~ Software Evolution and ‘Light’ Semantics
Extended Abstract

Dewayne E. Perry
Bell Laboratories
600 Mountain Ave

Murray Hill, NJ 07974 USA
+1.908.582.2520

E RV AVLO PEV L0 PP AV APy

dep@research.bell-labs.com

Keywords

Inscape Environment, Software Complexity, Software
Evolution, Implications of Changes, Light Semantics,
Interface Specifications, Software Composition

1 INTRODUCTION

The motivation for Inscape [4] came from my experi-
ence as a programmer, designer and architect. There
were two major (and inter-related) problems that I en-
countered while building software systems where I had
to use components built by other people: the pieces of-
ten did not fit when I put them together and changing
code often produced surprising and unexpected results.

The first problem was due primarily to the informality
and often incompleteness of component interfaces. The
second problem was due ultimately to the complexity of
the software and an inability to foresee or determine the
consequences of changes. These problems result from
three essential [1] and intertwined properties of build-
ing software systems: composition, evolution [2] [7] and
complexity [5]. -

In coming to grips with the problem of composition, us-
ing formal 1nterface specifications is the obvious choice.
Enhancing the syntactic interfaces with semantic infor-
mation is one useful way of expressing the intent of the
interface provider and enabling the user to have all the

information necessary to its correct and effective use.

How to attack the problem of evolution is not as ob-
vious. The approach I took in the Inscape experiment

the gpecifications constructively in order to

determine and maintain semantic dependenmes [3]. The
metaphor is that of a hardware chip: the dependencies
are the pins that are used. Keeping track semantically
as to how the interfaces are used is the analog of ex-
pressing the interface creator’s intent: it is capturing

was to use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, 1o republish, 1o post on servers or to redistribute to lists.
,.CH‘“:M prior snecific nermission and/or a fee.

ICSE '99 Los Angeles CA

Copyright ACM 1999 1-58113-074-0/99/05...$5.00

specinge poy

587

the users intent. Given that both interfaces and imple-
mentations evolve, keeping track of the dependencies
enables the environment to help in understanding the
effects of changes and where those effects take place.

The primary question then is how to make it work. An
important clue to that question comes from considering
the problem of complexity.

2 COMPLEXITY & ‘LIGHT’ SEMANTICS

T [E1 T Anlincatnd 4arn Irinda AF camnlasvity Nna Lind of
i1l {9 J. aeiineatea two Kindas o1 compiexivy. viie Lina oi

complexity is that of the intricacies of some algorithms

Here the comnplexity is analogous

ATLAT UaiT LURALPLTARGy A0 QLiGaUn

and data structures.

to a Bach four-voice fugue where there are very intri-
cate and intertwining multi-dimensional constraints {in
the case of a fugue, melodic and harmonic, or horlzon-
tal and vertical, constraints). One cannot make arbi-
tray changes without having (usually) disastrous con-
sequences. All of the constraints must be understood,
and in this case, that means gaining deep insight and
understanding before successful changes can be made.
Reasoning about this type of complexity is just plain
hard. It is often hard for even the creator of the soft-
ware to remember all the lines of reasoning that resulted
in the final state.

However, there is another and completely different type
of complexity that has different characteristics. This
is the complexity that arises from the sheer wealth, or
mass, of details. Here comprehension is hindered by
the problem of scale, not the inherent complexity of
the individual details. The analogy here is more to a
Strauss tone poem or a Mahler sympliony where the
complexity is due to the mass of detail rather than a
fugue’s intricate complexity (though there may be that
kind of complexity underlying or buried in the mass of

At 210
UdeAlb}

My claim is that it is this latter kind of complexity that
dominates most of the systems we build. There are
parts of the systems that have the intricate complexity,
but the rest of the system has the wealth of detail com-
plexity. In support of this thesis, I offer the evidence of
an error study of a release in the evolution of a large,
realtime software system [8]. Overwhelmingly the faults

Proceedings of the 21st International Conference on Software Engineering (ICSE’99)
0270-5257/99 $ 10.00 © 1999 ACM

are the normal development faults with most of them
fairly shallow and easy to find and solve. The hard ones
- were predictable: race conditions and performance.

This wealth of small details as the dominant form of
complexity suggests that one needs to consider man-
aging the small details rather than automating deep
insight. For these small details, a much lighter form
of semantic approach should be possible than full au-
tomated theorem proving but which goes beyond the
current available forms of type checking,.

There are various forms this idea of light semantics
might take. One form might be using only part of the
semantic information or use it in rather simple but au-
tomated ways. Another form might be approximations
to aid the developer {often interactively and iteratively)
in developing an understanding of the code involved.

In Inscape, I chose the former. The underlying thesis of
the semantic interconnections and the semantic propa-
gation [6] is that it is made up of a large number of very
small theorems rather than a very small number of large
theorems. Supporting this is the fact that there is no
notion of an invariant in the underlying logic of Inscape
— just the small details of what is needed before and
what is guaranteed after a operation has been executed.

Thus it is this idea of light semantics that was used
in Inscape as the basis for the constructive use of in-
terface specifications and semantic dependency based
evolution, '

3 COMPOSITION & EVOLUTION

One of the primary contributions of Inscape to interface
research was the introduction of obligations and multi-
ple results. Obligations are an often unmentioned side
effect of an operation. They may arise for a variety of
reasons, but typically are not made explicit. Multiple
results are needed for any kind of software where ex-
ceptions are needed. (which is most of it). Adding these
two elements to interfaces then provided a solid base for
describing interfaces for use in production (rather than
academic or toy) software,

There is only one basic rule in constructing programs:
all preconditions and obligations must be satisfied
within an implementation or propagated to the inter-
face. There are, however, constraints on what may be
propagated to the interface. These constraints result in
what I called precondition ceilings and obligation floors.
Those preconditions and obligations which could not be
propagated to the interface represented semantic prob-
lems that needed to be resolved.

By keeping track in the construction of an implementa-
tion where (and how) the preconditions and obligations
were satisfied, changes to either the interfaces used or
to the implementations could enable the environment to

588

Proceedings of the 21st International Conference on Software Engineering (ICSE’99)
0270-5257/99 $ 10.00 © 1999 ACM

determine how those changes affected an encompassing
interface and thus enable the programmer to understand
the effects of those changes.

4 RELATED WORK

There have been a number of projects that I know of
that have been based on Inscape. Among these was
an internally sponsored research project at Anderson
Consulting called Software Interface Specification and
Analysis. This project evolved into a Component-Based
Software Engineering (CBSE) project, co-sponsored by
the U.S. government Department of Commerce and An-
dersen Consulting. This work in turn was incorporated
in their internal component framework and deployed in
many of their client companies. This project in turn
influenced David Curtis, now one of the authors of the
Corba Component Model. See the papers in Appendix
B by Jim Ning and/or Wojtek Kozaczynski.

Daniel Jackson’s PhD thesis and some of his subsequent
work was influenced by my ‘light’ semantic approach in
Inscape. Aspect uses partial specifications provided in
an annotation language which can be efficiently checked.
The Aspect checker then uses a dependency analysis to
check the code against the annotations. His more recent
work also fruitfully explores the space of light semantics
to provide various kinds of analyses and models.

Don Batory’s work takes an approach very similar to
my propagation logic in generating systems from com-
ponents. These components are annotated with various
properties which are then used compositionally to stitch
the components together in a consistently well-formed
composition.

Appendix B has further references for work either in-
spired by Inscape or related work exploring this exciting
space of light semantics.

5 SUMMARY

The space of light semantics is an exceedingly fruitful
field for research. Inscape was one of the first projects
to explore this space and it has been followed some very
interesting work in the subsequent years. The space is
by no means exhausted — indeed it has been not been
explored much at all. It is a ripe area for research that
has too long been overlooked. And for me, the spirit of
Inscape continues in my software architecture work.

The viewgraphs for this talk as well as all the relevant
Inscape papers (See Appendix A below) can be found
at my web site: www.bell-labs.com/user/dep/

ACKNOWLEDGEMENTS

First, I thank Jim Christ, Bill Schell, Steve Popovich,
Peggy Quinn and Helen Diamontitus for their various
contributions to Inscape. And of course, special thanks
go to Prof. Gail Kaiser for our long and fruitful col-
laboration on Infuse, the change management part of

Inscape.

Next, I thank Don Batory, Prem Devanbu, Daniel Jack-
son, Wojtek Kozaczynski, Jim Q. Ning, and David
Notkin for their various clarifying discussions and con-
tributions to this talk and abstract.

Finally, I thank the ICSE99 Program Committee for
selecting the Inscape paper as the most influential paper
from ICSE11.

REFERENCES

[1] Frederick P. Brooks, Jr. No Silver Bullet: Essence and
Accidents of Software Engineering. Computer, 20(4):10-
20, (April 1987),

M. M. Lehman and L. A. Belady. Program Ewvolution.
Processes of Software Change. APIC Studies in Data
Processing No. 27. London: Academic Press, 1985.

2]

Dewayne E. Perry. Software Interconnection Models.
Proceedings of the 9th International Conference on Soft-
ware Engineering, Monterey, CA, March 1987.

3]

Dewayne E. Perry. The Inscape Environment. The Pro-
ceedings of the Eleventh International Conference on
Software Engineering, May 1989, Pittsburgh, PA.

[4

[5] Dewayne E. Perry. Industrial Strength Software Devel-
opment Environments. Proceedings of IFIP 89 - 11th
World Computer Congress, August 1989, San Francisco,

CA.

[6] Dewayne E. Perry. The Logic of Propagation in The In-
scape Environment. Proceedings of SIGSOFT ’89: Test-
ing, Analysis and Verification Symposium, Key West FL,

December 1989.

Dewayne E. Peﬁy, Dimensions of Software Evolution
(Invited Keynote Paper). International Conference on
Software Maintenance 1994, Victoria BC, September
1994. '

(7

Dewayne E. Perry and Carol S.Steig. Software Faults in
Evolving a Large, Real-Time System: a Case Study. 4th
European Software Engineering Conference — ESEC93,
Garmisch, Germany, September 1993.

(8

APPENDIX A: Inscape Bibliography

Dewayne E. Perry and W. Michael Evangelist. “An Empir-
ical Study of Software Interface Errors”, Proceedings of the
International Symposium on New Directions in Computing,
IEEE Computer Society, August 1985, Trondheim, Norway,
pages 32-38.

Dewayne E. Perry. “Position Paper: The Constructive
Use of Module Interface Specifications”, Third International
Workshop on Software Specification and Design. IEEE
Computer Society, August 26-27, 1985, London, England.

Dewayne E. Perry. “Tools for Evolving Software”, Proceed-
. ings of the 2nd International Workshop on The Software
Process and Software Environments, March 1985, Cota De

589

Casa, Trabuco Canyon, CA, Software Engineering Notes
11(4):134-135 (August 1986).

Dewayne E. Perry. “The Construction of Robust, Fault-
Tolerant Software in the Inscape Environment”, AT&T
Fault-Tolerance Symposium, September 1986.

Dewayne E. Perry. “The Iteration Mechanism in the In-
scape Environment”, Proceedings of the 3rd International
Software Process Workshop: Iteration in the Software Pro-
cess, November 1986, Breckenridge CO, pages 49-52.

Dewayne E. Perry. “Programmer Productivity in the In-
scape Environment”, The Proceedings of GLOBECOM ’86,
December 1986, Houston TX, pages 0428-0434 (12.6.1-
12.6.7).

Dewayne E. Perry and W. Michael Evangelist. “An Em-
pirical Study of Software Interface Faults — An Update”,
Proceedings of the Twentieth Annual Hawaii International
Conference on Systems Sciences, January 1987, Volume II,
pages 113-126.

Dewayne E. Perry and Gail E. Kaiser. “Infuse: A Tool for
Automatically Managing and Coordinating Source Changes
in Large Systems”, Proceedings of the 1987 ACM Computer
Science Conference, February 17-19, 1987, St. Louis MO.

Dewayne E. Perry. “Software Interconnection Models”, Pro-
ceedings of the 9th International Conference on Software En-
gineering, Monterey, CA, March/April 1987. pp 61-69. Best
Paper, ICSE?9.

Dewayne E. Perry. “Version Control in the Inscape Envi-
ronment”, Proceedings of the 9th International Conference
on Software Engineering, March/April 1987, Monterey CA.

Gail E. Kaiser and Dewayne E. Perry. “Workspaces and
Experimental Databases: Automated Support for Soft-
ware Maintenance and Evolution”, Conference on Software
Maintenance-1987, Austin, TX, September 1987. pp 108-
114.

Dewayne E. Perry and Gail E. Kaiser. “Models of Soft-
ware Development Environments”. The Proceedings of the
Tenth International Conference on Software Engineering,
April 1988, Raflles City, Singapore. IEEE Transactions on
Software Engineering, 17:3 (March 1991).

Dewayne E. Perry, James T. Krist, and William W. Schell.
“The Inscape Environment and the Design of Finite State
Machines in SDL”. 5ESS Software Development Environ-
ment Conference, Naperville IL, November 1988.

Helen Diamontitus and Dewayne E. Perry. “Economic Mod-
eling of the Inscape Environment”. April 1989.

Dewayne E. Perry. “The Inscape Environment”. The Pro-
ceedings of the Eleventh International Conference on Soft-
ware Engineering, May 1989, Pittsburgh, PA.

Dewayne E. Perry. “Industrial Strength Software Develop-
ment Environments”. Proceedings of IFIP '89 - 11th World
Computer Congress, August 1989, San Francisco, CA. In-
vited Keynote.

Proceedings of the 21st International Conference on Software Engineering (ICSE’99)
0270-5257/99 $ 10.00 © 1999 ACM

Gail E. Kaiser, Dewayne E. Perry and William M. Schell.

“Infuse: Fusing Intecration Test M xnnnumnn+ with r“\nnnn
ANIUSe: Xusing invegr

Management” Proceedings of COMSAC 89, Kissimmee FL
September 1989

Dewayne E. Perry. “The Logic of Propagation in The In-
srana pn:nrnnman#” DrnﬁnnAiv\n’c n" QTﬁQﬁWT ’QO 'T‘ncf-

ovuyc Aed ALV AANJRARAAL AL 1 A AVULLILALL
ing, Analysis and Verification Symposmm, Key West FL,
December 1989.

Dewayne E. Perry and Steven S. Popovich. “Inquire:

Pradirata_ Racad TTea and Dnncn” anlﬂﬂrn{nnn nv-nnan 'T‘nnlc
L TeQICATe-2a88a USe and nieuse eclication COo1

Conference, AT&T Bell Laboratones, October 1989.

Dewayne E. Pérry and Gail E. Kaiser. “Adequate Test-
ing and Object-Oriented Programming”. Journal of Object-

QOriented Programming, January-February 1200
enveq Ogr ming, ary ary .

Dewayne E. Perry and Gail E. Kaiser, “Making Progress in
Cooperative Transaction Modeis®, IEEE Builetin on Data
Engineering, 14:1. (March 1991).

Stephen S. Popovich, William M. Schell, and Dewayne E.
Perry. “Experiences with an Environment Generation Sys-
tem”, Proceedings of the 13th International Conference on
Software Engineering, May 1991, Austin TX.

Dewayne E. Perry. “Dimensions of Consistency in Source
Versions and System Compositions — A Position Paper”

.l‘ ruceemngs OI nne -)l'(l WOI‘KbnOp on DOIBWd-I'e \Jonngurdmon
Management, Trondheim, Norway, June 1991.

Dewayne E. Perry and Steven S. Popovich, “Inquire: Predi-
cate Based Use and Reuse”, Knowledge-Based Software En-
et N LI TT Qi1 . 1000
gluccuug LOUILEICNCceE, VILCAgo 1L, OCpPLELLDED 1999,

Dewayne E. P;arry and Carol S.Steig, “Software Faults
in Evolving a Large, Real-Time System: a Case Study”,
4th Europea.n Software Engineering Conference - ESEC93,

Udl uua(.u Ut:l ma.uy, QUPI/UUJ.UB]. 1330 uovucu nc:ynw,c

Dewayne E. Perry, “System Compositions and Shared De-
pendencies”, 6th Workshop on Software Configuration Man-
agement, ICSE18, Berlin Germany, March 1996.

APPENDIX B: Some Related Work

This should by no means be considered an exhaustive bibli-
ography. Instead it represents some of the work that is either
dlrectly or md1rectly influenced by Insca.pe or, like Inscape,
CKplUlES Ia[llb spa.(.e UI. llgﬂ(: bemdlltulbb

D. Batory, G. Chen, E. Robertson, and T.Wang, “Design
Wizards and Visual Programming Environments for Gener-
ators” Int, Conference on Software Reuse, June 1998 (Vic-
toria, Canada).

Don Batory and Bart J. Geraci. “Composition Validation
and Subjectivity in GenVoca Generators”. IEEE Transac-
tions on Software Engineering, February 1997, 67-82.

Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dagari,
Bart Geraci, and Marty Sirkin. “The GenVoca Model of
Software-System Generators”. IEEE Software, September
1994.

Don Batory and Sean O’Malley. “The Design and Imple-

590
Proceedings of the 21st International Conference on Software Engineering (ICSE’'99)
0270-5257/99 $ 10.00 © 1999 ACM

mentation of Hierarchical Software Systems with Reusable

ﬁnmnnnon#c” ACM Transactions on Software Engineering
Lompdo: LN aran on Soitwar usAuuuAAus

and Methodology, 1(4):355-398, October 1992.

Alexander Borgida and Premkumar Devanbu. Compo-
nent inter-operability—putting “DL” to “IDL” International
May 1999,

(‘nnfnv—annn on Qnﬁ-nmrn Ensginering - 1000
onie nginering - 1000,

Francois Bronsard, Douglas Bryan, Wojtek Kozaczynski,
Edy S. Liongosari, Jim Q. Ning, Asgeir Olafsson, and Jjohn
Wetterstrand “Toward Software Plug-and-Play”, Proceed-

vnnn nf tha q"mnnnnim on Ql\ﬁ-nrnrn pnuazﬂ'\ﬂh&v nncfr\n
50 vaas Al OV SUSATLLTY, CSVOL,

Massachusetts, May 18-23, 1997.

Robert Callahan and Daniel Jackson. “Lackwit: A Program
Understanding Tool Based on Type Inference”. Proc. Inter-

nq#wnnal ﬂnnfnrnnnn on Qnﬁnmrn F‘nmnnnrvnn post MA

ngineering, Boston, MA,
May 1997.

Wojtek Kozaczynski and Jim Q. Ning. “Concern-Driven De-
sign for a Specification Language Supporting Component-

Rased Software Engineering” prnmanrhncm of the 'F‘m'hfh In-

ternational Workshop on Software Specxﬁcatxon and Desxgn,
Schloss Velen, Germany, March 22-23, 1996.

Daniel Jackson. “An Intermediate Design Language and its
Analysis”. Proc. ACM Conference on Foundations of Soft-
ware Engineering, Florida, November 1998.

Daniel Jackson. “Aspect: Detecting Bugs with Abstract
Dependences”. ACM Transactions on Software Engineering
and Methodology, 4(2):109-145, (April 1995).

Daniel Jackson and Allison Waingold “Lightweight Extrac-
Al A€ ML 2 A At L T¥oohn A0 b n S) YD RN |
UILVIL VU1 UDJECL MIOUCId 110l Dyreloue . I'iuG. ilwcilaviviial
Conference on Software Engmeermg, Los Angeles, CA, May
1999.

Daniel Jackson and Craig A. Damon. “Elements of Style:
Analyzing a Software Design Feature with a Counterexam-
ple Detector”. IEEE Transactions on Software Engineering,
22(7):484-495 (July 1996).

G.C. Murphy, D. Notkin, K. Sullivan. “Software reflexion

madala j= 3% +ha hoatw ganree and hich_laval
modaeis: ullu51u5 Lae gap oeuiween SOurCe and Aiga-ievés

models”. Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, WashingtonDC,
October 1995.

Jim Q. Ning.
Q. Nin
Proceedings of the Fifth International Symposium on As-
sessment of Software Tools, Pittsburgh, Pennsylvania, June

2-5, 1997.
Jim Q. Ning “A Component-Based Scftware Development
Model”. Proceedings of the Twentieth Annual International

Computer Software and Applications Conference, Seoul, Ko-
rea, August 19-23, 1996.

Jim Q. Ning, Kanth Miriyala, and Wojtek Kozaczynski.
“An Architecture-driven, Business-specific, and Component-
based Approach to Software Engineering”. Proceedings of
the International Conference on Software Reusability, Rio
de Janeiro, Brazil, Nov. 1-4, 1994.

“Comnonent-Bagsed Software Engineering”,
mpo: iTware nngin ng

