
 1

Analyzing Software Development as a Noncooperative Game

Mark Grechanik and Dewayne E. Perry
The Center for Advanced Research In Software Engineering (ARISE)

The University of Texas at Austin
gmark@cs.utexas.edu, perry@ece.utexas.edu

Abstract

A significant number of failures of software projects
are widely attributed to poor requirements gathering
and making various errors in specifications, choosing
an incorrect architecture, following a wrong design
and development model, and incurring significant cost
in the maintenance stage. While these and other
reasons are correct, they are based on an assumption
that everyone involved in a software project is driven
to make it successful and agrees on the goals and the
methods of how to achieve that success. However, each
team participant views the ultimate success of the
project differently in terms of his/her personal goals.
These different views may result in conflicting
decisions by team participants that affect the overall
success of the project. In this paper we analyze
software projects as noncooperative games and show
how to use the tools and techniques of game theory to
uncover some hidden causes of failures of software
projects and we suggest ways to fix them.

1. Issue Statement

A significant number of failures of software projects
are widely attributed to poor requirements gathering
and making various errors in specifications, choosing
an incorrect architecture, following a wrong design
and development model, and incurring significant cost
in the maintenance stage [2][5][9]. While these and
other reasons are correct, they are based on an
assumption that everyone involved in a software
project is driven to make it successful and agrees on
the goals and the methods of how to achieve that
success. However, each team participant views the
ultimate success of the project differently in terms of
his/her personal goals. These different views may
result in conflicting decisions by team participants that
affect the overall success of the project. In this paper
we analyze software projects as noncooperative games
and show how to use the tools and techniques of game

theory to uncover some hidden causes of failures of
software projects and we suggest ways to fix them.

Type of issue
We consider the long-term strategic issues of making
individual decisions by each participant of a software
project team with respect of the common goals of the
project. Despite the fact that desired actions of each
team participant are outlined in the job descriptions for
a software project, there is a great deal of flexibility in
how people can carry out these actions in real-world
project settings.

Context
We assert that this strategic issue of conflict between
personal decisions and overall software project goals is
common in most commercial companies in the US and
abroad, and that this issue has not been considered
fully yet.

2. Goals of Software Engineering
Every software engineering project pursues two major
goals [1][2]. The first goal is to achieve a successful
software product, and the second is to conduct a
successful software development and maintenance
process. In software engineering economics it is
assumed that every participant of a software project
strives toward achieving these goals. While it is
understood that goal conflicts are possible, the space of
generally considered goal conflicts includes situations
where conflicts arise due to external circumstances, for
example, unknown requirements, poorly organized
software process, or selecting a wrong tool.

Various analytical models of software economics
establish relationships between a programmer’s
productivity and the cost of a project, help to choose
an appropriate pricing strategy, or evaluate economic
risks that may impact a software project in a variety of
ways [1][2][3][4]. In all models, participants of
software projects are considered as a group whose

 2

goals are the same as the general goals of software
engineering [1]. However, each participant of a
software project has three characteristics:
individualism, rationality, and mutual interdependence
with other participants. By individualism we mean that
participants of software projects can choose whether to
enter into binding agreements with others, or choose
actions to achieve individual goals. Rationality means
that individuals are assumed to act in their own self-
interest. Finally, mutual interdependence is an
important characteristic of software project participants
since software development is a team activity [5].
However, it is possible that a single entrepreneur can
found a company and write software, and we do not
consider such cases in this paper.

When individual goals of the participants of a software
project conflict with the general goals of software
engineering it may result in failure. Often the blame
for the failure is assigned to certain reasons that are not
the enablers but rather causes of this failure. For
example, an Austin-based company Arrowsmith
Technologies, Inc. closed its doors in May 1997. An
official reason for this closure was the deregulation of
telecommunication industry that wrought havoc on
company’s marketing effort and led to significant
financial losses. However, one of the authors
(Grechanik) was employed as a senior engineer with
this company and he and his co-workers witnessed the
real causes to this failure. Software products sold by
the company were buggy, customers complained about
their poor quality, and software engineers leaving the
company at a rate of up to five programmers a week
contributed more to the downfall of this company than
any deregulations.

A fundamental problem that we address in this paper is
that of analyzing conflicts between the goals of
individual team members and general software
engineering goals, predicting them, and developing a
strategy to eliminate these conflicts. We offer an
approach that solves this fundamental problem and
enables us to predict software project failures and even
avoid them.

3. Proposed Approach
We consider software development activities as
strategic interactions that include the constraints on the
actions that the project participants can take with
respect to their interests, but do not specify the actions
that the participants do take. As such, a software
development project is a software development game

(SD game). A participant of an SD game is a player
and is the basic entity in all game theoretic models [7].

We offer the following caveat: we define the general
characteristics of the players and ignore all the possible
exceptions.

Rationality
Each player of an SD game is a rational decision
maker. This statement may be read with certain degree
of disbelief since it is a known fact that various failures
of software projects have been linked to irrational
technical and managerial choices. What we mean by
players of SD games being rational is that they make
choices in the best of their own self-interests.

What constitutes rational behavior of SD game
players? There is a set of actions A from which a
player makes a choice, a set C of possible
consequences of these actions, and a consequence
function :g A C→ that associates a consequence
with each action. A player chooses appropriate actions
using a preference relation ≺ that is also called a
payoff.

An SD game is a strategic game because in the process
of interactive decision-making a player chooses his
plan of actions once and for all, and these choices are
made simultaneously with other players. Each player
has his/her own strategy that is a set of actions. All
players choose these actions simultaneously from a
nonempty set A.

Players
We divide all SD game players into three categories:
management, customers, and developers. We designate
them with uppercase letters M, C, and D respectively.
Management includes all managers and company
executives who are not involved in software
development activities directly, however, they are
responsible for the ultimate success of the software
product that is an outcome of the SD game. Customers
are individuals and companies that buy a software
product resulting from the SD game. Finally, software
engineers or developers include project participants
who gather requirements, write specifications, architect
and design, code, test, and deploy the system. In short,
D stands for every player of an SD game who is
directly involved in creating and evolving a software
product.

 3

Strategies
We are ready to define strategies for each category of
SD players. M’s strategy comprises three goals:
decrease cost of the software product, increase its
price, and ship the product faster. Ideally, when the
cost of software product goes to zero and its price
skyrockets, M is happy. In the real world the
difference between the sales (price of a unit of the
product multiplied by the number of units sold to C)
and the cost to produce and maintain this product is the
margin that defines the profit of a company, and how
good an SD game is. Shipping a product faster enables
M to sell more units of the product in a shorter interval
of time thereby increasing the margin and the
company’s profit.

C’s strategy revolves around three goals: decrease the
price of the product, increase a number of features that
it offers, and purchase a higher quality product for a
smaller price.

D’s strategy is less than clear. While M and C have
well-defined financial goals based on the successful
outcome of the SD game, D’s goals are to satisfy job
requirements, increase personal marketability, and
increase M and C’s dependence on D. The first goal of
satisfying job requirements is easy to understand. If D
cannot do what s/he is hired to do then M fires D. At
the same time D strives to improve D’s personal
marketability in order to stay competitive and be able
to obtain a better job. Finally, D want to secure the
existing job, and one sure way to achieve it is to make
D indispensable for M and C.

Payoff
Now that we know strategies and goals of each player
of an SD game we define a preference relation (payoff)
for each player. For M, if the product is successful the
payoff is promotion and a sizable bonus. For example,
IBM Corp. allocates a hefty bonus if a project results
in a successful product and all milestones are met in
time and within budget. A fifth-level manager leaves a
sizable chunk of the bonus to him/herself and passes
the rest to the fourth level managers overseeing this
project. The process repeats with remaining part of the
bonus distributed among first-level management and
nothing for actual project participants (i.e. D) [8].

C’s payoff can be described as satisfaction of C’s
business goals using a purchased software product.
The ultimate goal of any purchased product for C is to
make more money or save money using this product.
Some products are geared toward increasing worker’s

productivity that also result in making more money for
C.

D’s payoff is very prosaic. Besides keeping the job and
a slim chance for a limited promotion from a junior
software engineer to a software engineer and
ultimately to a position of a senior or principal
software engineer, there is no payoff that links D to the
successful outcome of a software project.

A payoff table is shown in Table 1. Three columns
specify SD game players, i.e. M, C, and D. The
variables that affect the successful outcome of an SD
game are shown in the leftmost column. Variable cost
defines the total resources used by the project that can
be measured in dollars. Variable price defines a price
of a unit of a software product resulting from a given
SD game, in dollars. Variable speed measures how fast
a product can be shipped to customers. Variable
features indicates the number of functional units that a
product delivers to customers.

The last variable is quality of the resulting product. We
measure quality as a level of C’s satisfaction with a
purchased software product. We talk about three levels
of quality: C is extremely satisfied with the quality of a
product, C is satisfied enough to use a product, and C
is dissatisfied with a product.

Table 1. Preference relation (payoffs) for players of
an SD game.

We use three values to associate each variable in Table
1 with SD game players. Value -1 means that a player
is not interested in increasing the value of that variable,
value 0 means that a player is neutral on that variable,
and value 1 mean that a player is interested in
increasing the value of that variable.

 4

Analysis of Payoffs
Let us consider payoff values that we assign in Table 1
for each player with regard to each game variable. M is
concerned with the increased of the cost of a project
since it has a negative impact on M’s goals. Therefore
M’s strategy is to minimize the cost and we reflect the
negative payoff for M when the cost increases.
Naturally, M wants to increase the price, speed, and
the number of features of a software product, and it is
reflected in Table 1 by assigning values 1 to these
variables for M. Finally, the effect of quality on M is
neutral; M wants sufficient quality for C, however, M
does not want to spend significant resources on
improving the quality beyond what practically is
required for C to be satisfied. Because of that we
assign value 0 for quality variable for M.

On the other hand, C is not concerned with the cost of
manufacturing of a software product. If M’s cost is
greater than its revenue from a product (which we
observed during the dot com bubble), C is still
perfectly happy to purchase this product. Because of
this we assign value 0 to the cost variable for C.
However, C is concerned about the price of a product
and wants to pay less while getting a software product
faster, with more features, and of the highest quality.
These objectives are reflected by assigning negative
value -1 to price variable and positive values 1 to
speed, features, and quality variables.

When considering D’s payoffs it becomes clear that
they are different from payoffs of M and C. D is
interested in the increase of the cost of a project. Why?
Because the increase in the cost means that more
resources are allocated to D’s needs. For example,
money is spent on training D, buying better equipment
and software tools, and salary increases drive up the
cost of the project. However, it satisfies D’s goals of
becoming better marketable. The price of a product has
little effect on D since it is not D who pays this price.
The speed, features, and quality variables have
negative impact on D since improving these variables
requires more work from D.

When we sum up values in columns M, C, and D we
obtain values 2 for M and C and -2 for D. Clearly this
result indicates that while M and D end up with
positive payoffs, the payoff for D in the same game is
negative. This is a strong indicator that the general
goals of software engineering conflict with a personal
strategy selected by D to maximize its own payoff.

SD is a Noncooperative Game
Game theory defines a game as noncooperative if two
following conditions hold:

• Agreements to share payoffs, even if it were
practical, are virtually nonexistent, and

• All players are out for themselves.
Let us see why these conditions hold for a vast
majority of SD games. Player M does not share
business plans with D and often views D as a
disposable resource. Moreover, M does not explain
business objectives to D and often makes decisions
that require significant investments from D. For
example, we observed that in many companies D is
asked to deliver a certain subsystem ahead of time at
the expense of sacrificing D’s personal time. D takes
such a request seriously and works hard producing the
subsystem within the budget and ahead of schedule
only to find out that M changed its priorities and this
subsystem is not needed any more. Even if it still
needed there is a little reward allocated to D.

A reasonable question to ask whether there is a
strategy for D such that D can share payoffs and
cooperate with M. Our hypothesis is that this is only
possible when D becomes M, i.e. D changes his/her
career, stops being a software engineer, and becomes a
manager. The current settings of noncooperative SD
games leaves no choice for Ds but to look for ways to
leave software development and either become
managers or free-lancing software consultants.

Nash Equilibrium for SD Games
It is a known result in the game theory that trying to
maximize payoff to one or two players may result in
the loss to all game participants.

In SD games the same game is played many times but
with different players. Each player knows the
unspoken rules for maximizing payoff for M and C
from the prior experience, and attempts a strategy that
would maximize his/her payoff often at the expense of
the success of the SD game and consequently of the
software product. M knows that D cannot be relied
upon especially if D knows how M maximizes its
payoff. This information can explain a situation when
managers try to hire mostly fresh college graduates for
large-scale projects. As irrational as it seems this
action is perfectly rational considering the complete
absence of desire from M’s side to share the payoff.
M’s hopes lie in the belief that programming is not
hard and young developers are inexperienced in the
structure of SD games and have high motivations to

 5

prove themselves at the expense of their personal
benefits.

Figure 1. A model of Nash equilibrium for an SD
game.

Reaching Winning Equilibrium
Thus, in every SD game we have the mixture of
collective rationality and individual inspirations from
the three players. The question is how do we reach a
winning equilibrium?

One of the solutions from the game theory to reach a
winning equilibrium is to form a new coalition among
the players. In case of SD games consider forming
coalitions between M and D. In a way such a coalition
is attempted in software startups where D and M
receive shares of a company. A problem is that an
imputation, or payoff, for this coalition should be
Pareto optimal -- that is, all players should
simultaneously do better. It is illustrated in Figure 1
where axes show payoffs for the three players. A small
area in the payoff space is called the equilibrium. For
example, if M and D get equal number of company’s
shares, then a payoff may be optimal. As a general rule
M receives more shares than D. However, to reach the
winning equilibrium, M cannot get big intermediate
bonuses while D is promised a payoff only when
company’s stock goes up. A large difference in the
company shares that M and D receive in no way helps
to make an imputation for SD games Pareto optimal.

In order to reach a winning equilibrium in SD games a
payoff should be structured in a way that all players
win when a project’s outcome is a successful product.

In reality it is a difficult problem. Most financial
systems especially in large software organizations are
not set up to structure optimal payoffs. As a proverb
says, a war is won by generals and lost by soldiers.
The analogy between a war and an SD game is that
when it is successful all the glory goes to M, and when
it is unsuccessful all the blame goes to D. This
mentality dictates unequal payoff distributions with
larger chucks going to M.

Software Complexity and SD Games
An interesting side effect of noncooperative SD games
with nonoptimal payoffs is a significant accidental
complexity in the resulting software products. We
assert this claim based on our observations of multiple
projects that we have participated in as developers and
software consultants. In a number of cases we
observed the following situation. A project was
successfully moving to its completion and a product
was built in time and within the budget. Management
was trying to maximize its payoff and wanted to
reduce the cost of the project by laying off a number of
developers. In an interesting twist managers first let go
employees whose systems were less buggy and
required less maintenance. Thus, those who cared
about the success of a project were punished while
those who created imperfect software stayed because
the management needed someone to maintain it. Since
it was troublesome to fire the creators of buggy
software and hire someone instead of them, train these
new hires, and pay them to maintain the software,
managers preferred to keep the poor programmers.

Recall that the same SD game is played by different
players who already know about the rules and unfair
payoffs. A natural strategy for D is to maximize the
dependence of M on D. But what are the ways to
achieve this dependence? One way is prompted by M’s
actions of laying off those who write less complicated
and higher quality software. D realizes that it is in
his/her interest to write complicated software that
would require M to incur a high switching cost when
trying to replace a D. This perspective may explain
why Ds often argue to use software and tools that add
complexity to their daily tasks and negatively impact
software projects. For example, programmers who
insist on using C++ when a better domain-specific
language is available may have this as their rationale.

Previous work
We base our work on the foundational goals of
software engineering defined in [1] and we use the
game theory to explain our observations [2]. We are

 6

not aware of any prior results that use game theory to
evaluate the effect of goal conflicts on the success of
software engineering projects.

Acknowledgment
We would like to warmly thank Don Batory for
discussions and comments that significantly improved
this paper.

7. References

[1] B. Boehm, Software Engineering Economics, Prentice
Hall, Upper Saddle River, NJ, 1984.

[2] B. Boehm, “Software Risk Management: Principles and
Practices”, IEEE Software, Jan. 1991, p.32-41.

[3] E. DeGarmo, W. Sullivan, and J. Bontadelli, Engineering
Economy, Prentice-Hall, Upper Saddle River, NJ, 1993.

[4] E. Grant, W. Ireson, and R. Leavenworth, Principles of
Engineering Economy, Wiley, New York, 1990.

[5] F. Brooks, The Mythical Man-Month, Addison-Wesley,
2nd edition, August 1995.

[6] L. Levy, Taming the Tiger - Software Engineering and
Software Economics, Springer-Verlag, New York, 1987.

[7] M. Osborne and A. Rubinstein, A Course in Game
Theory, MIT Press, August 1994.

[8] Private conversations with IBM, Schlumberger, and
KLA-Tencor employees.

[9] S. Flowers, Software Failure: Management Failure:
Amazing Stories and Cautionary Tales, John Wiley & Sons,
December 1996.

