
An Approach to Evolving Database Dependent Systems
(Extended Abstract)

Mark Grechanik a, Dewayne Perry b, and Don Batory ~
adept, of Computer Sciences

bDepartment of Electrical and Computer Engineering
UT Center for Advanced Research In Software Engineering (UT ARISE)

University of Texas at AustinAustin, Texas 78712

{ gmark [b a t o r y } O c s. u~.exas, edu , p e r z - y l e c e , u t o x a s , odu

Abstract. It is common in client/s~ver architectures for compo-
nents to have SQL statements embedded in their source code. Com-
ponents submit queries to relational databases using such standards
as Universal Data Access (UDA) and Open Database Connec~vity
(ODBC). The APt that implements these standards is complex and
requires the embedding of SQL statements in the language that is
used to write the components. Such programming practices are
widespread and result in increased complexity in maintaining sys-
tems.

We propose an approach that eliminates the embedding of SQL in
programming languages, thereby enabling the automation of impor-
tant soft'ware maintenance tasks.

1 Introduction

Client/server architectures are pervasive in today's computing
world. Common to these architectures are multiple tiers, Graphic
User Interfaces (GUIs), and a backend database. Developers inter-
act with databases by writing SQL queries. Queries return tuples
that need to be further processed by the client software. In the pro-
grammer's view the client software makes database calls so that it
is a natural choice to embed SQL queries into the source code of
client modules.

The idea of ernbedding SQL code into software to allow it to com-
municate with databases was introduced in 1980s. Databases did
not provide internal storage for SQL queries that could be invoked
by external programs. Embedded SQL was in~roduced as database-
specific extension to high-level languages like C/C++ in order to
allow programs to query and manipulate the content of databases.
Although this method has been used for some time, we will show
that it creates many problem-~ with type checking that leads to inef-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and thai
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on sewers or to redistribute to lists,
requires p6or specific permission and/or a fee.
IWPSE 2002 Orlando Florida
Copyright ACM 2002 1-58113-545 -9/02/05...$5.00

ficient and slow evolution of database schemas and software that
uses the databases.

Client/server architecture is eoirmrtonly implemented in heteroge-
neous environment: the bookend database runs on a UNIX-flavor
server and client software runs on a cheaper PC-compatible com-
puter running a version of Microsoft Windows. Windows has an
open standard called Open Database Connectivity (ODBC) that is a
part of Universal Data Access standard [4][6]. Database vendors
supply drivers for Windows that conform to ODBC. In the early
1990s, developers wrote client software that used ODBC API
directly. However, this approach was hindered by a multiplicity of
problems. The ODBC API is complex and hard to master and use
[3]. It decreases the safety, robustness, and portability of applica-
tions developed using it. Four levels of conformity made it difficult
for applications to switch between databases as additional code
should be present that verified the conformity level of the ODBC
driver supplied by database vendors.

Today multiple vendors offer their middleware via major operating
systems, databases, and languages [2]. In fact, database middleware
is a virtual machine that hides the peculiarities of ODBC implemen-
tations and database driver dependencies. The trend of introducing
database connectivity virtual machine was positive and results in an
overall improvement of soft'ware processes.

2 The Problem

Suppose a developer needs to retrieve the f'trst and last name from a
uaer table located in a database. To do this one writes the follow-
ing SQL statement: "sar.zc~ £aaue. z n m e YRON Ua or" where
£name stands for an attribute of User table that keeps first names
and x n u for an attribute that keeps last names. First, the state-
,trent is tried as a stored procedure or entered into the database
query executor to verify that it is correct. Next, the developer
embeds the statement into an AYl call. Then one adds error check-
ing and writes code that further processes the re'turned results.
Other developers write different modules that embed SQL state-
ments dealing with gear. The problem appears when a database
analyst decides to change the database schema. For example,
attribute laa,-a is changed to laa ~_nama. Such a small change
leads to large consequences. Depending on the [eve[of error check-
lug, the software acts as the problem amplifier. Because SQL corn-

113

meeds are submitted as strings, these commands cannot be
statically t3,pe-checkcd with the database schema; errors will only
be discovered at ran-time. And of course, these errors will be dis-
covered at an in-opportune time. They might arise at the place
where the AP! call returns the result code, or it may carry the prob-
lem from module to module until it manifests itself in some unex-
pected place. This problem is compounded by the level of
distribution of the embedded SQL statements in the source code
and variety of APIs used to embed the statements. While database
schema changes are very easy to make, the implications of these
changes are very diflicuit to determine. It requites significant
domain knowledge and source code expertise. If software modules
are tightly coupled then the regression testing of the whole system
must be performed.

This problem is partially addressed by the creation wrappers for
embedded SQL statements. For example, the Microsoft Foundation
Classes (MFC) library and various publications offer object-ori-
ented semantias for embedded SQL. An example of such semantics
is shown in the C++ code below:

strin~ strFiretName, strLastJame;

S QLWEa~SlSeE Sqll
SqI.T~s (CSQLWEappeE; ;SELECT) ;

Sql. Table(~User");
Sql.AddAttrlbute(~fname");
Sql.AddAttri]~ute| " l n a m g ") l

S q l . ~ e c u t e () ;

while(Sql.getEow())
(

atrFiretNama = Sql.GetAttributu(" f a a m e ") p

atrLaehNm-e = Sql.GetAttrlbute("iname") 7

}

S(ELWrapper is S wrapper class that embeds methods that build
SQL statements dynamically [I]. Sql is an instance of this class.
Example methods that arc scmamicalty linked to the SQL grammar
take table and attribute names as parameters. The Exegete ()
method builds SQL statement like "SELECT fame, iname piton
user" and sends it to the database for execution. Because all of this
is done at program run-time, it is very difficult to assess the impact
of changes made to database schemas in client software.

3 A Solution

3.1 Stored Procedures

Stored procedures arc database objects that consist of SQL state-
ments and some fourth-generation language statements designed to
work with SQL [5]. One may think of a stored procedure as a func-
tion or subroutine in a high-level language. There are no program-
ming limitations to using stored procedures. Since they reside
inside the database they may be precompiled and optimized before
they are used. This makes them much faster than other ways ofexe-
curing SQL queries at the database server. Most importantly, stored
procedures can be viewed as consolidation points for database
related code. The ability of a stored procedure to take parameters
and remm results in various forms as welt as to use a high-order

languages provided by specific database implementations, makes it
very attractive for use with distributed applications to decrease their
complexity.

Despite all the benefits, many companies experience problems with
stored procedures similar to those of support and maintenance of
soft'ware in general, There are a number of books written that out-
line the guidelines for their creation and maintenance
[www. aes.nesu.edulSybaeelNcSolap_gu£dsl£nsa/]. Such
guidelines do not go farther than outlining rules for documenting
stored procedures. For example, it is recommended that a developer
creates a maintenance wrapper that is a documentation header con-
raining the names of tables and attributes used in a stored proce-
dure. If the database sehmTm changes later, then someone needs to
go through all procedures and analyze the maintenance wrappers
with the intent of correcting the code to reflect the schema changes.

3.2 Our Approach

Our solution removes the embedded SQL statements from the
source code and is based on the ability to receive the information
from the database server about its objects. Recall that a developer
tests the SQL statements initially in a stored procedure (5P). After
testing the SQL code the developer leaves the stored procedure
inside the database system. At this point it becomes a database
object linked to other objects inside the database server. Let us
introduce an operator called WG that stands for Wrapper Genera-
tor. When applied to any database object el, WG produces the fol-
lowing epic defined recm-sively

WG(O~ = <<Oi, Typc(Oj)>, <WG(Oj), Type(Oj)>,
<INk, Type(INk)>, <OUT n, Type(OUTs)>>,

where Oj is a set of database objects, for example, tables that O i
uses, Type() is an operator that returns the database specific type of
an object, IN k is a set oflnput parameters that O i may require, and
OUT n is a set of results that O i may return. For example, consider
tim following simple procedure using T-SQL syntax.

CREATE PEOCEDBRE g e t _ u s e E _ . n a . m e _ l ~ _ £ d
8UeerZD va r c ha r ('tO) o
®User F i r s l : Name varehar (20) See'POe,
@User Last: Name , r a r e : h e r (5 0) OUTPUT

&G
8BI.~CT @User_Firs tName, OOBer_Lallt_Hame
FROM U s e r

WEIlRiI Ua,*x*Td = 4 1 ' B s e r Z D

When applying WG to get..uaer..name_by_id object we obtain the
following result

< t o e e g , I- ~I~ "le> • <O's o r . f aLI~S, V&EGhAr (2 O) >,

< U s e r . 1name, v a] r c h a r (§ 0) >,

< O s e r . O s e r T d , v a r e h a r (1 0) > , < U s e r ' r g , r a r e ' h A t (Z 0) > ,

< U s e r F i n a l : Name, e a r l . h e r (2 0) > , < U - . e r i L a s t : _ N a m e ,

v s r e h a r (50) >>

A rooted dependency graph can be created given this information.
The graph edges describe the dependencies between the database
objects. Once created, such graph can be analyzed to determine
dependencies. Later, type conversion information can be added to

114

map the database-specific types to the programming language types
from which this procedure may be called. At this point we have
enough information to generate a class wrapper for an external Jan-
guage in which the client software is written. An example nfa class
wrapper definition in C++ for get_aser_name_by_id is shown
below.

c l a s s SP_Wzapper_ge t _uee r_nalne _ b y _ i d
(

/ / eon - , t : r LXe ta : emd d e a L r ~ e l : a :
puJnl ic ;

SP W r a p p e r _ g e t _ u s e r _ n a ~ J _ ~ y _ i d (v e i d) I
-SP Wrappez gee. umer Derma)by J.d(v o i d) ;
/ / opener I:~.ens
v o i d ne t_Uae rTd(el~ring a l : rUaerZd) ;
s t r i n g Gal :_Uaar_F£ra l :_Na~a (v o £ d I ;
s t r i n g Geh_Uaer_Laat_Name(v o i d) ;
v £ = t u = l v o i d r . xeeu t 'a (v e i d) ;
/ / a t t'=tJout" as
p = e t e e t e d :
e l : z i n g Uaer_F£:ae_Nmme, Uae=_Laal : Name~
e la t ing Da.l:abaaa_Ob"l eel-_Name;

},

A developer can use this class without having a single SQL state-
ment embedded in his~her source code. This class carl be reused
multiple times without retesting since the database object does not
change. Now consider a situation when a database schema is
changed.

When traversing a dependency graph, each node is validated
against the current database schema. Suppose attribute f a m e in
table u . e r is changed to f t n t _ - - , - e . Validation fails when
checking fae~- against the database schema. At this point a devel-
oper is notified that WG needs to be reapplied to build or change
the wrapper class. Once the developer specifies the mapping
between the original and changed names the task of automated
maintenance will be done without the developer knowing the

details of the conversion. Client source code is unaffected by these
changes.

3.3 Architecture

A block schema of the architectural solution is shown in Figure 1.
A database is shown in the right half of the figure that contains
stored procedures and other schema elements. A relationship
between a stored procedure and some table is shown with the arrow
connecting them. The wrapper code generator reads and analyzes a
stored procedure and generates a class wrapper. The class wrapper
becomes an integral part of the Client. All accesses to the stored
procedures from other classes in the Client occur via the wrapper
class objects. The automatic maintenance tool does reverse engi-
neering of the client software and locates all references to the wrap-
per class. It keeps all refev-'xaccs in a local registry. When a database
analyst needs to change the database schema, the maintenance tool
is invoked that presents all database schema elements.

By clicking on an element, the analyst causes the tool to retrieve the
dependency graphs that show what database elements are affected
by a change. The tool then searches the registry to determine
whether any of the affected elements are stored procedures that are
used in the client software via the generated wrapper, it then pre-
sents the report about all required changes and their cost.

4 Conclusion and Future Work

Stored procedures occupy a very important niche in today's data-
base world. Besides purely database related aspects they also play
an important role in overall software engineering. We have shown
how the use of stored procedures simultaneously reduces software
complexity and simplifies change management.

J

Wrapper Coda Generator

Automatic Maintenance
Tool

Figure 1: The Archi tecture of Stored Procedure Wrapper Generator and
Maintenance System

115

We believe that once stored procedures are recognized not just as
database objects but as important components of the overall soft-
ware design, it will lead to introducing new software tools that sim-
plify soft'warn development and maintenance. To show the
usefulness of our approach, we plan to develop a Wrapper Code
Generator and Automatic Maintenance Tool and apply it to the
development of multi-tier software systems that extensively uses
databases. We also plan experiments that measure the quantitative
characteristics of soft'ware metrics and improvement of overall soft-
ware design and maintenance.

5 References

[I]C. Saracco. "Leveraging DBMS Stored Procedures
Through Enterprise JavaBeans", IBM Report, San Jose,
CA, August 2000.

[2] N. Rischc, A. Vaschillo, D. Vasilevsky, A. Shaposhnikov,
S. Chen. 'The Architecture for Semantic Data Access to
Heterogeneous Information Sources".]st Int. Workshop
on Cooperative Information Agents, 1997.

[3] D. Spinellis. "A Critique of the Windows Application
Programming Interface". Computer Standards &
Interfaces, 20:1-8, November 1998.

[4] EL Wells. "Code-Centric: T-SQL Programming with
Stored Procedures and Triggers". Apress/Xpringer-
Verlag, 2001.

[5] D. Sunderic and T. Woodhead. "SQL Server 2000 Stored
Procedure Programming". Osborne, 2001.

[6] C. Wood. "'OLE DB and ODBC". M&TBooks, 1999.

116

