysed systems.
From the start [1] the ripple was interpreted as an

indicator of the feedback like nature of the E- type soft-
ware process. Its identi�cation suggested that global
E -type software processes display a strong, feedback
generated, dynamics. In part, at least, this would be
driven by feedback based checks and balances inten-
ded to drive the process to its goals. Feedback con-
trols, positive and negative, have been recognised and
referred to in [7], [9], [15]. Note that the term global
process as used in this paper encompasses the activ-
ities, at many levels, of technical personnel, manage-
ment, marketing and support personnel, users and oth-
ers involved.

2-4 Constant Work Rate or Conservation of Organ-
isational Stability (IV)

[IV] The average e�ective global activity rate in an evolving E-
type system tends to remain constant over the product lifetime.

Project activity can be measured by work input or
work output. The most obvious measure of input ef-
fort is person time. In the context of a study relying
on historic databases, this is however, likely to prove
unreliable, requiring for example manual scanning and
detailed analysis of archived time records and results
of questionable accuracy [13].

An alternative activity measure relates to work out-
put. Because the latter re
ects the impact and con-
straining in
uence of many more feedback loops than
does work input, it appears to represent a better
choice. An example generally derivable from basic data
in a system's evolution data base is elements handled.
This records the number of di�erent modules, �les or
objects, etc. (henceforth elements) removed, modi�ed
or added in the preparation of each release. Lines of
code are frequently used to measure activity because it
is more readily available. The limitations of this metric
can, however, not be discussed here [3].
Handle counts leave much to be desired since a

handle may represent anything from a simple spelling
correction to the re-engineering of an entire element.
However, when one is observing and analysing evolu-
tion trends in large systems [3], the number of elements
handled is su�ciently high to justify statistical treat-
ment. One may expect that such variations will then
have, at worst, a minor impact on long term trends.
The fourth law was originally deduced from the

shape of the cumulative handles plot over releases of
OS/360 evolution [3]. The data was so analysed to re-
duce the e�ect of release overlap, concurrent work on
elements released at di�erent times. Since questions
relating to the validity of inferences from cumulative
data have not yet been resolved, this result is not in-
cluded here.
Finally, counts of handlings (that is, the sum over

all elements of the number of di�erent changes being
implemented within a release) provide still another al-
ternative indicator but has not yet been applied by us.
The extent and manner in which these various met-

rics permit behavioural inferences in general, and in
the investigation of the fourth law in particular, is ex-
pected to be part of future investigations [11]. Given
these uncertainties in the interpretation of these vari-
ous activity measures the fourth law must be con-
sidered sub judice in the context of this paper.

2-5 Conservation of Familiarity (V)

[V] On average, the incremental growth tends to remain con-
stant or to decline.

As an E -type system evolves all associated with it
must maintain mastery of its content and behaviour
to achieve satisfactory usage and evolution. Excess-
ive growth diminishes that mastery and leads to a
transient reduction in growth rate or even shrinkage.
On the other hand, positive feedback from, for ex-
ample, marketeers and users, leads to pressure for in-
creasing growth rate. FEAST/1 observations (�g. 3)
suggest that in the long term the net result is con-
stant or declining average incremental growth. That
is, the incremental growth above some threshold tends

to be followed by a smaller one, re
ecting a need for,
for example, an increased bug �xing or restructuring
content. If two or more increments exceeding some
threshold are forced through the plots suggest that the
next increment(s) are close to zero or even negative,
possibly re
ecting a system clean up. In extreme cases
this can even lead to system �ssion, as exempli�ed by
OS/360 releases following release 20. That is, incre-
mental growth greater than some higher threshold (for
example, mean growth plus twice the standard devi-
ation (m + 2s)), leads to a serious decline in incre-
mental growth.

5 10 15 20 25

0

200

400

600

800

m

m + 2s

OS/360

5 10 15 20 25

0

250

500

750

1000

m

m + 2s
ICL VME Kernel

5 10 15 20

0

100

200

300

m

m + 2s

Logica FW

5 10 15

-10k

0

10k

20k

m

m + 2s
Lucent Sys 1

M
od

ul
es

 RSN

Fig. 3. Regulation in incremental growth (third law) and limit
infringement (�fth law). m represents the mean incremental
growth and s its standard deviation.

This phenomenon is interpreted as relating to
peoples' information absorptive capacity. Individual
ability to absorb and apply a number of items of loosely
or unrelated information is widely believed to be lim-
ited [12]. Once the number is past some critical point
the ability to digest and apply the information de-
creases very rapidly. The net result is likely to be,
for example, poorer design, higher error rates, per-
formance deterioration, slow down in work, increasing
numbers of queries from the �eld, resistance to release
adoption even declining sales. The consequences af-
fect developers, their managers, marketeers and users.
Precise determination requires further research [11].
The �fth law was originally inferred from the OS/360

plot of incremental growth per release (�g. 3). Es-
sentially the same underlying phenomenon is now ob-
served in systems being studied in FEAST/1 (�g. 3).
Di�erences between the plots, however, suggest di�er-
ences in detailed behaviour. These may be attributed,
for example, to the properties of the individual pro-

cesses being executed, the organisations implementing
the evolution and the application and usage domains
being addressed. It is merely noted that the relevant
behaviour that, when observed in the OS/360 plot gave
rise to the �fth law, is observed in the evolutionary
growth trends of the systems studied.

2-6 Declining Quality (VII)

[VII] The quality of E-type systems will appear to be declining
unless they are rigorously maintained and adapted to operational
environment changes.

This law follows from the principle of uncertainty
and the characteristics of E -type systems [4]. As
already mentioned in section 2-1, an E -type applic-
ation and its domain are at least countably in�nite
in their attributes. The software that implements the
model is certainly �nite. Thus the system as a model is
incomplete and imprecise. The gap between the system
and the application in its operational domain is bridged
by assumptions. But the application and its domain
are dynamic, always changing, and such change is ac-
celerated by the installation and use of the system.
Unless detected and �xed, such changes are likely to
progressively invalidate assumptions embedded in the
system; the system becomes polluted with a growing
number of invalid assumptions. The e�ect of encoun-
tering the embodiment of an invalid assumption during
execution is not known. The principle of uncertainty
and the seventh law follow.

2-7 Feedback System (VIII)

[VIII] E-type evolution processes constitute multi level, multi
loop, multi agent feedback systems and must be treated as such to
achieve signi�cant improvement for other than the most prim-
itive processes.

The observation that the software process is a feed-
back system that develops a dynamics of its own and
that attempts to improve the process must take its
feedback nature into account dates from the 70s [3].
The eighth law is essentially equivalent to the FEAST
hypothesis [5] and there is now enough con�dence to
justify its expression as a law. Note that the process
referred to here is the global process (Sect. 2-3). All
the levels of activity referred to there are contained
within, driven and constrained by the feedback loops,
mechanisms and controls that evolve as an organisa-
tion (and its activities) ages [3]. The process is a multi
level, multi loop, multi agent feedback system. Note
that the eighth law su�ces to explain the behaviour
encapsulated in the other seven. Thus, the statements
of the latter apply only as long as there is no change
in relevant global-process feedback mechanisms.
Because of space limitations further discussion of the

eight law is limited to one piece of supporting evid-
ence and the implication that feedback induced dynam-
ics in
uences software system evolution trends. Ad-

ditional discussion based on system dynamics models
including also examples of feedback mechanisms in the
global software process, is provided elsewhere [9], [15].
In Sect. 2-2 an inverse square model of growth was

considered for three of the four systems referred to in
this paper. A linear growth model was used in the case
of the fourth system (OS/360). In estimating these
models (Fig. 2), all available data points were used
for each system. One may, however, ask (as Turski
did [14]) how many points are necessary to obtain an
acceptable predictor for future growth? That is, the
model may be based only on the �rst i points of each
data set. The mean absolute percentage error MAPE
(Appendix) may then be used to assess the forecasting
ability of the resultant models (Fig. 4).

0 5 10 15 20 25

0

20

40

60

80 OS/360
Linear Growth Model

0 5 10 15

0

10

20

30

40 ICL VME Kernel
Inverse Square Growth Model
Second Segment RSN 14-29

0 5 10 15 20

0

5

10

15

20 Logica FW
Inverse Square Growth Model

0 5 10 15

4

6

8

10

12 Lucent Sys 1
Inverse Square Growth Model

M
ea

n
A

bs
ol

ut
e

P
er

ce
nt

ag
e

E
rr

or
 M

A
P

E

#i of points used to estimate the model

Fig. 4. Mean Absolute Percentage Error (MAPE) of �t as a
function of the number of points used to estimate the growth
model. MAPE was calculated over all releases. Note the
quick settling of MAPE to a value less than 10% after only
a few points are used to estimate the model.

The signi�cance of the trends shown in these plots is
summarised in Table 1. The result is, indeed, astound-
ing. The plots and Table 1 indicate that no more than
a handful of releases are required to obtain a good pre-
dictor. This suggests to us that the dynamics rather
than management determines the medium and long
term growth trend. The dynamics is related, one way
or another, to the characteristics of the evolving soft-
ware system, its development and application domain
and to the processes by which it is evolved.
Two caveats must be noted in regard to the above

interpretation. In the �rst instance, the initial decline
in MAPE over the �rst 3-5 points for each of the sys-
tems plotted in �g. 4 must re
ect, at least in part, the
process of model parameter convergence to a steady
value [10]. Secondly, few projects begin from scratch.

TABLE 1

Average and standard deviation of MAPE after the

stabilisation point

System Stabilisation Avg. St.Dev.
Point MAPE of MAPE

OS/360 4 9.7 1.6
VME Kernel 6 4.1 0.4

FW 6 3.6 0.1
Lucent Sys 1 3 6.2 0.4

For any other than a new organisation, organisational
dynamics and the corporate practice in the software
process will have been long established, informally or
formally. Many of the management and implement-
ation processes and controls, and therefore their dy-
namics, will have been inherited from past projects
and practice. Such inheritance is likely to constitute
a major, possibly dominant, component of the project
dynamics. This is because the outermost loops of a
multi level multi loop feedback system are likely to
have the greatest impact on externally visible system
(process) attributes. The separation of the in
uences
of the various sources of dynamics on the observed be-
haviour, whether indeed they can be distinguished is,
however, an open question [11]. It is, however, pre-
cisely this issue that underlies our continued emphasis
on the global software process.

3 Final Remark

The metrics based evidence provided in this paper
increases our con�dence in six of the eight laws. Con-
�dence in the seventh (ie. law VII) is based on theoret-
ical analysis. Law IV is neither supported nor negated.
This conclusion is summarised in Table 2.

TABLE 2

Support for the laws of software evolution

Law I II III IV V VI VII VIIIp p p
?

p p p p

Moreover, the available evidence indicates that dy-
namics arising from the feedback nature of the soft-
ware process is a powerful force in determining its
evolutionary characteristics and behaviour. Of par-
ticular interest to the present symposium is the fact
that, in the main, the conclusions have been derived
from measured growth trends of systems currently be-
ing evolved in industry. More general application of
the approach described should facilitate major process
improvement based on measurement and modelling of
the global software process and interpretation of the
results. These may then be applied to process improve-
ment through adjustment and tuning of organisational
and process feedback mechanisms.

Appendix

Inverse Square Model [14], [8]: Si, the size predicted
by the model at release i, has been calculated from
Si = Si�1 + Ê=S2i�1 (2 � i � n) where n is the total
number of releases. S1 is assigned the actual size of
release 1. More generally Ê may be de�ned as the
average Ei, where Ei = y2i�1(yi � yi�1) (2 � i � j),
yi is the actual size of release i and j is the number of
releases used to estimate the model.
Mean Absolute Percentage Error MAPE : For a

growth model based on the �rst j releases only,

MAPEj , is calculated as MAPEj =
100

n

Pn

i=1

kSi;j�yik
yi

,
where Si;j is the predicted size at release i using a
model based on the �rst j releases only, yi is the actual
size at release i and n is the total number of releases.

References

[1] Belady LA and Lehman MM, An Introduction to Growth
Dynamics, Proc. Conf. on Stat. Comp. Perf. Eval., Brown
University 1971, Academic Press, 1972, W Freiberger (ed.),
pp. 503 { 511

[2] Forrester JW, Industrial Dynamics, Productivity Press,
Cambridge MA, 1961

[3] Lehman MM and Belady LA, Program Evolution - Pro-
cesses of Software Change, Academic Press, London, 1985

[4] Lehman MM, Uncertainty in Computer Application and its
Control Through the Engineering of Software, J. of Softw.
Maint.: Res. and Pract., v.1, n.1, Sept. 1989, pp. 3 { 27

[5] Lehman MM and Stenning V, FEAST/1: Case for Support,
Imperial College, DoC, March 1996

[6] i.d., Laws of Software Evolution Revisited, Proc. EWSPT
96, Nancy, 9 - 11 Oct. 1996, LNCS 1149, Springer Verlag,
1997, pp. 108 { 124

[7] Lehman MM, Perry DE and Turski WM,Why is it so Hard
to �nd Feedback Control in Software Processes?, Invited
Talk, Proc. of the 19th Australasian Comp. Sc. Conf., Mel-
bourne, Australia, Jan 31 - Feb 2 1996. pp. 107 { 115

[8] Lehman MM et al,Metrics and Laws of Software Evolution
- The Nineties View, Proc. Fourth Int. Soft. Metrics Symp.,
Metrics 97, Nov. 5-7, Albuquerque, NM, 1997, pp. 20 { 32

[9] Lehman MM and Wernick PD, System Dynamics Models
of Software Evolution Processes, Proc. Int. Wrkshp. on the
Principles of Software Evolution, ICSE '98, Kyoto, Japan,
April 20 -21, 1998, pp. 6 { 10

[10] Lehman MM and Ramil JF, The Impact of Feedback in the
Global Software Process, Keynote Lec., Workshop on Soft-
ware Process Simulation and Modelling, ProSim'98, June
22-24, Silver Falls, OR 1998

[11] Lehman MM, FEAST/2: Case for Support, Imperial Col-
lege, DoC, July 1998

[12] Miller GA, The Magic Number 7, Plus or Minus 2: Some
Limits on Our Capacity for Processing Information, Psy-
chological Review, 63, 1956

[13] Perry DE, Staudenmayer NA and Votta LG, People, Or-
ganisations and Process Improvement, IEEE Software, July
1994, pp. 36 - 45

[14] Turski WM, Reference Model for Smooth Growth of Soft-
ware Systems, IEEE Trans. on Softw. Eng., v.22, n.8, Aug.
1996, pp. 599{600

[15] Wernick PD and Lehman MM, Software Process White Box
Modelling for FEAST/1, Workshop on Softw. Process Sim-
ulation and Modelling, ProSim'98, June 22-24, Silver Falls,
OR, 1998, to appear in J. Syst. and Softw. 1999

Some of the material listed above is available via:
http://www-dse.doc.ic.ac.uk/�mml/feast1

