
A Unifying Theoretical Foundation for Software Engineering

Dewayne E Perry
Center for Advanced Research in Software

Engineering (ARiSE)
The University of Texas at Austin

perry@mail.utexas.edu

Abstract
The goal of this keynote paper is to argue for a unifying
theoretical foundation for software engineering. I believe that one
of the reasons for our lack of rigor compared to physical and
behavioral sciences is that we have not given enough attention to
the theories that underpin our work, both as software engineers
and as software engineering researchers. I present my general
theory about software engineering and then propose two simple
theories, D and E as the basis for laying out a unified theoretical
foundation for software engineering and software engineering
research. Software Engineering consists of two logical parts:
design and empirical evaluation (both terms used in their broadest
senses). I propose theory D to as the theoretical basis for the
design part, and theory E as the theoretical basis for empirical
evaluation. These two theories are then composed in various
ways to lay out a space (a taxonomy, or ontology if you will) for
software engineering. Finally, I claim that software engineering
and software engineering research (both fully integrated with
empirical evaluations) are models for the atomic and composed
theories.

1. Introduction
The motivation for this research is twofold: 1) to establish a
unifying foundation for software engineering, and 2) to establish
the same rigorous empirical foundations for software engineering
that we find in natural and behavioral sciences. In natural
sciences, their rigorous basis rests on 1) theories that have to be
testable, 2) testing done in the physical world that 3) provides
hard constraints on the theories. In behavioral sciences, their
rigorous basis rest on 1) theories that have to be testable, 2)
testing done in the behavioral world that 3) provides probabilistic
constraints.

Currently, we do not have this same rigor in the sciences of the
artificial [5]. Indeed, we are woefully inadequate with respect to
empirical studies. Granted, as a field we are improving, but we
are a long way from achieving the rigor we find in both natural
and behavioral sciences. It is certainly easy to see why: in natural
sciences education, students are subjected to a stream of
experimental work in the laboratory components of their basic
courses; in behavioral sciences, students are subjected to
experimental design and experimental statistics courses as both
undergraduates and graduates.

2. Experimental Science
Let us first take a basic look at science, even though one might
argue that it is not necessary since everyone understands it
thoroughly. My reason for doing this is to set the stage for the
theories and models relevant for empirical software engineering.

Science is basically an iterative process consisting of the
following steps (see Figure 1):

• Observations and abstractions are use to create a theory T.
• We test theory T against reality W with an experiment E

using one or more instruments I.
• We then reconcile theory with reality.
• When predictions don’t agree with reality, we change the

theory.
Gooding et al. [1] argue for the critical importance of the
instruments we use in experimental work. They are the lens
through which we observe the world. To paraphrase
Wittgenstein [7], the limits of my instruments are the limits of my
world. They enhance, limit, and color our view of the world. In
natural sciences, instruments are often physical creations; in
behavioral sciences they are often intellectual creations. Humans
are common instruments in both. Instruments may be active or
passive. They may be theory-laden or transparent and neutral.
They may be reliable and standardized or not. In any case, they
are a critical part of the empirical apparatus and as such will play
a critical part in any scientific endeavor.

3. Natural, Behavioral & Artificial Sciences
In remedying our lack of rigor, it is critical to understand how the
sciences of the artificial differ from, and are similar to, behavioral
and natural sciences. Obviously, we must have theories that are
testable just as they do. The differences come in the context of
testability and the constraints faced. The sciences of the artificial
have some aspects in common with natural and behavioral
sciences: testing is done in both physical and behavioral contexts.
However, testing is also done in intellectual and technological
worlds as well. For the physical and behavioral contexts we have
the same hard and probabilistic constraints. For the technological
context, we have selectable constraints – i.e., we have constraints
we can select among, perhaps arbitrarily. For the intellectual
context, we have malleable constraints – i.e., we have constraints
that we can change, also arbitrarily.

There are interesting differences between natural and behavioral

mailto:perry@mail.utexas.edu

sciences that are relevant to design disciplines. The general goals
of natural sciences are to understand natural phenomena and
create a theoretical basis for prediction. Further, natural sciences
provide a basis for invention and engineering. The general goals
of behavioral sciences are to understand human and societal
phenomena and provide a theoretical basis for prediction and
interventions. The inventions and interventions are important
because of the need to change the world and which is one of the
fundamental goals of software engineering: build systems of
practical value in the world [3]), not merely to observe it though,
of course, we do need to observe our software systems and make
predictions about them as well.

4. My Theoretical Approach
My theory about software engineering (which I claim to provide a
unifying foundation) comes from my experience as a practicing
software engineer and from my experience as a software
engineering researcher.
Software Engineering consists of two logical parts: design and
empirical evaluation (both terms used in their broadest senses). I
propose two simple theories, D and E as the basis for laying out a
unified theoretical foundation for software engineering and
software engineering research. I propose theory D to as the
theoretical basis for the design part, and theory E as the theoretical
basis for empirical evaluation. These two theories are then
composed in various ways to lay out a space (a taxonomy, or
ontology if you will) for software engineering. Finally, I claim
that software engineering and software engineering research (both
fully integrated with empirical evaluations) are models for the
atomic and composed theories.

4.1 Theories and Models
The terms “theory” and “model” are used and misused in a variety
of ways, often informally and interchangeably. I want to use them
in a very specific way: a theory (a more or less abstract entity) is
reified, represented, satisfied, etc by a model (a concrete entity).
This view of theories and models is derived in part from Turski
and Maibaum [6] where they state “A specification is rather like a
natural science theory of the application domain, but seen as a
theory of the corresponding program it enjoys an unmatched
status: it is truly a postulative theory, the program is nothing
more than an exact embodiment of the specification”. I note,
however, that I want a theory to be broader than a specification
and, more than likely, less formal.
We often use models as a representation of a theory. In natural
sciences, the model is often a set of mathematical formulas. In
logic, a model is an interpretation of a theory and has certain
logical properties. Here again, I want to broaden the notion of a
model to be a representation (indeed, a reification) of the theory.
The model is of paramount importance in design disciplines as it
is the visible manifestation of the theory. Of fundamental
importance is the fact that a theory can have an arbitrary number
of models.

4.2 More About Theories
My claim is that the key to a unifying, and a rigorous and
systematic foundation for software engineering, software
engineering research, and empirical studies in software
engineering and software engineering research is to be found in a
focus on theory.
So what is it that I consider to be important in theories: 1) the
source of the theories; 2) the structure of the theories; and 3) the
use of the theories.

Source of Theories. In terms of sources of theories relevant to
software engineering, three different types of theories are
important:
1. Scientific theory – Scientific theory is based on observations

of the world. They change on the basis of new observations,
or new interpretations of observations.

2. Legal theory – Legal theory is quite different: it is based on
decisions about the world, and is changed on the basis of
new decisions or new interpretations of decisions.

3. Normative theory – Normative theory is different yet and is
based on a system of philosophical tenets about what is good
and bad, and judgments are changed on the basis of new
inferences from those tenets or new interpretations of them.

Theories in design disciplines are a combination of all three of the
above. They are based on observations, decisions, and judgments
about the world. They change on the basis of new observations,
decisions, and judgments or on the basis of new interpretations of
those observations, decisions and judgments.
Structure of Theories. Markus and Robey [4] distinguish two
different theory structures:
1. Variance – In the case of variance, the theoretical structure is

a set of laws about interactions or relationships. For
example, given a variation in A, what other units can be
linked to A such that they account for the variance in A.

2. Process – In the case of process, the theoretical structure is a
temporal ordering of activities, steps, or events.

We find both kinds of theoretical structures in design discipline
theories depending on what kind, and at what level, we are
theorizing about design issues.
Use of Theories. The taxonomy of uses I describe here is derived
from Gregor [2]. I distinguish five distinct uses of theories that
may be used also in combinations:
1. Description – A theory is used to describe phenomena in

terms of its constructs, properties, and relationships, and the
boundaries within which those properties and relationships
hold. Descriptions are intended to be complete.

2. Prescription – A theory is used to provide a set of constraints
on its constructs, properties, and relationships, and the
boundaries within which those properties and relationships
hold. Prescriptions are intended to emphasize the crucial
aspects of the theory.

3. Explanation – A theory is used to explain how, why and
when things happen based on causality and methods of
demonstration (that is, argumentation). The intent is to
provide deeper understanding and insight into the subject
phenomena.

4. Prediction – A theory is used to predict what will happen on
the basis of necessary and sufficient conditions for the
theorized phenomena. The phenomena will not happen if the
necessary conditions are withheld; nor will they happen if the
sufficient conditions are withheld.

5. Action – A theory provides principles, techniques, and
methods for enabling the desired phenomena (for example,
achieving a desired goal, or designing or constructing an
artifact).

Depending on the context in software engineering, we make use
of theory in all these different ways. Theories, of course,

influence their models: the source of a theory will affect its
model; the structure of a theory will influence the structure of its
model; and, the use of a theory will also influence the structure of
its model.

4.3 Model Calculus
Since theories as used here are informal entities, their composition
is also informal and the resulting integration is done informally.
My theory about models, however, has a more formal definition
and a set of rules for the model operators. My theory about
models is as follows:
1. A model is a tuple consisting of two sets: a set of objects, and

a set of transformations (or mappings) from an object in one
set of objects to another object in a (usually different) set of
objects, written as A B. Figure 2 – Theory and Model D

2. There are one to one transformations of mappings and there
are many to one transformations. One to one mappings are
indicated by A B and many to one mappings are indicated
by A x B C, where A x B denotes a combination of
objects in the Cartesian space of A and B.

3. Models can be composed to yield further models. How that
is done depends on the intent specified by the composition.
A model can be arbitrarily considered to be atomic – that is,
its structure remains hidden – or open-structured. For
example, composing and open structured model with an
atomic model results in a model:

OSM : AM =
<{O},{T}> : AM =
<{O}:AM, {T}:AM> =
<{o1:AM . . . on:AM}, {t1:AM . . . tn:AM}>

On the other hand , composing an atomic model with an open
structure model yields a number of models (depending on the
number of objects and transformations).
 AM : OSM =
 AM : <{O},{T}> =
 AM:o1, . . . , AM:on, AM:t1, . . . , AM:tn
Each of these is a model restricted to that particular object or
transformation.

4. There are rules that govern compositions and their effects on
objects and transformations. A complete discussion of those
rules and deeper aspects of models is beyond the scope of
this paper and can be found in [8].

5. Design Theory & Model D
Design theory D has two parts: a theory about D and a theory
about the model that reifies D.

5.1 Theory of D
Theory D is meant to capture the typical cycle of creating a theory
that is then reified into a model where the model is then injected
into the world and changes the world (see Figure 2). I summarize
it as follows:

• We observe and abstract some specific part of the world and
create a theory.

• From that theory we create a usable model to reify or
represent that theory.

• We iteratively adjust both the theory and the model as our
understanding of the theory and its model evolves, both
iteratively and interactively.

• When satisfied that the model adequately represents the
theory, we inject the model into the world.

• Injecting the model into the world changes the world.
• The changes brought about by these changes as well as other

changes often lead to adjustments and extensions to the
original theory.

• Changes to the theory in turn lead to further changes in the
model and the world.

This abstract theory is then reified into a concrete model as
described below.

5.2 Model of D
The model of D consists of three elements (objects) and six
transformations (mappings, or, if you will, processes). The
elements are as follows:

• W – The world, but more specifically, the part of the world
relevant to the theory

• T – The theory initiated by observations and abstractions
• M – A model that reifies, represents or satisfies the theory T
The transformations involving these elements of the model are as
follows:

• W T – Generate a theory: observe and abstract from the
world W to create a theory T

• T M – From the theory T create/evolve a model M
• T T – Evolve theory T until satisfied
• M M – Evolve the model M until satisfied
• M T – Change the theory T to better conform to model M
• M x W W – Inject model M into the world W thereby

changing it (which depends on both the model and the world
before the injection of the model into it).

It should be clear that this model represents the theory of D above.

5.3 SE Design as a Model of D
I claim that the design part of software engineering at a suitable
level of abstraction is a model of D. For example, W in theory D
contains what Jackson [9] calls the problem space. It is that part
of the world that represents the problem that we want to address
with our software system. We observe and abstract from this
problem space to create a theory T (i.e., theory T in D) of the
problem we want to solve. We refer to T as requirements. W also
contains what Jackson calls the solution space. It is in this space
that we find the elements that we put together to create the model
M (the software system itself) that reifies and represents those
requirements T.

W T is the process of deriving the requirements from the chosen
problem space by observing and abstracting what is considered to
be critical and central to the problem to be solved. It is also the
process of understanding the effects of a changing world on the
requirements that exist as the basis for an existing system M.
T M is the process of creating and evolving the model/system
from the theory/requirements, while M T is concerned about
adjusting the theory/requirements to better conform to an existing
model/system. This latter happens regularly as we find that some
requirements may be too costly, too complex, or that time is too
short, etc. And as the entire enterprise of design is an iterative
venture, T T and M M are those processes of evolving both the
theory/requirements and the model/system from its initial
incomplete state eventually to its sufficiently detailed state. And,
finally, M W releases/injects the model/system into the world to
be used in solving the intended problem, and, in doing so, often
radically changes the world. This is often referred to as
technology transfer

6. Empirical Theory & Model E
As I did with D, I here propose a theory about a theory and model
for E – a theory about empirical evaluation. For purposes of
explanation and illustration I use a very simple theory for E. A
more elaborate theory for E will be introduced in future work to
illustrate more fully empirical evaluations. It is sufficient at this
point to indicate that empirical evaluations can range from very
informal (as indicated by this formulations of E) to formal and
controlled experimentation (as will be indicated by a more
complete model of E).

6.1 Theory of E
Not surprisingly, the theory E is essentially a simplification of
basic empirical science discussed above (see Figure 1).

• Given a theory T, generate an hypothesis H to test some part
of the theory

• From the hypothesis H, generate an evaluation E.
• On the basis of the evaluation results, revise theory T.
I note that this is a very basic theory, but it still is sufficiently rich
to cover the entire range of studies from exploratory through to
rigorously explanatory studies. Of course, theory T may be vague
and ill-formed (as it would be for exploratory work) or well-
formed and mature (as it should be when doing explanatory
work). Similarly the hypothesis may be generic and open-ended
or focused and specific. Evaluations E may be human and
opportunistic (for exploratory work) or specifically and well-
designed. Further, the theory of E supports both theory generation
(in the case of exploratory work) and focused evaluation of
existing theory.

6.2 Model of E
The basic elements in the model and their interrelationships are:
theory T, hypothesis H, and evaluation E.

The following transformations represent the processes of
conducting an empirical study.
• T H – derive an hypothesis H from theory T
• H E – create an appropriate evaluation based on H
• E x T T – reconcile theory and reality – i.e., on the basis

of the evaluation and the current theory T, revise T.

7. Evaluating the Design Theory D – ED
It is here in the evaluation of the design part that we find the other
half of the software engineering enterprise. It is here we

determine the adequacy and utility of our theories and models, the
efficacy of our processes in deriving these theories and models.
To evaluate the design theory D, we compose an atomic model of
E with an open structured model of D giving us the following
models:

• evaluation of the world of D, E:W; evaluation of the theory
of D, E:T; and evaluation of the model of D, E:M;

• the evaluation of the processes of
o creating a theory T from the world W – E:(W T);
o creating a model M from theory T – E:(T M);
o evolving theory T – E:(T T);
o evolving model M – E:(M M);
o adjusting theory T to be consistent with model M –

E:(M T); and
o evolving he world as a result of injecting model M into

it – E:(M x W W).
Among the kinds of questions the evaluations must address are the
following: the adequacy of D.T representing some part of W; the
adequacy of D.M representing D.T; the utility of D.M in the world
D.W; the effectiveness of such transformations as creating D.M
from D.T, evolving D.T and D.M, or of creating D.T from D.W.

8. Designing Design – Theory DD
Theory DD (the composition of D with itself) is meant to capture
the typical cycle of creating a theory of D (i.e., a theory of
producing a design product) that is then reified into a model of D
and the model is injected into the world and changes the world
(see Figure 2). I summarize it as follows:
• We observe and abstract some specific part of the world and

create a theory of
o What the world of D is like
o What form a theory in D should take
o What form a model in D should take
o What form the processes of creating the theory and its

model of D should take
o How the resulting model of D should be injected into

the world
• From that theory we create a usable model to reify or

represent that theory of
o What the world of D is like
o What form the theory in D should take
o What form the model in D should take
o What form the processes of creating the theory and

model D should take
o How the resulting model of D should be injected into

the world.
• We iteratively adjust both the theory and the model as our

understanding of the theory and its model evolves, both
iteratively and interactively.

• When satisfied that the model adequately represents the
theory we inject the model into the world.

• Injecting the model into the world changes the world
• The changes brought about by this injection as well as other

changes often lead to adjustments and extensions to the
original theory.

• Changes to the theory in turn lead to further changes in the
model and the world.

The composition of model D (as an open structured model) with
itself (as an atomic model) results in a new model with the

following elements: the world of D, W:D; the theory of D, T:D;
and the model of D, M:D.

The transformations involving these elements of the model
generate the following:

• W:D T:D – Generate a theory: observe and abstract from
the world of D to create a theory D

• T:D M:D – From the theory of D create a model of D
• T:D T:D – Evolve theory of D until satisfied
• M:D M:D – Evolve the model of D until satisfied
• M:D T:D – Change the theory of D to better conform to

the model of D
• M:D x W:D W:D – Inject model of D into the world of D

thereby changing it (which depends on both the model and
the world before the injection of the model into it).

It should be clear that this model represents the theory DD.
The composition of model D (as an atomic model) with itself (as
an open structured model) yields nine models: D:W, D:T, D:M,
D:(W T), D:(T M), D:(T T), D:(M M), D:(M T),
D:(M x W W) – i.e., the design of each of the elements in the
design model D, and the various transformations that take place in
the design model D.
To illustrate the richness of compositional results, consider D:T
where we now view D as an open structured model. We first get
the objects WT, TT and MT (the world of T, the theory of T, and
the model of T respectively). We also get the following
transformations: WT TT), TT MT, TT TT, MT MT,
MT TT, and MT x WT WT, exactly analogous to the
transformations of D. The same follows for each of the remaining
composed models above.
Analogous to my claim that the design aspect of software
engineering is a model of D, I also claim that the design aspect of
software engineering research is a model of DD, and it is here that
things get really interesting.
DD.TW, DD.MW – world of software development. The world
of software systems is a varied and multi-faceted world. It is a
world of problems and solutions [9]. It is a world where some
problems are not solvable at all by automation as well as a world
where some problems are just too hard to solve at all [10]. For the
problems that are solvable, there are those that are solvable by
what Vincenti [11] calls normal design and those that are solvable
only by radical design. We may or may not be successful in
solving problems that require radical design, but when we are
successful we almost always need several iterations before we
achieve that success.
It is a world of rapid technological change where software-
intensive systems are increasingly invading our lives, where
computation is constantly getting faster and cheaper, and where
electronic storage is getting larger, faster and cheaper as well. It is
a world where the bases for design decisions are constantly
changing, where the tradeoffs we previously made must be re-
examined in the light of the current state of the world.
DD.TT, DD.MT – theories/models of requirements.
Frustratingly, there is little theory that is explicit in DD.TT or
DD.TM; it is by-and-large implicit. Or, more specifically it is
often stated normatively rather than descriptively (as one would
find in natural sciences, for example). In one way, this is not
surprising as our theories in D are largely normative: the system
ought to do …; it ought to respond within …; it must provide ….
Indeed, this normative approach is a feature of the sciences of the

artificial [5]. And, of course, it is seen all too easily in every new
salvation du jour.
However, as my goal in this paper is to lay a foundation for
empirical software engineering, I claim that to make progress
towards the kind of rigor we find in natural and behavioral
sciences, that for this level of discourse we need to be more
descriptive – that is, we need to be more explicit about our
theories in such a way as to be easily testable. Ignoring those
issues for the time being, let’s consider some of the relevant
theories found in DD. Please note that I am not trying to be in any
way complete, or even representative. The intent here is merely
to be illustrative.

Nuseibeh, Kramer and Finkelstein’s multiple viewpoints [12]
approach implicitly embodies theoretical implications about D.W,
D.T and D.W T: there are different stakeholders with respect to
the problem to be solved; these stakeholders have different views
on what is important in the software solution; these different
views need to be captured in the requirements; and eventually any
and all apparent and real conflicts need to be resolved to provide a
consistent set of requirements (i.e., a consistent theory).

There are a wide variety of models we use for various aspects of
D.T. For example, we often use scenarios to provide examples of
behavior in T. We often provide checklists, templates, style
guides, etc for both requirements documents (as well as system
architecture, design and code) to represent the models for our
theories of requirements and systems.

DD.TM, DD.MM – theories/models of software systems.
Common theories in DD about the form that a model D.M (or
parts of the model) should take include structured programming,
object oriented programming, aspect-oriented programming, etc.
Looking at D.M in a different way, there are the theories about
creating systems bottom up or top down, or about structuring
them for future change, or about organizing them hierarchically,
as networks of cooperating processes, or to reflect the shape of the
problem. There are those who theorize that the components in
software systems should be orthogonal and each component do
one thing well, while others such as Jackson indicate we should be
mindful of the fact that the world where we find our problem
space has been implemented with the full exploitation of the
Shanley Principle [9] of efficient design where each element
serves multiple purposes.

There are a variety of theories in DD about how we do the
transformation from requirements to the system (D.T M). The
more or less standard ones include waterfall development,
Boehm’s spiral development, refinement, etc. A more radical
departure from these standard approaches is that of Extreme
Programming. An interesting variation of refinement can be
found in Batory’s algebraic compositional approach [13].

9. Evaluating the Theory DD – EDD
To evaluate the design theory of DD, we compose an atomic
model of E with an open structured model of DD giving us the
following:

• the evaluation of the world of D, E:(W:D); the evaluation of
the theory of D, E:(T:D); and the evaluation of the model of
D E:(M:D);

• the evaluation of the processes of
o creating a theory T:D from the world W:D – E:(W:D

T:D);

o creating a model M:D from theory T:D – E:(T:D
M:D);

o evolving theory T:D – E:(T:D T:D);
o evolving model M:D – E:(M:D M:D);
o adjusting theory T:D to be consistent with model M:D –

E:(M:D T:D); and
o evolving he world as a result of injecting model M into

it – E:(M:D x W:D W:D).
As DD was significantly more complex than D, so EDD is
significantly more complex than ED. Despite this increased
complexity, the aims are still the same as with ED. Its just that
there are many more elements and processes to evaluate. The
space is much larger. But of course that is to be expected when
we are concerned with theories and models about theories and
models as we are in software engineering research.
However, just as the software engineering of software systems is
composed of design and evaluation, so to is research about the
design and evaluation of software systems composed of both
design and evaluation.

10. Evaluating Evaluations – EE
To evaluate the empirical theory E, we compose an atomic model
of E with an open structured model of E giving us the following:

• the evaluation of the theory of E, E:T; the evaluation of the
hypothesis H of E, E:H; and the evaluation of the evaluation
of E, E:E;

• the evaluation of the processes of
o creating a hypothesis H from theory T – E:(T H);
o creating an evaluation from hypothesis H – E:(H E);
o evolving theory T as a result of the evaluation E – E:(E

x T T).
The issues that need to be considered here are those concerning
the adequacy of the evaluations and the effectiveness of the
evaluation processes. Among the critical issues are those such as
the relevance of the hypothesis to the theory, the relevance of the
empirical evaluation to the hypothesis, and the standard problems
of construct, internal and external validity.

11. Designing Evaluations – DE & DEE
To design the empirical evaluation theory E, we compose an
atomic model of D with an open structured model of E giving us
the following:

• the design of the theory of E and its evaluation, D:E &
D:(E:T); the design of the hypothesis H of E and its
evaluation, D:E & D:(E:H); and the design of E and its
evaluation, D:E & D:(E:E);

• the evaluation of the processes, and the evaluations, of
o creating a hypothesis H from theory T – D:(T H) &

D:(E:(T H));
o creating an evaluation from hypothesis H – D:(H E)

& D:(E:(H E));
o evolving theory T as a result of the evaluation E – D:(E

x T T) & D:(E:(E x T T)).
The design of empirical evaluations and the design of evaluating
empirical evaluations (DE and DEE) is analogous to DD: it is part
of the software engineering research enterprise.

12. Conclusions
I propose theory D as the theoretical basis for the design part of
software engineering, and theory E as the theoretical basis for the

empirical evaluation part (which is the composition ED). These
two theories and the composed theories then lay out a space (a
taxonomy, or ontology if you will) for all of software engineering
and software engineering research.
From these two theories I have created a set of various composed
theories that focus on various aspects of design and evaluation.
The first composition is that of ED in which we actually realize
the empirical evaluation part of software engineering. The
composition of D with itself, DD, gives us the design portion of
software engineering research, while EDD provides us with the
empirical evaluation of our research. The empirical evaluations
themselves need to be empirically evaluated and E composed with
itself, EE, provides that. Of course, there is then the design of the
empirical evaluations that we represent with the compositions DE
and DEE.
These two initial theories and their compositions lay out a very
rich space for our field. And, it is on this basis that I claim to have
provided a unifying theoretical basis for a rigorous software
engineering and software engineering research discipline.
Moreover, this approach is even more general than that. I also
claim that such design disciplines as project management,
instrument creation and evolution, empirical studies themselves
are also models of these atomic and composed theories – that is,
they are design disciplines and hence models for the theories of
design disciplines that I have presented and alluded to.

13. References
[1] David Gooding, Trevor Pinch, and Simon Schaffer, Editors. The

Uses of Experiment: Studies in the Natural Sciences. Cambridge:
Cambridge University Press, 1989.

[2] Shirley Gregor. “The Nature of Theory in Information Systems”,
MIS Quarterly 30 (2006), pp 611-642

[3] Michael Jackson. The World and the Machine, 17th International
Conference on Software Engineering, 1995, Seattle WA, 283-292

[4] M. L. Markus and D Robey. “Information Technology and
Organizational Change: Causal Structure in theory and Research”,
Management Science 34:5 (1988), pp 583-598

[5] Herbert A. Simon. The Sciences of the Artificial. Cambridge: MIT
Press, 1969.

[6] Turski, Wladyslaw M. and Maibaum, Thomas S. E. The
Specification of Computer Programs. Reading, Mass: Addison-
Wesley, 1987.

[7] Wittgenstein, Ludwig. Tractatus Logico-Philosophicus, ed. A. J.
Ayer, London: Routledge & Kegan Paul, 1961. Section 5.6

[8] www.ece.utexas.edu/~perry/work/tm/modelcalculus/
[9] Michael Jackson. The World and the Machine, 17th International

Conference on Software Engineering, 1995, Seattle WA, 283-292
[10] L. Fortnow, Steve Homer. A Short History of Computational

Complexity. In D. van Dalen, J. Dawson, and A. Kanamori, editors,
The History of Mathematical Logic. North-Holland, 2002.

[11] Walter G. Vincenti. What Engineers Know and How They Know It.
Baltimore: The Johns Hopkins University Press, 1990.

[12] Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein. Expressing the
Relationships Between Multiple Views in Requirements
Specification, ICSE, 1993.

[13] D. Batory, J.N. Sarvela, and A. Rauschmayer. "Scaling Step-Wise
Refinement", IEEE Trans. on Software Engineering, June 2004.

	1. Introduction
	2. Experimental Science
	3. Natural, Behavioral & Artificial Sciences
	4. My Theoretical Approach
	4.1 Theories and Models
	4.2 More About Theories
	4.3 Model Calculus

	5. Design Theory & Model D
	5.1 Theory of D
	5.2 Model of D
	5.3 SE Design as a Model of D

	6. Empirical Theory & Model E
	6.1 Theory of E
	6.2 Model of E

	7. Evaluating the Design Theory D – ED
	8. Designing Design – Theory DD
	The composition of model D (as an open structured model) with itself (as an atomic model) results in a new model with the following elements: the world of D, W:D; the theory of D, T:D; and the model of D, M:D.
	It should be clear that this model represents the theory DD.
	9. Evaluating the Theory DD – EDD
	10. Evaluating Evaluations – EE
	11. Designing Evaluations – DE & DEE
	The design of empirical evaluations and the design of evaluating empirical evaluations (DE and DEE) is analogous to DD: it is part of the software engineering research enterprise.
	12. Conclusions
	13. References

