
 T H E U N I V E R S I T Y O F T E X A S A T A U S T I N

T H E C E N T E R F O R A D V A N C E D R E S E A R C H I N
S O F T W A R E E N G I N E E R I N G

(U T A R I S E)

WHITE PAPER
AN ASPECT-ORIENTED APPROACH FOR

FINE-GRAINED CONTROL AND
ALLOCATION OF RESOURCES FOR

COMPUTATIONAL GRIDS

Mark Grechanik and Dewayne E. Perry

October 2003

AN ASPECT-ORIENTED APPROACH FOR FINE-GRAINED CONTROL AND ALLOCATION
OF RESOURCES FOR COMPUTATIONAL GRIDS

INTRODUCTION

One ultimate purpose of computational grids is to enable various organizations to share
existing computing resources. To view computer hardware and software as resources creates
serious challenges with their fine-grained control and allocation in a grid environment.
Specifically, users attempt to gain access to different resources whose owners should be able to
exercise a fine-grained control of such access depending on various local factors while ensuring
that the overall security and computational integrity of the system is not compromised. This
problem is especially exacerbated in corporate enterprise environments where a slight breach in
security may lead to disastrous consequences thereby holding back the much needed grid systems
that can be used to solve many important problems.

Existing grid solutions are typically based on user-level programs called agents running under
minimum-security privileges. These agents can only accomplish parallel data processing tasks, and
fall short of enabling fine-grained access to selected resources. Moreover, many agents are based
on a polling mechanism that wakes them up at predefined time intervals to run some tasks and
then puts these agent programs back to sleep. Polling agents often miss events that occur in the
midst of the polling interval, and waste computational resources when awakened at times when
their services are not needed.

We introduce a novel approach called monitoring and administering computer resources (MARS) in a
grid environment that allows grid participants to exercise a fine-grained control and allocation of
computer resources uniformly. In our approach, we:

• treat hardware and software resources as first-class objects that can be monitored and
manipulated;

• reify the states of the resource objects via operations so that monitoring can be done
uniformly and with minimum complexity;

• reify the relationship topology among resource objects so that it can be manipulated;
and

• use aspects to provide the monitoring and manipulation of these resource objects.

SOME MOTIVATING EXAMPLES

We demonstrate the importance of fine-grained control of grid tasks and difficulties in
solving them using examples of process monitoring, fine-grained security, and the redirection of
resource accesses. These are common problems encountered every day by developers and system
administrators in the distributed enterprise environments and grids, yet there is no simple and
uniform way to solve them.

Consider a situation when a multiple copies of some application are installed on computers in
a grid environment. During the execution this application accesses some remote resources.

2

AN ASPECT-ORIENTED APPROACH FOR FINE-GRAINED CONTROL AND ALLOCATION
OF RESOURCES FOR COMPUTATIONAL GRIDS

Suppose that an administrator decides to group these applications to use different remote
resources for each group. It means that each copy of the application should be reconfigured using
its GUI or configuration file. This is a manual and laborious task to which no simple and
satisfactory solution exists (apart from our approach). With our MARS-based fine-grained
uniform solution administrators can enable the redirection of each copy of the application to
access the appropriate resources easily and uniformly.

Many grid tasks require that certain application should execute and need to ensure that other
grid programs do not “steal” resources from it. Consider a situation shown in Figure 1 when
process A executes starting at time As1 and finishing at time Ae1. Process A should be given the
highest priority, and the task of a grid administrator is to suspend other processes that try to run
simultaneously with A. Suppose that the grid administrator is an agent that polls at times t1 and
t2 to monitor the computer state. Between the t1-t2 time interval the process B starts at time Bs
and finishes at time Be. Thus, the process B avoids being detected by the grid agents, and it may
interfere with the execution of the process A.

Tim e t1 t2 t3

As
1 Ae

1 As
2 Ae

2

B s Be

Figure 1. Process B executing concurrently with instances of the process A.

Suppose that process A terminated at time Ae1 and its new instance started at time As2. The
polling agent detects this instance at time t3, however, it is unable to tell whether it is a new
instance. The process identifier may be reused by the operating system (OS) and assigned to the
new instance of A. Existing grid solutions that enable real-time detection of events associated with
the asynchronous start and termination of programs involve OS kernel modifications that makes
them difficult and impractical.

Computer security adds many important tasks to the grid task roster. Many OSes as well as
grid solutions do not provide any fine-grained security to application deployment and resource
allocation and control. Consider the following situation: a group of users with limited privileges
run some application from different computers and that application requires access to a remote
resource, for example, a CD-Writer. While the existing privileges do not allow these users to
access this CD-Writer this restriction should be lifted when this application calls some
Application Programming Interface (API) that requires access to this resource and reset right after
when the call is completed. Our approach provides a solution to this problem.

OUR SOLUTION

Existing grid solutions are mostly based on agents. A grid agent is a user-level program that
executes under minimal security privileges and employs primitive ad-hoc techniques to control the
behavior of computer resources. A wide spectrum of these solutions, as well as the versatility of

 3

AN ASPECT-ORIENTED APPROACH FOR FINE-GRAINED CONTROL AND ALLOCATION
OF RESOURCES FOR COMPUTATIONAL GRIDS

various ad-hoc techniques that depend on specific applications and platforms on which they run,
hide common properties of monitoring and administering mechanisms. We uncover these
properties and present them collectively in our MARS model.

Our approach is based on converting low-level API resource calls into system-wide events
that MARS programs can monitor. This conversion is accomplished by using advice (an
aspect-oriented programming (AOP) concept) that contains event-generating code at join
points in programs that represent grid resources. Advice is applied by instrumenting low-
level API calls (using binary rewriting techniques) to produce the desired event notifications. We
abstract and group low-level resource APIs by imposing a transactional metaphor that
significantly reduces the complexity of reasoning about grid resources.

A grid resource changes its state after a client program executes some API that modifies
values of some internal variables of this resource. This is a fundamental property upon which any
administrating and monitoring solution is based. Suppose we have an observer who “lives” inside
a CPU, “watches” internal variables of computer resources, and notifies us when their values
change. If this observer can also modify the values of these variables on our behalf, then we can
call him/her a MARS observer and manipulator.

A MARS observer who notifies us about changes of values of any variables and can also
change these values on our behalf is the core of our MARS model. Since client programs change
the values of internal variables of computer resources by calling APIs, our observer can watch for
calls to certain functions that lead to changes of monitored variables and notify us about
invocations of these functions. The MARS manipulator can go further by executing MARS
functions that administer resources before, after, or instead of invoked APIs. In the
MARS model the observer/manipulator uses APIs as surrogates for monitoring and manipulating
states of resources.

The behavior of the MARS observer/manipulator can be easily explained using AOP
concepts. The observer can be viewed as a MARS aspect that is applied to computer resources.
Different APIs that are located in different libraries and programs that manipulate the same
resource represent a crosscut. A MARS aspect introduces a set of standard advice to resource
crosscuts. For example, handling notifications about changes in the state of monitored resources
is accomplished by applying before advice to APIs that manipulate these resources.

We categorize APIs that change the state of computer resources by using a transactional
metaphor. Some APIs initialize or open a resource, some APIs perform read from or write to a
resource, and others close resources. By creating such categories we enable the MARS observer to
notify us that some resource has just been written to by some process rather than to produce a
cryptic message stating that some API has been executed with a list of its parameters.

A high-level logical view of the MARS model is shown in Figure 2. At the top level a MARS
observer and manipulator detects changes in states of computer resources as well as manipulates
their behavior. This observer/manipulator accomplishes this work using event and AOP models
that are based on binary rewriting mechanisms. Binary rewriters are a part of low-level
implementation of our MARS approach.

4

AN ASPECT-ORIENTED APPROACH FOR FINE-GRAINED CONTROL AND ALLOCATION
OF RESOURCES FOR COMPUTATIONAL GRIDS

Computer resource objects

Binary rewriters

Event model AOP model

Observer and Manipulator

Figure 2. A logical view of MARS model.

CONCLUSIONS

The resulting contribution of our work is a powerful way to apply fine-grained monitoring
and administration mechanisms to arbitrary computer resources in a grid environment. We show
how to reduce the significant complexity associated with the development of MARS software by
enabling a simple and powerful MARS model for monitoring and manipulating grid resources. We
allow programmers to operate on resources as first-class objects thereby presenting a uniform way
to write grid-enabled MARS programs. In reifying the state of grid-enabled resources, we impose
a transactional metaphor on MARS systems, thus simplifying the event delivery mechanism by
reducing tens of thousands of different events to only five event categories. By reifying the
relationship topology of grid resources, we enable the manipulations of those relationships and
thereby the use and control of those resources.

We have prototyped the basic ideas to show a proof of our basic concepts and simulated a
performance model of MARS to evaluate its viability. The results of our evaluation showed the
feasibility of our approach and its applicability to solve important problems in today’s grid
computing environments.

 5

	INTRODUCTION
	SOME MOTIVATING EXAMPLES
	OUR SOLUTION
	CONCLUSIONS

