
Reengineering Large-Scale Polylingual Systems
(Extended Abstract)

Mark Grechanik, Dewayne E. Perry, and Don Batory
UT Center for Advanced Research In Software Engineering (UT ARISE)

University of Texas at Austin
Austin, Texas 78712

{gmark|batory}@cs.utexas.edu, perry@ece.utexas.edu

Abstract. Building systems from existing applications writ- Consider an architecture for polylingual systems as shown in

ten in two or more languages is common practice. Such sys-
tems are polylingual. Polylingual systems are relatively easy
to build when the number of APIs needed to achieve lan-
guage interoperability is small. However, when the number
of distinct APIs become large, maintaining and evolving
them becomes a notoriously difficult task.

We present a practical and effective process to reengineer
large-scale polylingual systems. We offer a programming
model that is based on the uniform abstraction of polylingual
systems as graphs and the use of path expressions for tra-
versing and manipulating data. This model enables us to
achieve multiple benefits, including coding simplicity and
uniformity (where neither was present before) that facilitate
further reverse engineering. By performing control and data
flow analyses of polylingual systems we infer the schemas
used by all participating programs and the actions performed
by each program on others. Finally, we describe a tool called
FORTRESS that automates our reverse engineering process.
The contribution of this paper is a process that allows pro-
grammers to reverse engineer foreign type systems and their
instances semiautomatically at the highest level of design.
We know of no other approach with comparable benefits.

1 Introduction

Building software systems from existing applications is a
well-accepted practice. Applications are often written in dif-
ferent languages and provide data in different formats. An
example is a C++ application that parses an HTML-based
web page, extracts data, and passes the data to an EJB pro-
gram. We can view these applications in different ways. One
way is COTS integration problem where a significant
amount of code is required to effect that integration. Or we
can view them as instances of architectural mismatch, spe-
cifically as mismatched assumptions about data models [1].
Or we can view them, as we do in this paper, as instances of
polylingual interoperable [2][3] applications that manipulate
data in foreign type systems (FTSs) i.e., type systems that are
different from the host language.

the directed graph in Figure 1. Graph nodes correspond to
programs P1, P2, …, Pn that are written in different lan-
guages and may run on different platforms. Each edge
Pi→Pj denotes the ability of program Pi to access objects of
program Pj. Pi→Pj is usually implemented by a complex
API that is specific to language of the calling program Pi, the
platform Pi runs on, and the language and platform Pj to
which it connects. (In fact, there can be several different
tools and APIs that allow Pi to access objects in Pj). Note
that the APIs that allow Pi to access objects in Pj may be dif-
ferent than the APIs that allow Pj to access objects in Pi.

The complexity of a polylingual program is approximately
the number of edges in Figure 1 that it uses. That is, when
the number of edges (i.e., APIs needed for interoperability)
is miniscule, the complexity of a polylingual system is man-
ageable; it can be understood by a programmer. But as the
number of edges increases, the ability of any single individ-
ual to understand all these different APIs and the system
itself rapidly diminishes. In the case of clique of n nodes
(Figure 1), the complexity of a polylingual system is O(n2).
This is not scalable. Of course, it is hard to find actual sys-
tems that have clique architectures. In fact, people want
them, but these systems are too complex to build, maintain,
and evolve. A large-scale polylingual system is a polylingual
system where the number of edges (APIs) is excessive. Such
systems are common and are notoriously difficult to develop,
maintain, and evolve.

We propose a combined forward and reverse engineering
process consisting of four steps to reverse engineer foreign
type systems and their instances semiautomatically at the

Figure 1: Architecture of Polylingual Systems

Pn

P1

P2

P3
P4

…

1

dsb
To be presented at the International Workshop on Incorporating COTS into Software Systems: Tools and Techniques (IWICSS), February 2004, Redondo Beach, CA

highest level of design. First, we offer a programming model
that is based on abstracting constituents of polylingual sys-
tems as graphs of objects and providing language-neutral
specifications based on path expressions, coupled with a set
of basic operations, for traversing these graph to access and
manipulate their objects [4]. This step allows us to achieve
multiple benefits, including coding simplicity and uniformity
that facilitate further reverse engineering. Next, we perform
control flow and data flow analyses of polylingual programs
in order to infer schemas (e.g. a schema is a set of artifact def-
initions in a type system that defines the hierarchy of ele-
ments, operations, and allowable content) and actions
performed by FTSs. Then we transform the schema and
actions into plain English description. Finally, we implement
tool called FORTRESS (FOReign Type Reverse Engineering
Semantic System) that partially automates our reverse engi-
neering process.

The main contribution of this paper is a combined forward
and reverse engineering process based on a programming
model that enables programmers to recover high-level design
from complex polylingual systems with a high degree of auto-
mation.

2 The Reengineering Process

We propose a reengineering process that enables program-
mers to recover a high-level design of polylingual systems
with a high degree of automation. The first and most impor-
tant step on this process is the use of our programming model
that normalizes FTS-based code into structured sequences of
operations on type graph objects. These operations are pro-
vided by reification operator objects that are defined in Reifi-
cation Object-Oriented Framework (ROOF) [4]. Program
statements that contain reification operator objects are called
reification statements. Our model reduces the complexity of
polylingual programs by improving code simplicity and uni-
formity.

We achieve these results as naturally obtained benefits of nor-
malized FTS-based programs. Our programming model sig-
nificantly reduces the number of syntactical constructs that
otherwise must be present in polylingual code, and the nor-
malized programs have much simpler semantics.

The reverse engineering process is illustrated in Figure 2.
After the code is normalized, the next step in the reverse engi-
neering process is to use control and data flow analyses on the
simplified polylingual code. Control flow analysis (CFA)
relates the static program text to its possible execution
sequences [5]. Data flow analysis (DFA), on the other hand,
computes relationships between data objects in programs [6].
We apply the CFA to build graphs of possible execution
sequences of polylingual programs, and then we run the DFA
on each execution graph to analyze FTS reification state-
ments. The results of program analysis is used to infer sche-
mas that describe the FTS models and operations executed
against them by polylingual programs. The schemas and oper-
ations fed into high-level design description driver as shown
in Figure 7 that produces plain English description of and
visualizes structural and behavioral aspects of polylingual
systems.

Finally, we describe the FORTRESS tool that enables pro-
grammers to reverse engineer polylingual systems using our
process, browse high-level descriptions of FTS-based sys-
tems, visualize their impacts on schemas and their instances,
and map elements of these descriptions and schema defini-
tions to the source code.

3 ROOF Programming Model

ROOF is designed in light of principles of interoperable poly-
lingual systems described in [2][3][4]. The goals of the ROOF
programming model is to enable easily maintainable and
evolvable polylingual interoperability by removing the need
for elaborate name management solutions and allowing pro-
grammers to make decisions about sharing objects at the
megaprogramming stage. The maintainability and evolvabil-
ity of polylingual systems are achieved by using foreign
objects by their names as they are defined in FTSs thereby
eliminating the need for creation of isomorphic types in a host
programming language and enabling programmers to share
objects at the megaprogramming stage. We also provide a
comprehensive mechanism for type checking that allows pro-
grammers to verify semantic validity of operations on foreign
types both statically and dynamically with certain limitations.

ROOF is based on three assumptions. First, we deal with
recursive type systems. Even though it is possible to extend
our solution to higher-order polymorphic types, such as

Normalized
code

Compiler
Front end

Program
Analysis

Schema
Inference

Visualization
Engine

GUI

Figure 2: The illustration of steps in reengineering process.
2

dependent types, we limit the scope of this paper to recursive
types and imperative languages to make our solution clearer.
Second, we rely on reflection mechanisms to obtain access to
FTSs. Third, the performance penalty incurred by using
reflection is minimal since the low-level interoperating mech-
anisms such as transmission, marshaling and unmarshaling
network data has the largest overhead common to all interop-
erable solutions.

Suppose we have a handle to an object that is an instance of a
foreign type. We declare this handle as an instance R of a
ReificationOperator class. R enables navigation to an
object in the referenced type graph by calling its method
GetObject with a path expression as a sequence of type or
object names t1, t2, ..., tk as parameters to this method:

R.GetObject(t1)...GetObject(tk)

R implements a reification operator (RO) that provides access
to objects in a graph of foreign objects. We give all ROs the
same interface (i.e., the same set of methods) so that its design
is language independent; reification operators possess general
functionality that can operate on type graphs of any FTS. By
implementing R as an object-oriented framework that is
extended to support different computing platforms, we allow
programmers to write polylingual programs using a uniform
language notation without having to bother about peculiarities
of each platform. That is, for Java we have separate exten-
sions of the framework that allows Java programs to manipu-
late C# objects, another extension to manipulate XML
documents, etc. Similarly, for C# we have separate extensions
of an equivalent framework that allows C# programs to
manipulate Java objects, another extension to manipulate
XML documents, etc. Foreign Object REification Language
(FOREL) is a user interface provided by ROOF to enable pro-
grammers to write interoperable polylingual programs.

4 Program Analysis

Assuming that polylingual programs are normalized to con-
form to the ROOF programming model, we can perform pro-
gram analysis as the next step in our reverse engineering
process. Since programs that constitute polylingual systems
communicate by changing each other’s data and structures,
program analysis allows us to recover these changes from
normalized polylingual code. Thus, program analysis is an
integral part of our reverse engineering process whose goal is
to produce a high-level description of these changes.

We analyze programs in two steps. First, we run control flow
analysis (CFA) to build execution graphs, and then we per-
form data flow analysis (DFA) on these graphs to compute
relationships between data objects in polylingual programs
[5][6].

DFA is the most significant part of a program analysis. We are
interested in finding all definitions and uses of reification
operator objects. There are three types of statement that can
use RO objects:

• Navigation statements in which RO objects point to a
certain object in the FTS type graph. For example,
statement R[“CEO”][“CTO”] denotes a collection of
objects of type CTO contained in type CEO.

• Assignment statements in which values of type
objects are set or retrieved. For example, the
following statement R[“CEO”][“CTO”]<<5.0 sets
the value of an object of type CTO to 5.0.

• Structural statements that invoke operations that
modify the structure of other polylingual programs.
Given two RO objects R and Q the structural
statement has a form of R ⊗ Q where ⊗ is a
structural operation, for example, append a new object
from RO Q to a branch in a type graph represented by
RO R.

DFA enables us to answer the following five questions.
• What is the structure of FTSs operated upon by the

analyzed program?
• How do FTSs affect the control flow of the analyzed

program?
• What is the relationship between RO objects and

program variables?
• What are the operations performed by the analyzed

program on foreign type objects?
• What are the operations performed by the analyzed

program on the structure of FTSs?

Answering these questions allows us to recover a high-level
design from polylingual code. By determining the structure of
FTSs we present a unified schema of the system. This opera-
tion is sound but not complete since we recover only a part of
the schema that is operated upon by polylingual code. How-
ever, in the majority of cases the complete schema does not
exist for a variety of reasons (e.g., it has never been created or
it is rendered obsolete), and a part of a schema that describes
type definitions operated on by polylingual code is a good
enough approximation.

Knowing the structure of FTSs can help to determine how
they affect the control flow of the analyzed program. Consider
the following segment of FOREL code that contains a reifica-
tion statement.

if(R[“CEO“].Count() == 1){...}
else{...}

Suppose that we retrieve a schema of the FTS designated by
R. If we establish that the number of CEO objects is always
equal to one then we do not have to analyze the ELSE branch
3

of the IF statement since the boolean condition is always
true.

Unfortunately, we cannot limit the DFA to the analysis of RO
objects. Type names and values of type objects can be
assigned to program variables. Tracking uses and definitions
of these variables may lead to establishing more complete
schemas describing FTSs and improving the analysis of poly-
lingual programs subsequently raising the quality of the
recovered high-level design.

The answers to the last two questions can be derived from the
type of a reification statement. Navigation statements give us
path expressions on type graphs. Assignment statements cou-
pled with the knowledge of relationships between RO objects
and program variables tell us what values we assign to or
retrieve from destination type objects and what path expres-
sions navigate to them.

Recall that structural reification statements modify the struc-
ture of FTSs, and such operations are reduced to modifica-
tions of abstract type graphs. Since the ROOF provides a
unified set of operations on type graph objects we can detect
them using elementary DFA algorithms.

5 Schema Inference

Schema inference is the process of deriving structure informa-
tion from the query that generated data. This process is more
complex than schema extraction that finds the most specific
schema for a particular data instance [7]. Some languages
make it easy to infer schemas just by looking at a statement
that access or modifies data. Consider the following SQL
statement.

SELECT u.Name, c.Course FROM User u,
Courses c WHERE u.ID = c.ID;

Just by looking at this statement we can infer the following
information. There are

• two tables: User and Courses;
• attributes Name and ID in User table;
• attributes Course and ID in Course table;
• declaration of attribute ID in both tables is the same

or compatible.

A diagram for the inferred schema is shown in Figure 3. It
allows programmers to view the design of a database at a high
level.

In general, polylingual code is suited very poorly for the
schema inference process. Consider a fragment of C++ code
shown in Figure 4.

We retrieve a handle to CEO node located in some XML data
using the MS XML parser, COM and the Active Template
Library. These tools and libraries are among the best available
and are widely used today. The complexity of this fragment of
code is clearly evident. Note that if we use a different XML
parser (e.g., for improved performance), we must rewrite this
code because their low-level APIs would be different. It is
clear that automatic schema inference is very difficult and
impractical for this and similar code. There should exist
detailed information about the semantics of low-level APIs
and their compositional semantics should also be defined.
These conditions increase the complexity of program analysis
algorithms significantly.

As a result of our normalization process, the semantics of
polylingual programs is much simpler than the ones of origi-
nal programs. It is noteworthy that reification statements do
not lead to increased complexity of program analysis algo-
rithms that model this semantics. All high level design can be
extracted directly from reification statements by analyzing
their type and performing the DFA.

An additional benefit of inferring schemas from polylingual
programs is the ability to compute relationships between
FTSs that are manipulated by some polylingual program.

This concept is illustrated in Figure 5. Polylingual program P
manipulates FTSI and FTSJ using RO objects RI and RJ. The
interactions between program P and FTSs are shown with
solid arrows. Suppose that RI reads a value of some type
object from FTSI and stores it in a program variable. Then, RJ
assigns a value of this variable to some type object in FTSJ.

U ser

N am e
ID

C ourses

C ourse
ID

Figure 3: A schema diagram inferred from an
SQL statement.

HRESULT hr = CoInitialize(NULL);
if(FAILED(hr)) return(NULL);

CComPtr<IXMLDOMDocument> spDomDoc;
hr = spDomDoc.CoCreateInstance(
__uuidof(DOMDocument40));

if(FAILED(hr)) return(NULL);

CComPtr<IXMLDOMNode> node;
node = spDomDoc;
BSTR b = AsciiToBSTR("CEO");
hr = node->selectNodes(b, &childList);
SysFreeString(b);
if(FAILED(hr)) return(NULL);

CComPtr<IXMLDOMNode> nodeCEO;
hr = childList->get_item((long)0,&nodeCEO);
if(FAILED(hr)) return(NULL);

Figure 4: A fragment of C++ code using COM and ATL.
4

By performing the DFA on program P we can compute the
relationship between FTSI and FTSJ as it is shown in Figure 7
with a dashed arrow.

Consider a fragment of FOREL code shown in Figure 6. This
small fragment of code allows us to infer key definitions of
some organizational schema. When analyzing the boolean
condition of the first IF statement we can conclude that type
CEO contains type CTO that has attribute Salary of primi-
tive type float. When analyzing the boolean conditions of
the second and third IF statements we infer that type CTO
contains types Geeks and Test. We can also infer various
schema constraints, for example, if a CTO makes more than
$100,000 annual salary then there should be Geeks and Test
departments in the company reporting directly to him.

6 FORTRESS

We are currently in the process of creating a tool that reverse
engineers normalized polylingual applications. This tool is
called FORTRESS (FOReign Type Reverse Engineering
Semantic System). Figure 7 shows the architecture of FOR-
TRESS. We envision FORTRESS as a framework for build-
ing a set of tools that help programmers to reengineer and
reverse engineer polylingual systems and enable their effec-
tive evolution and maintenance.

The architecture reflects the steps of our reverse engineering
process. Once an polylingual program is loaded into the tool
we use a parser for the language in which this program is writ-
ten to create its abstract syntax tree (AST). Currently we sup-
port polylingual programs written in C++ and Java. We use
EDG front end compilers [8] to parse source code and pro-
duce ASTs. Then we perform CFA and DFA on the AST to
infer schemas of FTSs that this program accesses and manipu-
lates. Finally, we transform operations on FTSs into plain
English and present the listing of these operations in the FOR-
TRESS GUI.

7 Related Work

We know of no existing technologies that fully address the
problem of reverse engineering polylingual systems. A vari-
ety of reverse engineering tools has been reviewed in
[9][10][11][12]. While they are effective in the problems that
they intended to solve, none of the existing tools fully
addresses the problem of reverse engineering software that
consists of applications based on distinct and different type
systems. Some tools are developed to reverse engineer multi-
language systems. For example, EER/GRAL approach to
graph-based conceptual modeling is used to build models rep-

FTSI

P

FTSJ

Figure 5: A computed relationship between FTSs.

if(R[“CEO“][“CTO“](“Salary“) > 100000)
{
if(R[“CEO“][“CTO“][“Geeks“].Count() < 1)
{

............
}

if(R[“CEO“][“CTO“][“Test“].Count() < 1)
{

............
}

}

Figure 6: A fragment of FOREL code containing
reification statements.

Figure 7: FORTRESS architecture.

FTS-based
code

Compiler
Front end

Control Flow
Analyzer

Data Flow
Analyzer

Schema
Inference

Engine

Visualization D
river

FORTRESS

Elapsed time: 2mins 27 sec

Navigate to node

GUI

ASTAST
5

resenting relevant aspects of single language [13]. These
models are later integrated in a common conceptual model.
The other paper [14] introduces GRASP - a software engi-
neering tool designed to provide visualization of multilan-
guage software control structure, complexity, and
architecture. Both approaches for reverse engineering multi-
language systems fall short of producing effective high-level
designs by reverse engineering polylingual code.

Program comprehension techniques play important role in the
normalization of source code for subsequent reverse engineer-
ing. Indeed, if a program is easy to understand by a human
then it is likely to be effectively and automatically reverse
engineered. Fundamental mechanisms of program compre-
hension are studied in [15][16].

8 Conclusions and Further Work

We have sketched a simple and effective way to reverse engi-
neer polylingual systems. We accomplish this by introducing
a semiautomatic process to reverse engineer polylingual sys-
tems and implement a tool called FORTRESS to automate
this process. We offer a programming model that is based on
the uniform abstraction of FTSs as graphs and the use of path
expressions for traversing and manipulating data. This step
allows us to achieve multiple benefits, including coding sim-
plicity and uniformity, and to facilitate further reverse engi-
neering. Next, we perform control flow and data flow
analyses of polylingual programs in order to infer schemas
describing all participating FTSs and actions performed by
each FTS on others.

The contribution of this paper is a process that allows pro-
grammers to reverse engineer foreign type systems and their
instances at the highest level of design automatically. We are
working on a refactoring tool that would process legacy soft-
ware and output the normalized polylingual code. If we are
successful, we expect to make this functionality a part of
FORTRESS.

We believe in practicality of our approach. The capability to
write uniform and compact programs that work with applica-
tions based on different type systems enables better program
comprehension and effective and automatic reverse engineer-
ing. As a result of our solution, developers concentrate on rea-
soning about recovered schemas that describe properties of
applications without the need to understand low-level APIs
and apply complex knowledge rules to recover high-level
design from source code. Since the semantics of the reifica-
tion languages is simple and easily parseable, it may enable
various techniques and algorithms to improve reverse engi-
neering process of ROOF-based source code. We know of no
other approaches that achieve similar benefits or potential.

9 References
[1] D. Garlan, R. Allen, and J.Ockerbloom, "Architectural

mismatch: Why reuse is so hard," IEEE Software, vo. 12, no. 6,
November 1995, pp. 17-26.

[2]D. Barrett, A. Kaplan, and J.Wileden, “Automated support for
seamless interoperability in polylingual software systems,” Fourth
Symposium on the Foundations of Software Engineering, October
1996.

[3] A. Kaplan and J.Wileden, “Software interoperability: principles
and practice,” ICSE 1999.

[4]M.Grechanik, D.Batory and D.Perry, "Design of Large-Scale
Polylingual Systems," submitted to ICSE 2004.

[5]S.Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1997.

[6]L. Moonen, “A Generic Architecture for Data Flow Analysis to
Support Reverse Engineering,” Second International Workshop on
the Theory and Practice of Algebraic Specifications, November
1997.

[7]S. Abiteboul, P.Buneman, D.Suciu, Data on the Web: From
Relations to Semistructured Data and XML, Morgan Kauffman
Publishers, 2000.

[8]Edison Design Group, http://www.edg.com.
[9]R.Kollman, P.Selonen, E.Stroulia, T.Systä, and A.Zündorf, “A

Study on the Current State of the Art in Tool-Supported UML-
Based Static Reverse Engineering,“ IEEE Ninth Working
Conference on Reverse Engineering, October-November 2002.

[10]A. van Deursen and L.Moonen, “Exploring Legacy Systems
Using Types,“ IEEE Seventh Working Conference on Reverse
Engineering, November 2000.

[11]T.Systä, “Understanding the Behavior of Java Programs,“ IEEE
Seventh Working Conference on Reverse Engineering, November
2000.

[12]B.Bellay and H.Gall, “A Comparison of Four Reverse
Engineering Tools,“ IEEE Fourth Working Conference on
Reverse Engineering, October 1997.

[13]B.Kullbach, A.Winter, P.Dahm and J.Ebert, “Program
Comprehension in Multi-Language Systems,“ IEEE Fifth
Working Conference on Reverse Engineering, October 1998.

[14]T.Hendrix, J.Cross II, L.Barowski and K.Mathias, “Tool Support
for Reverse Engineering Multi-Lingual Software,“ IEEE Fourth
Working Conference on Reverse Engineering, October 1997.

[15]Y.Deng and S.Kothari, “Using Conceptual Roles of Data for
Enhanced Program Comprehension,“ IEEE Ninth Working
Conference on Reverse Engineering, October-November 2002.

[16]R.Clayton, S.Rugaber and L.Wills, “On the Knowledge
Required to Understand a Program,“ IEEE Fifth Working
Conference on Reverse Engineering, October 1998.
6

	Reengineering Large-Scale Polylingual Systems (Extended Abstract)
	Mark Grechanik, Dewayne E. Perry, and Don Batory UT Center for Advanced Research In Software Engi...
	1 Introduction
	Figure 1: Architecture of Polylingual Systems
	Figure 2: The illustration of steps in reengineering process.

	2 The Reengineering Process
	3 ROOF Programming Model
	4 Program Analysis
	5 Schema Inference
	Figure 3: A schema diagram inferred from an SQL statement.
	Figure 4: A fragment of C++ code using COM and ATL.
	Figure 5: A computed relationship between FTSs.
	Figure 6: A fragment of FOREL code containing reification statements.

	6 FORTRESS
	Figure 7: FORTRESS architecture.

	7 Related Work
	8 Conclusions and Further Work
	9 References
	[1] D. Garlan, R. Allen, and J.Ockerbloom, "Architectural mismatch: Why reuse is so hard," IEEE S...
	[2] D. Barrett, A. Kaplan, and J.Wileden, “Automated support for seamless interoperability in pol...
	[3] A. Kaplan and J.Wileden, “Software interoperability: principles and practice,” ICSE 1999.
	[4] M.Grechanik, D.Batory and D.Perry, "Design of Large-Scale Polylingual Systems," submitted to ...
	[5] S.Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann, 1997.
	[6] L. Moonen, “A Generic Architecture for Data Flow Analysis to Support Reverse Engineering,” Se...
	[7] S. Abiteboul, P.Buneman, D.Suciu, Data on the Web: From Relations to Semistructured Data and ...
	[8] Edison Design Group, http://www.edg.com.
	[9] R.Kollman, P.Selonen, E.Stroulia, T.Systä, and A.Zündorf, “A Study on the Current State of th...
	[10] A. van Deursen and L.Moonen, “Exploring Legacy Systems Using Types,“ IEEE Seventh Working Co...
	[11] T.Systä, “Understanding the Behavior of Java Programs,“ IEEE Seventh Working Conference on R...
	[12] B.Bellay and H.Gall, “A Comparison of Four Reverse Engineering Tools,“ IEEE Fourth Working C...
	[13] B.Kullbach, A.Winter, P.Dahm and J.Ebert, “Program Comprehension in Multi-Language Systems,“...
	[14] T.Hendrix, J.Cross II, L.Barowski and K.Mathias, “Tool Support for Reverse Engineering Multi...
	[15] Y.Deng and S.Kothari, “Using Conceptual Roles of Data for Enhanced Program Comprehension,“ I...
	[16] R.Clayton, S.Rugaber and L.Wills, “On the Knowledge Required to Understand a Program,“ IEEE ...

		2003-12-08T10:58:18-0600
	Mark Grechanik

