
Reuse R&D: Gap Between Theory and Practice

Chair: Mansour Zand, University of Nebraska
Panelists: Vie Basili, University of Maryland, USA

Ira Baxter, Semantic Designs Inc. USA
Martin Griss, HP-Labs, USA

Even-Andre Karlsson, Q-Labs, Sweden
Dewayne Perry, AT&T Labs, USA

Introduction

Mansour Zand

In SSR97 we presented a panel with the same focus that
was very well received [SSR’97]. Although we spend 30
minutes more then allocated time there were many of
session audience that were unable to state their opinion or
ask questions. Immediately, after the panel, and later on,
several people suggested that this panel should have a
follow up in the next SSRs or other reuse conference.
Indeed after two years still there are a lot of discussions
on of future of reuse and the gap between research and
practice and the degree of its contribution in software
development in the past 15-16 years. There is little doubt
on the reuse R&D contribution. However, there are
ongoing discussions on how significant the impact have
been. Specifically, there are some questions on validity of
academic or “basic (pure) research” done in the past
decade. Also, there are concerns on duplication, within
and outside “reuse” community[Poulin], of works that
may implies that reuse R&D is in stalemate. Furthermore,
recent development of CBD/CBE/CBA mainly by
“practitioners” is a major question mark on how and why
researchers in academia and R&D development centers
were left behind.

To maintain a continuity on SSR’97 panel the present
panel intends to extend discussions on three different
prospective on reuse research and practice:

I- Those mainly involved in research present their point
of view, from their research on how things have
changed, what concepts have been or should be
discarded, and what new challenges have emerged

2-

3-

Participants from industry: software development
practitioners, talk about if reuse research has been
relevant and useful in their day-to-day work, whether
the tools and methods put out during the past ten
years have been useful, and what their e:xpectations
are from useful tools and techniques.
Not all the “theoretical oriented” and “sophisticated”
solutions presented by researcher have not exactly
thrilled the practitioners by researchers. They believe
that many of those solutions are either based on a set
of outdated premises and are either obsolete or are
not practical. The researcher, claim that although
some of the premises of the problem have changed
but there are a large number of fundamental problems
that are not being solved scientifically and until we
do not have a sound scientific foundation solution are
temporary and ad hoc.

We can look at this problem from two different
perspective software engineering discipline and reuse
community.

In general, existence of such a gap is not inherent
property of software engineering or more specifically
software reuse. It is not unusual that due to demand for
quick solution researchers be unable to provide the
solution on a timely manner. Furthermore, if a solution is
provided may not have the desirable properties of a sound
and reliable solution. In the last decade demand for
development and rapid delivery of new software systems
have been overwhelming. Software engineer and
developers under such immense pressure are looking for
quick solutions and can not offered to wait for a
comprehensive and reliable solution [SSR97]. It is a
known fact that a good number of large projects were
pronounced obsolete even before they were completed.

Under such a pressure software engineering community
have focused most of its effort on development or use of
less formal and more ad-hoc solutions. Therefore,
adequate resources are not available to promote
development of scientifically sound set of methodologies
and models. Furthermore, unlike other engineering

172

disciplines standards are yet to be established. A large
number of software engineers practitioners and some of
the researchers are looking forward for one of the giants
software companies to forces its practice as de facto
standards models. As it is stated by other panelists in the
abcense of scientifically sound models and methodologies
and standards, as bedrock of the discipline, it would be
very difficult to perform an expeditious and reliable
research in such a demanding setting. Furthermore, some
of the promising researches are not appraised and some of
the substantiated results are not being used. This view is
shared by other panelists and is considered of one of the
major shortcomings in software engineering research and
development [Basili and Baxter].

Other perspective is more specific to reuse and
“systematic reuse” community. The majority of published
works by practitioners are from those large software
shops with adequate resources. Moreover, most of the
reports are success stories and those software shops that
have not been as successful, are not very much
forthcoming to describe what have gone wrong. Another
major shortcoming of the research in reuse community is
the lack of adequate work to address the need of small
and medium sized software shops. [zand98]. There is little
doubt that great progress has been made to understand the
underlying and necessary factors for effective software
reuse and conditions or factors of success and failure.
[Karlsson and SSR97]. However, because of relative
isolation related communities seem to not utilizing
findings. They are providing simpler solutions that are
more convenient to be utilized in industry [Griss].

To Summarize recommendations of the panelists:

Methods and models are needed to present body of
knowledge in a scientific form that can be used with
great confidence
Researcher need to work more closely with
practitioners to understand real problems, develop
and verify their practicality of their scientific
solutions.
“Historical software research” - Evaluation and study
of past failure and success are essential. This study
should include non-technical factors such as
organizational and cultural factors.
Leadership of research community needed to move
industry beyond different forms of code reuse.
Need for protocols and standards.
Time to get a research into practice is curtailed.
Reuse community needs to more aggressively
publicize its research finding by taking it to main
stream software engineering communities.

~oulin]Poulin, J. ” The Foundation of Reuse”,
Proceedings of WISR’9, Austin, TX, 1999.
[SSR’97] M. Zand, G. Arango, M. Davis, R. Johmson, A.
Watson, “Reuse R&D: is it on the right track”,
Proceedings of SSR’97, pp 212-216, Software
Engineering Notes, ACM, May 1997.
[Zand] M. Zand, “Organizational and Management
Issues: Are we there yet,” Proceedings of WISR’9, Austin,
TX January 1999.

Reuse R&D: Gap between Theory and
Practice

Victor R. Basili

One of the criteria for reuse of knowledge in any
discipline is that the knowledge is credible, packaged in
some usable form, and that the risks associated with use
of that knowledge are clear. It implies there is a certain
maturity associated with the information, i.e., the
strengths and weaknesses of the knowledge package have
been made clear, based upon analysis and empirical study.

Common wisdom, intuition, speculation and proofs of
concepts are not reliable sources of credible knowledge.
On the contrary, progress in any discipline involves
building models that can be tested, through empirical
study, to check whether the current understanding of the
field is correct. Credibility comes when what is actually
true can be separated from what is only believed to be
true. To accomplish this, the scientific method supports
the building of knowledge through an iterative process of
model building, prediction, observation, and analysis.

The scientific method has contributed to the progress of
fields such as physics, medicine, and manufacturing.
Unfortunately, in software engineering, the balance
between evaluation of results and development of new
models is still skewed in favor of unverified proposals. A
body of evidence has not yet been built that enables a
project manager to know with great confidence what
software processes produce what product characteristics
and under what conditions.

We also need to build bodies of knowledge by classifying
and integrating research results. Too often, promising
software research goes unevaluated. Lacking a proper
understanding of the usability of an idea, overloaded, risk-
averse applications organizations rarely pay attention to
research results. This lack of engagement means that the
research community does not receive feedback on the
viability of new approaches.

To address this issue, we need change they way we to
view software engineering research and development. We

173

need to study and classify past development successes and
failures and understand the parameters that limit our
progress. This means that researchers need to work with
practitioners to understand the real problems, build and
validate their solutions in practical situations, and package
them with the relevant caveats and limits, so they can be
applied appropriately. This allows the researcher to test
the new models and the practitioner to move forward in a
risk-averse way.

References:

Victor Basili, Forrest Shull, and Filippo Lanubile, Using
Experiments to Build a Body of Knowledge, Proceedings
of the 231d SEL Workshop, NASA Goddard Space Flight
Center, December 1998.

NSF Workshop On a Software Research Program For the
2 1” Century, Greenbelt, Maryland, October 15-16, 1998.

Reuse Theory/Practice Gap: Where to Build

Bridges?

Ira D. Baxter

There is community concern that Reuse Research is
less focused or less effective than it might be, in terms of
how much impact it is having on industry, and whether in
fact industry seems to be contributing more in practice
than the R&D community. We argue that in the short
term, major industry players are harnessing some of the
better R&D ideas in a more visible fashion than the
community, but they still need strong leadership to move
beyond simple code reuse. The research community
must focus on the next generation of reuse technologies of
domain analysis/engineering and generative reuse, and
deliver an integrated set of processes and tools.

1 Generic Reuse

Reuse of any set of artifacts must follow two basic
phases:
l Investment phase
. Define problem specification language
l Define component structure
. Define component instantiation/composition

technique
. Define component specljkation language
. Define component selection process
. Acquire reusable components to solve domain

problems
. Cla.rsifL methods using domain specifications
. Payoff phase
. SpeciJj, instance problem to solve

General Libraries

Function libraries

Component reuse

Scripting languages

Parametric programs

O-O programming &
frameworks

Generative Reuse

Domain-Specific Perspective
Analysis/Engineering.

Architectures

Economic Models

3 Why isn’t Reuse
visible/effective?

l Select solution(s) based on problem specification
. Compose/instantiate selected solution(s)

Each reuse research project must somehow address
the mechanics or economics of some these issues, and so
this list establishes a research agenda by itself. Note that
none of these say “code” specifically, allowing the reuse
of many types of artifacts. This author is dismayed that
most reuse work does not classify itself carefully as to its
category, or gauge the impact of that work on the
category. This makes it more difficult to tell where work
has been done.

2 Research vs. Practice

Reuse research has had mixed impact, as summarized
b the following table. However, most of the impact has
been via function libraries, black-box component reuse,
scripting languages and 00.

An interesting discussion is how much of the widely
adopted technology is due to the reuse community, vs.
other subdisciplines of computer science a’r software
engineering, and how active that part of the reuse
community is. We believe that much of the widely-
practiced part is not due mainly to the reuse research
community, as the base technologies are relatively
mature.

Used? Wide
Practice?

J

J

J

J

J

J

J

J

J

J

Research more

J

J

J

J

The practicing engineering community has bought,
without consideration, a particular model of reuse. This
model assumes an informal problem and component
specification language (English), black-box component
structure consisting of code, component-composition by
programmers-coding-glue, a completely ad-hoc

174

component acquisition and selection process, given very
weak descriptions.

This approach offers modest success, on the order of
10% productivity enhancement. Reuse R&D will not
have any impact unless it offers a significant enhancement
beyond this. An obvious place to start looking is in the
failures of the conventional model:

l Component Interoperability failures
l Index scheme failures
l Overcommitment to code reuse

In the vast sea of available components, the fust
problem is that arbitrary sets of such components cannot
even communicate between themselves (CORBA
components vs. DCOM components) nor do so with high
overhead (CORBA to CORBA, etc.). To define
interoperability, one must define protocols of interactions,
not signatures, and data must be defined abstractly.

Even given potential compatibility, current schemes
have no scalable indexing methods. No library with a
million components can be successful without it.

The current model is overcommitted to the reuse of
code. This has the severe defect of forcing all reasonable
confIgurations (language, data structure, speed, and
safety.. .) of a concept, e.g., STACK, to have an
implementation. This is impractical for STACK, and
impossible for anything of larger complexity.
Consequently, we end up with only a few configuration
instances.

Large organizations, such as Microsoft, will appear to
offer more to reusers in the near future than research,
because of their ability to dictate standards. Such
standards alleviate many problems, by defining standards
for interfacing (e.g., DCOM), defining the component
libraries manually (e.g., the Win32 API), and
implementing the base technologies for a large audiences.

4 How to enhance reuse theory impact

The engineering community does not want to use
anything new, unless it is well proven. Much of reuse
research produces papers saying, in effect, “this idea
sounds good, and I have some preliminary evidence”.
More convincing evidence is needed to achieve adoption.

One approach is to show that one is a delighted
consumer of one’s own tools; nobody will eat what the
cook won’t eat. Secondly, one must find a means to
evaluate the actual value of the technique. This means
that production of the idea is not enough; it must be
followed up with an evaluation. That part isn’t fun, what
with finding real customers, performing experiments, and
writing up the results. Funding agencies need to
condition their grants on research and evaluation to make
sure this gets done.

It is a bitter tech-transfer lesson that you can’t push
technology on a recipient. He has to want it, and its
adoption costs must be outweighed by benefits. Often, a
single tool has a diffkulty justifying this. A reasonable
possibility is for multiple, related tools to be integrated
into a single package proving collective benefit. Research
groups might do well to integrate their results, both to
make testing easier, and to enhance the customer pull.

5 Next big theory impact areas:
Domain Engineering + Generative Reuse

To achieve more effective reuse, we must solve the
Indexing problem. This is the only way that large
collections of components have any chance of becoming
useful. A key to the indexing problem is domain
analysis meighbors841, as it provides the basic
terminology from which descriptors can be made. More
research into domain analysis and indexing is needed.

Overcommitment of reusable artifacts also limits their
reusability. Generative reuse technologies, such as Draco
[NeighborsM], Batory’s ITS [Batory98], and
Biggerstaff’s AOP @3iggerstafI98], promise the
generation of a concrete component designed to fit into
the context in which it is needed. This can provide
interfaces of the right type, and ensure that the interface
overhead is low, allowing even small components to be
reused effectively. Domain engineering has the nice
synergy of providing the raw materials needed by such
systems.

6. Eating the cook’s Soup:
The Design Maintenance System

We are believers in our own medicine. Assuming
that Domain Engineering and Generative Programming
are the next big impact areas, we have set out to build The
Design Maintenance Systemm, (DMSTM), a domain-
based generative system intended to help maintain large
scale software systems, by reusing design information.
[BaxPidg97], consisting of records of transformations
chosen for an implementation. DMS is an integrated set
of tools, including problem domain parsers, design
navigation aids, and change management machinery.

In particular, we expect that the payback for an
adopter will be a factor of two or better in software
maintenance, to make up the price of acquiring and using
a complex tool. Building such a system is about 10
percent research (design capture, transform replay, etc).
and 90% construction of infrastructure (parsers and
prettyprinters for real languages, etc.). We have about 20
man-years invested, and the tools are just starting to show
evidence of utility. We hope to be able to provide early
evaluative reports in the next year.

175

References

[Batory98] JTS: Tools for Implementing Domain-Specific
Languages, Proceedings of 5’r’ International
Conference on Software Reuse, 1998, IEEE.

[BaxPidg97] I. Baxter and C. Pidgeon. Software Change
Through Design Maintenance. Proceedings of
International Conference on Software Maintenance,
1997, IEEE

[BiggerstaffpS] T. Biggerstaff, Anticipatory Optimization
in Domain-Specific Translation, Proceedings of 5th
International Conference on Software Reuse, 1998,
IEEE.

[Neighbors841 J. Neighbors. The Draco Approach to
Constructing Software from Components. IEEE
Transactions on Software Engineering 10(S), 1984.

Reuse Technology -Why Is Adoption So Slow

Martin L. Griss

Abstract
We have made tremendous progress in understanding the
critical technology, methods, processes, and
organizational factors that lead to effective reuse.
Research into new methods and technologies continues
unabated. However, far too few software organizations
and schools consider systematic reuse as a key part of
their programs. Recent developments such as CBSE and
00 patterns do not incorporate key learning from the
reuse community. Why does reuse technology transfer
seems to be so slow and ineffective? How might we
improve the situation?

1 Background
For the last 16 years, I have worked on software
engineering and software reuse methods, process
improvement, education and accreditation at HP, at the
University of Utah[kessler97] and as a member of the
ACM/IEEE software engineering education
project[griss98a]. Far too few organizations understand,
practice or teach systematic reuse (or even systematic
software engineering!). Feedback on my reuse
bookljacobson971 and from many reuse panels,
workshops and tutorials confums this.
We have lots of promising technology, methods, and
guidelines. We understand how issues and choices in
several areas could influence critical success or failure of
reuse:

. Technology - 00; architecture; patterns;
components; interfaces; generators; library
systems and classification schemes;

. Process - domain analysis, CFRP, DFR-DWR,
incremental pilots, process, product and reuse
metrics; process maturity models; economics, . . .

. People: distinct create, reuse, manage, support
organizations; explicit high-level management

leadership; domain- and component- engineering
skills; roles; . . .

Far too few software practitioners, and too few
researchers in allied fields, such as 00, architecture and
CBSE seem aware of our results. Very few software
engineering books contain adequate introductions to
software reuse, and far too few students are not exposed
to the notion that software reuse can be approached
systematically. Very little of reuse is mentioned in the
merging “software engineering as a profession” body of
knowledge[IEEE98] or accreditation guidelines
[griss98a,tracz98].
Why is this? It is rather surprising, since presentations on
systematic reuse or component-based engineering have
been made by several of us, including myself, at several
software engineering and object-oriented conferences.
Many reports have been issued on reuse [DOD!?6]. Many
of the techniques being popularized in CBSE or product-
line approaches could be seen as those of systematic
reuse, though typically do not reference earlier work on
reuse, generators, domain engineering, or the like.
This may be just a consequence of the long time between
the creation of an idea and its widespread recognition and
adoption (ala Kuhn), although other developments in
object technology, and languages such as Java, have had
widespread impact more rapidly. It may be that we have
not focused enough of our writing and technology
packaging on the “chasm” that separates early adopters
from the mainstream (ala Moore). While the reuse
research community holds research conferences and
workshops, we have not been very visible or successful in
reaching other communities.
One possible cause is that the reuse community has
worked on complex technologies and methods with high
ceremony, yet most of the software community seems to
be looking for simpler solutions, perhaps even silver
bullets. High ceremony methods require an organization
with high process maturity to achieve success. SEI’s claim
that systematic reuse and product lines should only be
addressed at CMM levels 3 and 4, has certainly
discouraged many engaged in systematic process
improvement from looking at reuse -- and may accurately
reflect a real issue that reuse cannot be effective without
an appropriate level of process maturity. Yet we know
that significant reuse can and should happen earlier
[griss98].
Popular developments such as patterns, which are a way
of capturing reusable design, are remarkably simple and
were developed by the 00 community, and not the reuse
community. Similarly, we have concentrated on fairly
complex generator and transformation technology, when
simple wizards and C++ templates have had much more
impact on the community. We need to develop and
publish a consensus on best practices that can be
immediately adopted, outside the reuse community. We
need to more vocally share this “reuse body of

176

knowledge” outside the reuse community. This will guide
several activities in developing standards and courseware,
and provide advice to other national strategy setting
bodies. We need to better coordinate our efforts in reuse
conferences and workshops (ICSR, WISR, SSR, . . .), both
with our own community of reuse research and practices,
and more importantly, in contact with other software
engineering activities, such as architecture, objects,
software engineering, etc. (ISAW, ICSE, OOPSLA, FSE,
TOOLS98.. .).
References
[DOD961 Reifer, Don, ‘Reuse Technology Roadmap”,
De+&nent of Defense, 1996.
[griss98] Martin Griss,CMM as a Framework for Adopting
Systematic Reuse, Object Magazine, March 1998.
[griss98a] Griss, Martin, “Letter from the Executive
Committee,” Software Engineering Notes, Vol. 23, No. 5, Sept.
1998, pp. l-2.
[IEEE981 Bourque, Pierre at. al., “Guide to the Software
Engineering Body of Knowledge (SWEBOK)“, Strawman
Version, IEEE Computer Society, September 1998. (See
htto:l/www.ieee.org/).
Ljacobson971 Jacobson, Ivar, and Martin Griss and Patrik
Jonsson, “Sofnare Reuse: Architectare, Process and
Organization for Business Reuse,” Addison-Wesley-Longman,
1997.
[kessler97] Kessler, Robert R.,“CS451-CS453 - Software
Engineering Laboratory”, Computer Science Department,
University of Utah, Salt Lake City, UT, 1997. See
htt&lwww.cs.utah.edul-cs45 1.
[tracz98] Tracz, Will, and Mary Shaw, and Martin Griss, and
Don Gotterbam, “Panel: Views on the State of Texas Licensure
of Software Engineers”, Proceedings of FSE-6: ACM SIGSOFT
6” International Symposium on the Foundations of Sofmare
Engineering, Nov 3-5, Orlando, ACM SIGSOFT, 1998, pp. 203-
208.

What software reuse research is
needed?

Even Andre Karlsson

Software reuse is perhaps one of the least well understood
areas of software engineering - and we have a low
understanding of what really constitutes success and
failures in this area? There are several questions, which
makes this hard, I will here list some of them:

1) The success of reuse can only be proven over
time, i.e. we can only then see if something is really
reused, and what savings it gave. Why was this asset
reused, and what made it hard or easy to reuse? Also
why other assets where not reused?
2) There are soft lines between use of standard
components, reuse and good design (i.e. anticipating
titure product changes) that tends to marginalize
reuse, i.e. we can’t distinguish these things.

3) Reuse is largely dependent on organizational
factors, i.e. product strategies, marketing and how
development is organized.

All of these issues need real objectives in real
organizations to study over a longer period of time. It also
requires a quite deep understanding of the organization
and product where reuse is happening. We need to be
very precise in describing what is really reused and how it
is or is not reused, the current studies mentioning a reuse
percentage are not very helpful to really understand what
has happened.
Currently we have too few such studies, i.e. it does not
seems to attract academia. It could be too hard or too
much work, and the payback may not be substantial
enough. Probably we will find just a lot of ordinary good
or bad decisions in the organization that resulted in the
current reuse status.
It will not be research in the form of “new ideas”, but
rather what I will call “historical software engineering”,
i.e. a careti examination of the past, not through
experiments but through examining real life, i.e. system
evolution, organization and politics. This sort of
“research” has not been very popular, but I think is needed
to give us a better understanding.
We have seen some such studies, but more in the
organizational and process area, i.e. Microsoft Secrets,
which have been very popular in industry, but probably is
not considered as real research. There is a need for such
forms of researches that are related to product issues.
One such study that I would have found very interesting is
described below:
Software architecture is recognized as one of the most
important factors for a successful product. There has been
several successfbl products in the telecommunication
domain for the last 20 years, e.g. SESS, System 12, AXE
10, etc. The architectures of these systems are rather
different, but these architectures have each been basically
constant over this period, and all have managed to
incorporate all the external changes in the systems. The
purpose of this study is to analyze how the systems have
been able to adapt to the external changes in markets and
technologies, to learn something about which factors of
the architecture was important, and the process of
evolving an architecture. We will also try to understand
why some changes are more difficult in some systems
than in other. Our assumption is not that any of the
architectures were better or worse than the other, but they
are different, and we want to learn how these differences
have impacted the last 20 years.
So maybe what I would say is that software researchers
are more interested in their own ideas - and particular
small nice ideas which can easily be written into a nice
research paper, than real life - and I would like that to
change.

177

