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1 INTRODUCTION

The motivation for Inscape [4] came from my experi-
ence as a programmer, designer and architect. There
were two major (and inter-related) problems that I en-
countered while building software systems where I had
to use components built by other people: the pieces of-
ten did not fit when I put them together and changing
code often produced surprising and unexpected results.

The first problem was due primarily to the informality
and often incompleteness of component interfaces. The
second problem was due ultimately to the complexity of
the software and an inability to foresee or determine the
consequences of changes. These problems result from
three essential [1] and intertwined properties of build-
ing software systems: composition, evolution [2] [7] and
complexity [5]. -

In coming to grips with the problem of composition, us-
ing formal 1nterface specifications is the obvious choice.
Enhancing the syntactic interfaces with semantic infor-
mation is one useful way of expressing the intent of the
interface provider and enabling the user to have all the

information necessary to its correct and effective use.

How to attack the problem of evolution is not as ob-
vious. The approach I took in the Inscape experiment

the gpecifications constructively in order to

determine and maintain semantic dependenmes [3]. The
metaphor is that of a hardware chip: the dependencies
are the pins that are used. Keeping track semantically
as to how the interfaces are used is the analog of ex-
pressing the interface creator’s intent: it is capturing
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the users intent. Given that both interfaces and imple-
mentations evolve, keeping track of the dependencies
enables the environment to help in understanding the
effects of changes and where those effects take place.

The primary question then is how to make it work. An
important clue to that question comes from considering
the problem of complexity.

2 COMPLEXITY & ‘LIGHT’ SEMANTICS
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complexity is that of the intricacies of some algorithms

Here the comnplexity is analogous
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and data structures.

to a Bach four-voice fugue where there are very intri-
cate and intertwining multi-dimensional constraints {in
the case of a fugue, melodic and harmonic, or horlzon-
tal and vertical, constraints). One cannot make arbi-
tray changes without having (usually) disastrous con-
sequences. All of the constraints must be understood,
and in this case, that means gaining deep insight and
understanding before successful changes can be made.
Reasoning about this type of complexity is just plain
hard. It is often hard for even the creator of the soft-
ware to remember all the lines of reasoning that resulted
in the final state.

However, there is another and completely different type
of complexity that has different characteristics. This
is the complexity that arises from the sheer wealth, or
mass, of details. Here comprehension is hindered by
the problem of scale, not the inherent complexity of
the individual details. The analogy here is more to a
Strauss tone poem or a Mahler sympliony where the
complexity is due to the mass of detail rather than a
fugue’s intricate complexity (though there may be that
kind of complexity underlying or buried in the mass of
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My claim is that it is this latter kind of complexity that
dominates most of the systems we build. There are
parts of the systems that have the intricate complexity,
but the rest of the system has the wealth of detail com-
plexity. In support of this thesis, I offer the evidence of
an error study of a release in the evolution of a large,
realtime software system [8]. Overwhelmingly the faults
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are the normal development faults with most of them
fairly shallow and easy to find and solve. The hard ones
- were predictable: race conditions and performance.

This wealth of small details as the dominant form of
complexity suggests that one needs to consider man-
aging the small details rather than automating deep
insight. For these small details, a much lighter form
of semantic approach should be possible than full au-
tomated theorem proving but which goes beyond the
current available forms of type checking,.

There are various forms this idea of light semantics
might take. One form might be using only part of the
semantic information or use it in rather simple but au-
tomated ways. Another form might be approximations
to aid the developer {often interactively and iteratively)
in developing an understanding of the code involved.

In Inscape, I chose the former. The underlying thesis of
the semantic interconnections and the semantic propa-
gation [6] is that it is made up of a large number of very
small theorems rather than a very small number of large
theorems. Supporting this is the fact that there is no
notion of an invariant in the underlying logic of Inscape
— just the small details of what is needed before and
what is guaranteed after a operation has been executed.

Thus it is this idea of light semantics that was used
in Inscape as the basis for the constructive use of in-
terface specifications and semantic dependency based
evolution, '

3 COMPOSITION & EVOLUTION

One of the primary contributions of Inscape to interface
research was the introduction of obligations and multi-
ple results. Obligations are an often unmentioned side
effect of an operation. They may arise for a variety of
reasons, but typically are not made explicit. Multiple
results are needed for any kind of software where ex-
ceptions are needed. (which is most of it). Adding these
two elements to interfaces then provided a solid base for
describing interfaces for use in production (rather than
academic or toy) software,

There is only one basic rule in constructing programs:
all preconditions and obligations must be satisfied
within an implementation or propagated to the inter-
face. There are, however, constraints on what may be
propagated to the interface. These constraints result in
what I called precondition ceilings and obligation floors.
Those preconditions and obligations which could not be
propagated to the interface represented semantic prob-
lems that needed to be resolved.

By keeping track in the construction of an implementa-
tion where (and how) the preconditions and obligations
were satisfied, changes to either the interfaces used or
to the implementations could enable the environment to
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determine how those changes affected an encompassing
interface and thus enable the programmer to understand
the effects of those changes.

4 RELATED WORK

There have been a number of projects that I know of
that have been based on Inscape. Among these was
an internally sponsored research project at Anderson
Consulting called Software Interface Specification and
Analysis. This project evolved into a Component-Based
Software Engineering (CBSE) project, co-sponsored by
the U.S. government Department of Commerce and An-
dersen Consulting. This work in turn was incorporated
in their internal component framework and deployed in
many of their client companies. This project in turn
influenced David Curtis, now one of the authors of the
Corba Component Model. See the papers in Appendix
B by Jim Ning and/or Wojtek Kozaczynski.

Daniel Jackson’s PhD thesis and some of his subsequent
work was influenced by my ‘light’ semantic approach in
Inscape. Aspect uses partial specifications provided in
an annotation language which can be efficiently checked.
The Aspect checker then uses a dependency analysis to
check the code against the annotations. His more recent
work also fruitfully explores the space of light semantics
to provide various kinds of analyses and models.

Don Batory’s work takes an approach very similar to
my propagation logic in generating systems from com-
ponents. These components are annotated with various
properties which are then used compositionally to stitch
the components together in a consistently well-formed
composition.

Appendix B has further references for work either in-
spired by Inscape or related work exploring this exciting
space of light semantics.

5 SUMMARY

The space of light semantics is an exceedingly fruitful
field for research. Inscape was one of the first projects
to explore this space and it has been followed some very
interesting work in the subsequent years. The space is
by no means exhausted — indeed it has been not been
explored much at all. It is a ripe area for research that
has too long been overlooked. And for me, the spirit of
Inscape continues in my software architecture work.

The viewgraphs for this talk as well as all the relevant
Inscape papers (See Appendix A below) can be found
at my web site: www.bell-labs.com/user/dep/
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