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Abstract 
 
Program annotations help to catch errors, improve program understanding, and 

specify invariants. Adding annotations, however, is often a manual, laborious, tedious, 

and error prone process especially when programs are large. We offer a novel approach 

for automating a part of this process. Developers first specify an initial set of annotations 

for a few variables and types. Our LEearning ANnnotations (Lean) system combines 

these annotations with run-time monitoring, program analysis, and machine-learning 

approaches to discover and validate these annotations on unannotated variables. We 

evaluate our prototype implementation on open-source software projects and our results 

suggest that a modest set of annotations capture many program variables, and Lean can 

generalize from a small set of annotated variables to annotate many other variables. After 

users annotate approximately 6% of the program variables and types, Lean correctly 

annotates an additional 69% of variables in the best case, 47% in the average, and 12% in 

the worst case. 

1. Introduction 
Program annotations assert facts about programs and add them to the source code 

as comments or with language support. For example, an annotation may assert that values 

of program variables stay within certain ranges. Annotations may be used to describe 

program types, values, or identifiers. Program annotations help to catch errors, improve 

program understanding, recover software architecture, and specify invariants. One of the 

major uses of program annotations is to help programmers understand legacy systems. A 

Bell Labs study shows that up to 80% of programmer’s time is spent discovering the 

meaning of legacy code when trying to evolve it [1]. Thus, the extra work required to 

annotate programs is likely to reduce development and maintenance time, as well as to 

improve software quality. However, annotating programs is often a manual, tedious, and 
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error prone process especially for large programs. Although some programming 

languages (e.g., C#, Java) have support for annotations, many programmers do not 

sufficiently annotate or do not annotate their code at all. 

Often programmers lack full knowledge of the source code to be capable of good 

annotations. Curtis’ law [2] states that application and domain knowledge is thinly 

spread, and at most one or two team members may possess the full knowledge of a 

software system. Poor annotation quality is a result of this law since it is combined with 

the difficulty of mapping semantic concepts onto source code. A fundamental question 

for creating more robust and extensible software is how to annotate program source code 

with a high degree of automation and precision. 

In this work, we focus on deriving semantic concepts for unannotated variables 

from an initial set of annotated variables. Simply stated, semantic concept annotations are 

nouns with well-accepted meanings in public or domain-specific knowledge. For 

example, the noun Address is a semantic concept meaning a place where a person or 

institution is located. Programmers may introduce variables named Address, Add, or 

S[1], all for the Address concept1. The name of the variable S[1] does not match 

Address, and relating this variable to the Address concept is challenging. While the 

variable named Add partially matches Address, it is ambiguous if the program also 

uses a Summation concept for adding numbers. 

Our solution, called LEarning ANnotations (Lean), combines program analysis, 

run-time monitoring, and machine learning to automatically apply a small set of initial 

semantic annotations to additional unannotated types and variables. The input to Lean is 

program source code and a concept diagram describing relations between semantic 

concepts. The core idea of Lean is that after programmers provide a few initial 

annotations of some variables and types with these semantic concepts, the system will 

glean enough information from these annotations to annotate much the rest of the 

program automatically. We define annotation rules that guide the assignment of semantic 

concepts to program entities, and resolve conflicts when they arise. 

                                                 

igure 1
1 These names are taken from open-source program Vehicle Maintenance Tracker whose code fragments 
are shown in F . 
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Lean works as follows. After programmers specify initial annotations, Lean 

instruments a program to perform run-time monitoring of program variables. Lean 

executes this program and collects a profile of the values of instrumented variables. Lean 

uses this profile to train its learners to identify variables with similar profiles. Lean’s 

learners then classify the rest of program variables by matching them with the semantic 

concept annotations. Once a match is determined for a variable, Lean annotates it with 

the matching semantic concept. 

Annotating 100% of variables automatically is not realistic. Many reasons exists: 

machine learning approaches do not guarantee 100% success in solving problems; 

concept diagrams representing program design specifications may not match the entire 

program; and some concepts may be difficult to relate to program variables due to lack of 

modularity. Consequently, Lean makes some mistakes when learning annotations. In 

order to improve its precision, Lean uses relations between variables and their 

corresponding concepts to validate learnt annotations. Program analysis determines 

relations among annotated variables, and these relations are compared with 

corresponding relations in concept diagrams. If a relation is presented between two 

variables in the program code and there is no relation between concepts with which these 

variables are annotated, then Lean flags it as a possible annotation error. 

We evaluate our approach on open-source software projects and obtain results 

that suggest it is effective. Our results show that after users annotate approximately 6% of 

the program variables and types, Lean correctly annotates an additional 69% of variables 

in the best case, 47% in the average, and 12% in the worst case. 

2. A Motivating Example 
The Vehicle Maintenance Tracker (VMT) is an open source Java application that records 

the maintenance of vehicles (e.g., boats, planes, or cars) [3]. Fragments of the VMT code 

from three different files are shown in Figure 1a-c, and a concept diagram is shown in 

Figure 1d. 

A fragment of code from the file vendors.java shown in Figure 1a contains 

the declaration of the class vendors whose member variables of type String are Name, 

Add, Pho, Email, and Web. These variables stand for the vendor’s name, address, 
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public class vendors { public class VendorEdit extends InternalFrame { 

  private String Name,  Add,  Pho, Email, Web;  private Text NameText; 

 …………….  private TextArea AddressText; 

}  private TextArea PhoneText; 

 private Text EmailText; 

a) File vendors.java  private Text WebText; } 

b) File VendorEdit.java 
public void addMaintenanceEditor(String[] S) { 
addMaintenanceServices(new String[]{ 

Address Phone Email

Vendor

Name Web

   ((MaintenanceEdit)Desktop.getSelectedFrame()). 
 getName(),  S[4], S[5]}); 
    } 
}; 
String s = S[1]; 
if (s.equalsIgnoreCase("")) 
     s = "New"; d) A concept diagram for the  

    VMT application 
String residence = S[3]; 

c) File VMT.java 

phone number, email, and web page concepts respectively. A fragment of the code from 

the file VendorEdit.java shown in Figure 1b contains the declaration of the class 

VendorEdit whose member variables of types Text and TextArea represent the 

same concepts. Even though the names of these variables in the class VendorEdit are 

different from the names of the corresponding variables in the class vendors, their 

names partially match. For example, the variable name Pho in the class vendors 

matches the variable PhoneText in the class VendorEdit more than any other 

variable of this class when counting the number of consecutive letters matched. 

Figure 1. Code fragments from programs of the VMT project and its concept diagram. 

This matching procedure does not work for the fragment of code shown in Figure 

1c. To what semantic concept does the variable S, which is the parameter to the method 

addMaintenanceEditor, correspond? It turns out that the variable S is an array of 

Strings, and its elements S[1], S[2], S[3], S[4], and S[5] hold values of 

vendor’s identifier, address, email, phone number, and web page concepts respectively. 

No VMT documentation mentions this information, and programmers have to run the 

program and observe the values of these variables in order to discover their meanings. 

Lean can automate the process of annotating classes and variables shown in 

Figure 1a-c with concepts from the diagram shown in Figure 1d. This diagram is a graph 
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whose nodes designate semantic concepts and edges specify relations among these 

concepts. We observe that spelling of some variable names are similar to the names of 

corresponding concepts, i.e., Pho – Phone, Add – Address, Web – WebSite, Name 

– Name, and Email – Email. Specifically, parts of the names of the variables are 

contained within the names of the concepts and vice versa. Lean uses these similarities 

match names of variables and concepts, and subsequently annotate variables with 

semantic concepts. 

Variables residence and Address are spelled differently, but they are 

synonyms. Extended with a vocabulary linking synonymic words, Lean hypothesizes 

about similarities between words that are spelled differently but have the same meaning. 

These vocabularies can link domain-specific concepts used by different programmers 

thereby establishing common meanings for different programs. For example, “chip” and 

“dice” mean “microprocessor” in semiconductor manufacturing. If the name of some 

variables contain these words, they are likely to correspond to the microprocessor 

concept. 

By observing patterns in values of program variables Lean can determine whether 

they should be annotated with certain concepts. To observe patterns, Lean instruments 

source code to collect run-time values of the program variables. After running the 

instrumented program, Lean creates a table containing sample data for each variable. A 

sample table for the VMT application is shown in Table 1. Each column in this table 

contains variable name and values it held. Some values have distinct structures. The 

variable Pho contains only numbers and dashes in the format xxx-xxx-xxxx, where x 

stands for a digit and the dash is a separator. The variable Name contains only alphabetic 

characters. Values held by the variable Email have a distinct structure with the @ 

symbol and dots used as separators. Lean learns the structures of values for annotated 

variables using machine-learning algorithms, and it then assigns the  appropriate semantic 

concepts to variables whose values match the learnt structures. 

Lean can also exploit statistical information with additional rules. For example, if 

words like Circle, Drive, Road occur in values, then Lean learners can classify this 

variable as the Address concept. 
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Email Pho Name Web Add 
tc@abc.com 512-342-8434 John Smith http://www.utexas.edu/~john Tamara Circle, Austin 
mcn@jump.net 512-232-3432 Mark Grechanik http://www.utexas.edu/~mark McNeil Drive, Austin 
sims@su.edu 512-232-6453 John Perry http://www.utexas.edu/~perry Sims Road, Dallas 
lg@ibm.com 512-877-3254 Mark Holtz http://www.utexas.edu/~holtz Laguna Hwy, Dallas 

 
Table 1. Sample values taken by the program variables. 
 

We also observe that if concepts are related in a diagram, then types and variables 

that are annotated with these concepts are related in the code too. The relation between 

concepts in a diagram means that instances of data described by these concepts are linked 

in some way. For example, the concept Name is related in the concept Vendor, in the 

concept diagram shown in Figure 1d. This relation can be expressed as “Vendor has a 

Name.” The variable Name which is annotated with the concept Name is contained by 

the class vendors which is annotated with the concept Vendor. The containment 

relation in the source code corresponds to the “has-a” relation in the concept diagram. 

Lean explores program source code to analyze relations between program variables and 

types, and then compares them with relations among corresponding concepts in diagrams 

in order to infer and validate annotations. We explain this process in Section X. 

3. The Problem Statement 
This section defines the problem of automating and validating program annotation 

and validation formally. We define the structure of concept diagrams and types of 

relations between concepts in diagrams and variables and types in program code. Then, 

we present rules for annotating program variables and types, and give a formal definition 

of the problem. 

3.1. Definitions 
Feature modeling is a technique for modeling software with feature diagrams, 

where a feature is an end-user-visible characteristic of a system describing a unit of 

functionality relevant to some stakeholder [4][5]. For example, for the code shown in 

Figure 1 features are Vendor, Name, Email, Phone, Website, and Address. 

Concept diagrams used in feature modeling are called feature diagrams (FD). Feature 

diagrams are graphs whose nodes designate features and edges (also called variation 

points) specify how two features are attached to each other.  
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Four basic types of diagrams are shown in Figure 2. Features f1 and f2 are 

optional if one of them or both or none can be attached to the base feature P. Mandatory 

are features f3 and f4 since both of them should be attached to the base feature P. 

Features f5 and f6 are alternative if either f5 or f6 are attached to the base feature P. 

Finally, an or-feature diagram specifies that either feature f7 or feature f8 and either 

feature f9 or feature f10 are attached to the base feature P.  

Programmers start the annotation process with Java source code and a feature diagram 

which they use to specify initial mappings between features and a subset of program 

types and variables. This mapping is formalized in the definition of the Annotation 

Function. 

Definition: Annotation Function. The annotation function αo: oT2F maps a program 

object (variable) to a subset of features in a feature diagram F, and the annotation 

function αt: τT2F maps a type (basic type, class, interface, or method) to a subset of 

features.  

The dependency between a type and an object is expressed by the function Type(o) = 

τ, which maps the object o to its type τ∈Τ , where Τ is the set of types. Without the loss 

of generality we use the annotation function  

α: πT2F that maps a program entity π (i.e., variable or type) to a subset of features in 

some feature diagram, where program entity { },π∈ τ ο . 

Definition: Expression. The n-ary relation Expression Œ v1µv2…µvn specifies an 

expression, where v1,v2,…,vn are variables or methods used in this expression.  

Definition: Navigate. The navigation relation Navigate(p,q) Œ Expression(p, 

q) is the expression p.q where q is a member (e.g., field or method) of object p.  

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

P PPP 

Or-featureOptional Mandatory Alternative

Figure 2. Basic types of feature diagrams. 
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Definition: Assign. The assignment relation Assign Œ p µ Expression 

specifies the assignment expression p = Expression, where p is the variable on the 

left-hand side and Expression relation stands for some expression on the right-hand 

side. 

Definition: Cast. The cast relation Cast(p, q) Œ Expression(p, q) is the cast 

expression (q)p where p ∈ o and q ∈ T i.e., casting an object p to some type q. 

Definition: Subtype.  The relation SubType(p, q) specifies that a type p is a 

subtype of some type q. In Java this function is implemented via the implement interface 

clause. That is, a class p that implements some interface q is related to this interface via 

the SubType relation.  

Definition: Inherit. The Inherit(p, q) relation specifies that a type p inherits (or 

extends in Java terminology) some type q.  

Definition: Contains. The Contains(p, q) relation specifies that type or object p is 

contained within the scope of some type q. We call interfaces, classes, and methods 

containment types because they contain other types, fields and variables as part of their 

definitions. That is, interfaces contain method declarations, classes contain definitions of 

fields and methods, and methods contain uses of fields and declarations and uses of local 

variables that are instances of some types. 

Definition: δ-relation. The relation δ(πk, πn) stands for “programming entity πk is used in 

the same expression with programming entity πn.“ For example, if two variables p and q 

are related via the Expression, Navigate, Assign, or Cast relations, then these 

variables are also related via the δ-relation, δ(p, q). 

This relation is irreflexive, antisymmetric, and transitive. For example, from the 

expression x = y + z we can build four δ relations: δ(x, y), δ(x, z), δ(y, z), 

and δ(z, y). If variables are used in the same expression and their values are not 

changed after this expression is evaluated, then their order is not relevant in the δ-

relation. However, if the value of a variable is changed as a result of the evaluation of the 

expression, then this variable is the first component of the corresponding δ-relation.  

Definition: γ-relation. The relation γ(fp, fq) stands for “feature fp is connected to 

feature fq via a variation point.“  
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This relation is irreflexive, antisymmetric, and transitive. For example, from the 

mandatory feature diagram shown in Figure 2, we can build two γ relations: γ(P, f3) 

and γ(P, f4). If features are not connected by a variation point, then their order is not 

relevant in the γ-relation. However, if a feature fr is attached to a feature fs, then feature 

fs is the first component of the corresponding γ relation.  

The function α maps pairs from the relation δ to pairs from the relation γ. Suppose 

that (a, b) ∈ δ and (c, d) ∈ γ. Then the element (a, b) is annotated with the 

element (c, d) if and only if c ∈ α(a) and d ∈ α(b). As a shorthand we write (c, d) 

∈ α((a, b)). 

3.2. Rules of Program Annotations 
When programmers map types (i.e., interfaces, classes, and methods) and their variables 

(i.e., fields and objects) to features, these mappings may conflict with one another. For 

example, if a class is mapped to one feature and it implements an interface that is mapped 

to a different feature, then what default mapping would be valid for an instance of this 

class? This section offers heuristic rules to resolve ambiguities when annotating 

programs. 

Direct mapping: in general, we write γ ∈ α(δ) to express the fact that for a δ-relation 

between objects in the source code that are annotated with feature labels there is a 

corresponding γ-relation between the corresponding features in some feature diagram. 

Entity mapping: types and variables can be mapped to a set of features in the feature 

diagram. This rule is defined by the function α: π T 2F, where F is a set of features. When 

a type is mapped to some feature, this type bears the label that is the name of the feature. 

Instances of this type are automatically annotated with its feature label. We write this rule 

as Type(o) = τ /\ f ∈ α(τ) T f ∈ α(o). If the container type is mapped to some feature, 

then all of its members are automatically mapped to the same feature, i.e., Contain(p, q) /\ 

f ∈ α(q) T f ∈ α(p). 

Expression annotation: if variables in an expression defined by the relation 

Expression(v1,…,vn)are annotated with some set of features, that is, without the 

loss of generality f1 ∈ α(v1), …, fn ∈ α(vn), then Lean annotates it with a set 

of features as f1 U f2 U…U fn. 
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Assignment annotation: Given the relation Assign(p, expr), the expression expr 

is annotated with a set of features f, then the variable p is annotated with the same set of 

features. The converse holds true, i.e., Assign(p, expr) /\ (f ∈ α(p) ‹ f ∈ 

α(expr)). For example, the variable s in the fragment of code shown in Figure 1c is 

assigned the value of the variable S[2]. This variable is mapped to the concepts 

Address. According to the assignment rule the variable s maps to the concept 

Address. 

Cast annotation: casting an object p to some type q automatically remaps this object p 

to the feature to which this type is mapped. If the type q is not mapped to any feature, 

then the original mapping of the object p is not changed. That is, Cast(p, q) /\ α(q) = f T 

α(p) = f and Cast(p, q) /\ α(p) = f   /\ α(q) = ∅  T α(p) = f.  

Let us consider a frequent case of casting an object in the fragment of code shown 

below.  

 

int index; 

SomeClass o; 

...................... 

vectorObj.put( o ); 

...................... 

ParentClass pc = (ParentClass) 

The ParentClass class is the parent of the class SomeClass which is mapped 

to the set of features F. The class ParentClass is mapped to a different set of features 

G. According to the basic rule, the object o is annotated with the feature label F. The 

object o is stored in a vector represented by the object vectorObj. When retrieved 

from the vector the object o is cast to the class ParentClass, and its annotation 

changes to the feature label G. 

Sometimes a default mapping should be overwritten. For example, a class may be 

mapped to one feature, but its instances should be mapped to some other features. The 

following is the rule to handle this condition. 
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Containment: if an object p is a member of type q that is annotated with feature label f, 

then the object p is also annotated with the feature label f: Contain(p, q) /\ f ∈ α(q) T f ∈ 

α(p).  

Instance overriding: annotation of an object overrides the default feature labels assigned 

to this object by the basic rule: Type(o) = τ /\ f ∈ α(τ) /\ g ∈ α(o) T f ∈ α(τ) /\ g ∈ α(o).  

Member overriding: the mappings for members of the containment types can be 

overwritten: Contain(p, q) /\ f ∈ α(p) /\ g ∈ α(q) T f ∈ α(p) /\ g ∈ α(q). 

Precedence: if the containment type is mapped to one feature and the type of a member 

variable of this containment is mapped to a different feature, then this variable is mapped 

to the same feature to which its type is mapped: Contain(p, o) /\ f ∈ α(p) /\ g ∈ α(q) /\ 

Type(o) = q T g ∈ α(o). 

Interface: when programmers map interfaces to features, these mappings are preserved 

in classes that implement mapped interfaces: Subtype(p, q) /\ f ∈ α(q) /\ Contains(q, z) T 

f ∈ α(z) /\ Contains(p, z). That is, if fields or methods are declared in an interface that is 

mapped to some features and is implemented by some class that is mapped to different 

features, then the interface fields and methods inherit the interface feature mapping. 

Inheritance: if a class extends some other class that is mapped to some feature, then the 

extended class is automatically mapped to the same feature: Inherit(p, q) /\ f ∈ α(q) /\ 

α(p) = ∅T f ∈ α(p). This rule is dictated by the Java idiom of inheritance stating that a 

class may implement may interfaces, but it can extend only one class. The extended class 

can be explicitly remapped to a different feature without affecting the mapping defined 

for the parent class. 

3.3 The Formal Problem Statement 
When programmers specify the initial mapping between program entities and 

features, they define a partial function α0 over the domain of program entities π0 Œ π and 

a range of features f0 Œ f. The goal of Lean is to compute the partial function α1 over the 

subset of the domain of program entities π1 Œ π and the range of features f1 Œ f abiding by 

the rules specified in Section 3.2. Rules of Program Annotations, such that π0 Œ π1 and f0 

Œ f1 and " (a, b) ∈ d, a,b ∈ π, c,d ∈ f, s.t. c ∈ α(a) /\ d ∈ α(b)  | γ ∈ (c, d). That is, if 

program entities a and b are annotated with feature labels c and d respectively, and these 
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entities are related to each other via some d-relation, then the features labeled c and d in 

some FD should be related via some γ-relation. 

4. Lean Architecture 
The architecture for Lean and a brief process description are shown in Figure 3. 

Solid arrows show the process of annotating program entities with feature labels, and 

dashed arrows specify the process when training the Learner. The inputs to the system are 

program source code and a Feature Diagram (FD). The Mapper is a Graphic User 

Interface (GUI) tool whose main components are Java and XML parsers, program and 

FD analysis routines, a rule-based engine, and an instrumenter. A Java parser produces a 

tree representing program entities. Since FDs are represented as XML data, the Mapper 

uses an XML parser to produce a tree representing features and variation points in the 

FD. The Mapper GUI presents both the FD and the source code using tree widgets. 

Programmers use the Mapper GUI to specify initial mappings between features from the 

FD and program entities from the source code. 

Once the Mapper presents the FD and program parse trees, the user specifies 

initial mappings between features and program entities by establishing links between 

program entities from the program tree with features. From these mappings the Mapper 

generates the initial annotations. The user can also specify the entities that should not be 

annotated and therefore excluded from the annotation process. For example, using Lean 

to annotate an integer variable counting the number of iterations in a loop consumes 

computing resources while there may not be an appropriate feature for annotating this 

variable, or annotating it does not warrant the amount of work required. Variables whose 

values contain binary (nonprintable) characters should also be excluded from monitoring 

since machine learning algorithms are not yet effective for classifying these variables. 

These initial annotations are expanded using the rules from Section 3.2. Rules of 

Program Annotations in two steps. First, relations defined in Section 3.1. Definitions are 

built using the Mapper’s program analysis routines. Then the Mapper’s rule engine 

analyzes these relations and initial annotation links, and expands these initial annotations 

to other program entities. For example, if a class is mapped to some feature, then, 

according to the containment rule, its members are 
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mapped to the same feature by default, and according to the basic rule, all instances of 

this class are also annotated with this feature label. 

The Mapper outputs user annotations in an XML file that consists of a table 

whose entries are program entities and their annotations, and δ- and γ-relations. The latter 

is obtained from the source code and the FD using the Mapper’s program and FD 

analysis routines. This XML file is passed to the Validator. Recall the direct mapping rule 

stating that for a δ-relation between annotated objects in the source code there is a γ-

relation between the corresponding features. The Validator validates the initial mappings 

by matching these relations when both components of δ-relations are annotated. When 

the initial annotations are validated, the Validator supplies them to the Learner for 

training. Lean uses variable names and the corresponding feature labels to train the 

Learner to classify program entities by their naming patterns. 

The Mapper instruments the source code to record run-time values of unannotated 

variables, and calls a Java compiler to produce an executable program. Then the program 

runs storing names and the values of program variables in the Program Data Table 

(PDT). This training uses the content of the annotated variables rather than their names. 

Once the Learner is trained, it classifies unannotated program variables. These variables 

are supplied to the Learner as the columns of the PDT. In addition, Domain-Specific 

Dictionaries (DSDs) increase the precision of the classification. The output of the 

Learner is a set of learnt annotations (LAs). Some of these annotations may be incorrect 

because the Learner does not guarantee 100% precision. Finding incorrectly learnt 

mappings in a large program is a tedious and a laborious exercise. The Validator 

Source 
Code

Feature
Diagram 

(FD)

Program Data
Table (PDT)

Learner

Validator

Learnt
Annotations

(LA)

Mapper DSD

Annotating Mode Training Mode

User
Annotations

1

1

Instrumented
Program Code

2 3

4

5 6

788

8

9

 

1) Programmers annotate the Source Code with 
concepts from the FD using the Mapper 

2) The Mapper produces initial mappings 
3) The Validator validates initial mappings 
4) The Validator supplies the initial annotations to 

the Learner for training 
5) The Mapper instruments and compiles the source 

code 
6) The program runs and its instrumentation outputs 

the Program Data Table (PDT) 
7) Annotated variables and their values from the 

PDT are supplied to the Learner for training 
8) Learner classifies program variables from the 

PDT and produces learnt annotations (LA) with 
the help of Domain-Specific Dictionary (DSD) 

9) The Validator validates LAs and uses negative 
examples to retrain the LearnerFigure 3. Lean Architecture and its process. 
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automates this process by taking in the learnt program annotations and validating these 

annotations by exploring relations between variables in the source code and features in 

the FD. The output of the Validator is a list of rejected annotations which the Learner 

may use to improve its predictive capabilities. 

5. Learning Annotations 
This section shows how Lean learns and validates annotations using run-time 

monitoring, program analysis, and machine learning. We describe the key idea, present 

the organization of the learner, and give the learning algorithm. This section ends with a 

discussion on how to extend the learner to adapt to other domains. 

5.1. Our Approach 
In our approach, automating the program annotation process is treated as a 

classification problem: given n features and a program variable, which feature matches 

this variable the most? Statistical measures of matching between variables and features 

are probabilistic. The Learner classifies program entities with the probabilities that 

certain feature labels can be assigned to them. By taking a set of annotated program 

variables and their values, a classifier is built and trained to classify an unannotated 

variable based on the information learned from the annotated variables. 

Initially, all unannotated variables have equal and arbitrary chosen probabilities 

(in the interval from 0 to 1) of matching given feature labels. For example, given three 

features Email, Web, and Phone the variable S[3] is assigned three initial probabilities 

pEmail(S[3]) =  pWeb(S[3]) =  pPhone(S[3]) =  1/3. Assigning equal 

probabilities reflects our lack of knowledge of what feature should match a specific 

variable. When classifying this variable these probabilities are recomputed. If the name of 

the variable matches the name of the feature, then the probability of annotating this 

variable with the feature increases. If the values of S[3] do not contain any digits, then 

the probability that this variable is annotated with the Phone concept may decrease to 

zero. After classifying the program variable S[3], a learner may assign the probability 

pEmail(S[3]) =  0.7 that the variable S[3] represents the Email concept, and 

probabilities pWeb(S[3]) =  0.3 and pPhone(S[3]) =  0.1. Since the 

probability that the variable S[3] represents the Email concept is the highest, the 
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learner will issue a prediction that this variable should be annotated with the Email 

concept. 

5.2. The Organization of the Learner 
Lean has its roots in the Learning Source Descriptions (LSD) system developed at 

the University of Washington [6] for reconciling schemas of disparate XML data sources. 

The purpose of LSD is to learn one-to-one correspondences between elements in XML 

schemas. Lean employs the LSD multistrategy learning approach [7, 8], which organizes 

multiple learners in layers. The learners located at the bottom layer are called base 

learners, and their predictions are combined by metalearners located at the upper layers. 

We use three types of learners: name, content, and Naïve Bayes. Even though many 

different types of learners can be used with the multistrategy learning approach, we limit 

our study to these three types of learners since they proved to give good results when 

used in LSD. 

We illustrate the multistrategy learning approach with the following example. 

One base learner BL1 may issue a prediction that the variable Pho from the example 

shown in Figure 1 matches feature Address with the probability 0.3, feature Email 

with the probability 0.1, and the feature Phone with the probability 0.7. We write 

these matches as variant 1BL

Pho
Address:0.3, Email:0.1, Phone:0.7 , where the 

field labels are feature labels and field values are the probabilities of matching a given 

variable that is specified as a subscript to the variant. The superscript of the invariant 

shows the name of the learner used to classify a given variable. The other base learner 

BL2 may issue a different prediction 2BL

Pho
Address:0.2, Email:0.3, Phone:0.9 . A 

metalearner combines these predictions by multiplying the probabilities by weights 

assigned to each learner and taking the average for the products for the corresponding 

labels of the predictions for the same program variable. Thus, the resulting prediction 

issued by a metalearner in our example is 
ML

Pho
Address:0.25, Email:0.2, Phone:0.8  with weight equal to 1 for both 

learners. Based on this prediction, the feature label Phone matches the program variable 
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Pho with the highest probability 0.8, and based on this result the metalearner assigns 

the annotation Email to this variable. 

There are three types of base learners used in the Lean learner: a name matcher, a 

content matcher, and a Bayes learner. Here we give a brief description; these learners are 

described in detail in [6, 10]. Name matchers match the names of program entities with 

feature labels. The name matching is based on Whirl, a text classification algorithm based 

on the nearest-neighbor class [9]. This algorithm computes the similarity distance 

between the name of a program entity and a feature label. This distance should be within 

some threshold for the name. This threshold value is determined when the learner is 

trained on selected data. 

Whirl-based name matchers work well for meaningful names especially if large 

parts of them coincide or they are synonyms. They do not perform well when names are 

meaningless or consist of combinations of numbers, digits, and some special characters 

(e.g., underscore or caret). For example, Whirl is unable to correctly classify the variable 

S[3] shown in Figure 1c. 

Content matchers work on the same principles and use the same algorithm (Whirl) 

as name matchers. The difference is that content matchers operate on the values of 

variables rather than their names. Content matchers work especially well on string 

variables that contain long textual elements, and they perform poorly on binary 

(nonprintable) and numeric types of variables. For example, values of S[3] may contain 

sentence “Email to: John@ax.com”, and the presence of the word Email indicates that 

this variable should be classified as the Email concept. 

Finally, Bayes learners, particularly the Naïve Bayes classifier, are among the 

most practical and competitive approaches to classification problems [10]. Naïve Bayes 

classifiers are studied extensively [10, 11], so we only state what they do in the context of 

the problem that we are solving here. For each variable varj we parse its values into 

words and create a bag of words that the values of this variable take. Given feature labels 

{f1, …, fm} the Naïve Bayes classifier assigns varj to some feature label fk, 1 ≤ k ≤ 

m, such that the probability that p(fk | varj) that the variable varj belongs to the 

feature fk, is maximized. 
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5.3. Overview of Learning Algorithm 
Lean learning algorithm consists of two phases: the training phase and the 

annotating phase. The training phase improves the ability of the learners to predict correct 

annotations for program variables. Trained learners classify program variables with 

feature labels, and based on these classifications, Lean annotates programs. The accuracy 

of the classification process depends upon successful training of the Learner. 

To disambiguate variables that are given the same names in different scopes (i.e., 

program text regions in which variables bindings are active), each variable is identified 

with its access path. For example, if a variable named var is declared in the method M of 

the class C which is defined in the package P, then the access path to this variable is 

P.C.M.var. 

The data for training learners come from an instrumented program. When it runs, 

the instrumented code outputs variable names and their values into the program data table 

(PDT). Recall that this table contains columns for access paths, and the cells for these 

columns are filled with values that the access path destination variables take during 

program runs. During the training phase, weights of the base learners are adjusted and 

probabilities are computed for each learner using the PDT columns containing data for 

annotated variables. Then, during the classification step the previously computed weights 

and probabilities are used to predict the feature label for unannotated variables. 

Each base leaner is assigned a weight (a real number between 0 and 1) that 

characterizes its accuracy in predicting annotations of program variables. Initially, all 

weights are the same. For each classified program entity the weights of the learner are 

modified to minimize the squared error between the predefined value (i.e., 1 if the 

prediction is correct, or 0 otherwise) and the computed probability multipled by the 

weight assigned to the learner. This approach is called regression [10]. 

Most machine learning approaches are as good as the selected training data. 

Selecting test data is often characterized by how well the data represents the true value 

distribution. Overfitting training data is one of the most common mistakes. Examples of 

overfitting is overestimating the importance of some rare words or selecting a set of 

training data that covers test data. If the latter occurs, then the classifier cannot be 
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correctly evaluated since it is important to test its predictive capabilities on data that was 

not used for training.  

Lean uses the cross-validating [10] training data it divides into few pairs of 

training and testing sets. Then, each learner is trained for each pair of training and testing 

data sets, and the results are averaged to produce a more accurate estimate. 

5.4. Learning Conditional Annotations 
Consider a fragment of code shown in Figure 4. The while loop iterates over the 

integer variable counter whose value modulo two serves as an input to the method 

GetAttribute. This method interates through some dataset and returns String type 

values which are assigned to the variable var. Suppose that the value returned by the 

method GetAttribute belongs to the concept Address when the value of the 

variable counter is even and to the concept Email when the value is odd. It means 

that the variable var should be annotated with these two concepts. However, these 

annotations are conditional upon the value of the counter.  

Temporary variables that are incremented by a predictable amount each time 

through the loop, called induction variables [11]. Examples are variables whose 

definitions within the loop are of the form counter = counter + c, where c is a 

loop invariant. Lean combines induction variable values with the values of other 

variables to train the Learner, and subsequently classify the unannotated variables that 

depend on these induction variables. For the code fragment shown in Figure 4 values for 

the variable var are used in conjunction with the values of the expression counter%2 

when training the Learner and later classifying the variable unannotated. 

 

int counter = 0; 
String var, unannotated; 
 
while(  counter++ < SomeNumber ) { 
 var = GetAttribute( counter % 2 ); 
 unannotated = GetAttribute( (counter+1) % 2 ); 
} 

Figure 4. Example of code requiring conditional annotations. 
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5.5. Extending the Learner 
Domains use special terminologies whose dictionary words mean specific things. 

Programmers use domain dictionaries to name variables and types in programs written 

for these domains. For example, when word “wafer” is encountered in a value of some 

variable of a program written for a semiconductor domain, this variable may be annotated 

with the wafer concept. Many domains have dictionaries listing special words, their 

synonyms, and explaining their meanings. In addition, these domain-specific dictionaries 

may specify constraints that can be used to improve the precision of program annotations. 

For example, a list of diameters of wafers permitted by certain standards can be included 

in the definition of the wafer in a semiconductor domain dictionary. 

Lean incorporates the knowledge supplied by these dictionaries. Each concept in 

these dictionaries has a number of words that are characteristic of this concept. If a word 

from the dictionary is encountered in a value of a variable, then this variable may be 

classified and subsequently annotated by this concept. We use a simple heuristic to 

change the probabilities that variables should be annotated with certain feature labels. If 

no dictionary word is encountered among the values of a variable, then its probabilities 

remain unchanged. Otherwise, if a word belongs to some concept, then the probability 

that the given variable belongs to this concept is incremented by some small real number 

Dp, i.e., pconcept(var) = pconcept(var) + Dp. We choose this number 

experimentally as 1/(# of words in a DSD). If the resulting probability is 

greater than 1.0 after adding Dp, then the probability remains 1.0. 

6. Inferring and Validating Annotations 
This section describes how we infer and validate program annotations using 

program analysis. First, we state the rationale for inferring and validating annotations. 

Then, we illustrate the core idea for inferring and validating annotation on an illustrative 

example. Next, we give the algorithm for inferring annotations for δ-relations containing 

annotated and unannotated components. Finally, we show how to validate program 

annotations. 
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6.1. The Rationale 
Lean cannot annotate all variables due to a number of factors. Machine learning 

approaches are only as good as the training data, and they do not guarantee 100% 

classification accuracy. Some variables cannot be classified because they take hard-to-

analyze values. Examples are variables whose values are binary (nonprintable) strings, or 

integer variables holding values for salaries and zip codes. The former makes it difficult 

to train classifiers since patterns in binary data are inherently complex. The latter 

example demonstrates that when values of two variables are approximately the same, it is 

difficult to train the classifier to recognize these variables by their values. 

Algorithms for inferring and validating annotations predict annotations for 

partially annotated δ-relations (i.e., when one component of a δ-relation is annotated, and 

the other is not) and detect when incorrect annotations are assigned in certain situations. 

These algorithms are not sound. They can miss incorrect annotations and they cannot 

pinpoint the source of the fault that led to incorrect annotations. However, these 

algorithms perform well in practice for the majority of cases as our experiments show. 

6.2. An Illustrative Example 
Consider an expression c = d + e, where c, d, and e are variables, and a 

mandatory FD whose features p and q are attached to the base feature f. Since variables 

c, d, and e are related via the δ-relation, we write δ(c, d), δ(c, e), and δ(d, e). 

We write γ(f, p) and γ(f, q) for features f, p, and q since they are related. The 

variable c is mapped to the feature f during the initial mapping, i.e. f ∈ α(c).  

Consider some other expression a = b + d, where a, b, and d are variables, 

and a mandatory FD whose features v and p are attached to some other feature u. This 

expression is defined in the same scope as the previous expression, and the variable d is 

the same in both expressions. Feature p is shared by both FDs. Since variables a, b, and 

d are related via the δ-relation, we write δ(a, b), δ(a, d), δ(b, d). We write 

γ(u, p) and γ(u, v) for features u, p, and v since they are related too. The variable 

a is mapped to the feature u during the initial mapping, i.e. u ∈ α(a). 

Our goal is to validate the annotation assigned by the Lean classifiers to the 

variables in the given expressions. The solution to this validation problem is to infer sets 
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of possible annotations, and then determine whether assigned annotations exist in the 

inferred sets. If they exist, then Lean assigned annotations correctly. 

Let us illustrate the solution to the validation problem. Let us apply the annotation 

function to the δ-relations δ(c, d) and δ(c, e): α(δ(c, d)) = γ(α(c), α(d)) and 

α(δ(c, e)) = γ(α(c), α(e)). By substituting the initial mapping α(c) = f, we obtain γ(f, 

α(d)) and γ(f, α(e)). Recall from the main rule stated in Section 3.2. Rules of Program 

Annotations that for each δ-relation between objects in the source code which are 

annotated with feature labels there is a corresponding γ-relation between the 

corresponding features in some feature diagram. We make the annotation function α total 

by adding concept ? to its range. All unannotated program entities are mapped by α to the 

concept ?.  

Since no annotation is defined for variables d and e, we replace α(d) and α(e) 

with ? in relations γ(f, α(d)) and γ(f, α(e)) obtaining the pattern  relation γ(f,?). In 

this pattern relation the symbol ? is used to match the second unknown component. To 

find features that are the values of the unknown component, we should find γ relations 

whose first component is the feature label f. Then, the second components of the δ-

relations can be mapped to the second components of these γ relations. Specifically, α(d) 

= α(e) = {{p},{q}}. Repeating the same process for the other expression we obtain 

α(b) = α(d) = {{p},{v}}. Thus, possible annotations for variables b, d, and e 

have been inferred. We can make the set of possible annotations more precise for the 

variable d. Since both expressions are located in the same scope, the variable d should be 

mapped to the same sets of features. By taking the intersection of the sets to which the 

variable d is mapped, we obtain α(d) = {p}. If the intersection yields an empty set, then 

the annotations of the variable d are flagged as possible errors. 

Suppose that after running Lean it annotates the variable e with the feature label 

v. In order to validate whether this annotation is correct, we evaluate if the feature v 

exists in the set of possible annotations for the variable e. 

6.3. The Annotation Inference Algorithm 
The algorithm InferAnnotations for inferring annotations is shown in 

Figure 5. Its input is the set of δ-relations, γ-relations, and mappings α between program 
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entities and sets of features. The algorithm iterates through all δ-relations to find partially 

annotated ones (i.e., when one component of a δ-relation is annotated, and the other is 

not). Then, for each found δ-relation the annotation function is applied to the annotated 

component to obtain the set of features with which this component is annotated. Then, for 

each feature in this set all γ-relations are found whose component matches this feature. 

The other components of the obtained γ-relations make it into the set of possible 

annotations with which the unannotated component of the δ-relation may be annotated. 

The main for-loop of the algorithm explores all δ-relations. It checks each 

variable in each δ-relation to see if it is annotated. If the annotating set of features is 

empty for one 

InferAnnotations( δ, γ, α ) 
for each (a, b) ∈ δ do 
 α(a)  # fk
 α(b)  # fm 
 if fk = «  then 
  for each (c, d) ∈ γ do 
   if  d ∈ fm  then 
    fk # fk  U {c} 
   else if c ∈ fm  
    fk # fk  U {d} 
   endif 
  endfor 
 else if fm = «  then 
  for each (c, d) ∈ γ do 
   if d ∈ fk then 
    fm # fm  U {c} 
   else if c ∈ fk  
    fm # fm  U {d} 
   endif 
  endfor 
 endif 
 if $(u,v) ∈ δ s.t. u = a \/ v = a then 
  α(u)  # fs
  α(u)  = fs … fk
  α(a)  = fs … fk
 endif 
endfor 

Figure 5. Algorithm for inferring additional annotations. 

variable and nonempty for the other, then all γ-relations are searched whose component is 
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a subset in the annotating set of features. If such γ-relation is found, then its other 

component is added to the annotation set of the unannotated variable in the δ-relation. 

The last if condition in the algorithm deals with the same variable, namely a, 

used in

6.4. The Validating Algorithm 
lgorithm shown in Figure 6 validates whether 

annotat

iterates through all δ-relation, and annotations fk and fm for 

compon

s not specify what the correct annotation of a program variable 

is or w

potentially incorrect. 

 two or more expressions in the same scope. This variable may be annotated 

differently. In this case an intersection is taken of the feature sets with which the uses of 

this variable are annotated. The result of this operation is an empty feature set, a reduced 

feature set, or the full set if the annotations coincide. 

The ValidateAnnotation a

ions are correct. The key criteria for validating annotations is to check that for 

each δ-relation between annotated entities in the source code there is a corresponding γ-

relation between the corresponding features in some feature diagram. The input to this 

algorithm is the set of δ-relations, γ-relations, and mappings α between program entities 

and sets of features. Each δ-relation has a color associated with it which is initially set to 

red. The red color means that a given δ-relation is not correctly annotated, and the green 

color means that all components of a given δ-relation are annotated correctly, or not all 

components are annotated.  

The outer for-loop 

ents of each relation are obtained. If one or both components of a given δ-relation 

are not annotated, then this relation is colored green. Otherwise, the inner for-loop 

searches through γ-relations to find one whose components are members of fk or fm 

annotation sets. If such a γ-relation exists, then the corresponding δ-relation is colored 

green and the inner loop is exited. Otherwise, if the inner loop exits without finding a γ-

relation whose components are members of fk or fm annotation sets, then the δ-relation is 

red and may not be valid. 

This algorithm doe

hat caused the error in program annotation. In fact, annotation errors many be 

caused by incorrect feature diagram, errors in program source code, or both. The last 

for-loop iterates through all δ-relations, checks the colors, and prints red relations as 
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6.5. The Computational Complexity 

Suppose a program has n variables and a feature diagram has m features. Then it 

is possible to build n(n-1)/2 δ-relations and m(m-1)/2 γ-relations. Thus, the space 

c y is deterimed by two for-loops in the 

(1)

prototype implementation of Lean is based on its architecture shown in 

Figure 3. Its main elements are the Mapper, the Learner, and the Validator. The Mapper 

is a code in a tree format along with 

feature

omplexity is O(n2 + m2). The time complexit

ValidateAnnotation and InferAnnotations algorithms. The external for-

loops iterate over all δ-relations and the internal for-loops iterate over all γ-relations. 

Considering all other operations in the algorithms taking O , the time complexity is 

O(n2m2). 

7. The Prototype Implementation 
The 

 GUI tool written in C++ that presents Java source 

 diagrams which are represented in XML format. The Mapper includes an EDG 

Java parser [13] and an MS XML parser. An example of FD in XML format is shown in 

Figure 6. Algorithm for validating annotations. 

ValidateAnnotations
for each (a, b) ∈ δ do 

( δ, γ, α ) 

 color((a, b)) # red 

hen 
 each (c, d) ∈ γ do 

if  (c ∈ f  /\ d ∈ fk) \/ (c ∈ fk /\ d ∈ fm)  then 
or((a, b)) # green 

 

 ∫ green then  
print error  

 α(a)  # fk
 α(b)  # fm 
 if fk  ∫ « /\ fm ∫ «  t
  for
   m
    col
    break; 
   endif 
  endfor 
 else 
  color((a, b)) # green
 endif 
endfor 
for each (a, b) ∈ δ do 
 if color((a,b))
  
 endif 
endfor
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Figure 7. The root of the XML data is the tag FD whose attribute Name specifies the 

name of the application to which this FD is applicable. The child element of the root is 

Feature with the attribute Name whose value if the name of the feature. Children tags 

VarPoint describe variation points to which other features are attached. Each element 

VarPoint has the attribute Type whose value specifies the type of a feature 

attachment, i.e., mandatory, optional, alternative, or or-feature. If the type of the variation 

point is alternative or or-feature, then this VarPoint element contains children 

VarPoint elements whose types are mandatory or optional. 

 
Programmers map features to program entities using the Mapper GUI which 

o ure 8. The root of the XML

data 

utputs an XML file whose example content is shown in Fig  

is the element Annotations whose attributes FD and 

<Annotations FD=”VMT” Program=”vendors.java”> 
 <Annotation Entity=”Type”> 
  <AccessPath Type=”Class”>vendors</AccessPath>  
  <Feature>Vendor</Feature> 
 </Annotation> 
 <Annotation Entity=”Field”> 
  <AccessPath Type=”String”>vendors.Pho</AccessPath>  
  <Feature>Phone</Feature> 
 </Annotation> 
 <Exclusions> 
  <AccessPath Type=”String”>vendors.Email</AccessPath> 
 </Exclusions> 
</Annotations> 

Figure 8. XML file containing annotations of program entities. 

<FD Name=”VMT”> 
 <Feature Name=”Vendor”> 
  <VarPoint Type=”Alternative”> 

VarPoint Type=”Mandatory”> 
e=”Phone”/> 

   <
    <Feature Nam
   </VarPoint> 
   <VarPoint Type=”Optional”> 
    <Feature Name=”Email”/> 
   </VarPoint> 
  </VarPoint> 
 </Feature> 
</FD> 
Figure 7. Representation of a feature diagram in the XML format. 
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Program specify the feature diagram used and the name of the programs whose 

v  and 

fe sions element contains a list of 

v ocess. These variables are 

d s. 

and data flow analyses. Obtaining γ-relations from FDs is much simpler than δ-relations 

s . The output 

of these analyses is an XML file containing γ and δ relations as shown in Figure 9. The 

r  and Gammas. These elements 

g is added 

after th

Annotations and 

Valid

he collection is done by instrumenting 

program source code and running the program with statements that log the run-time 

ariables are annotated, respectively. Each variable is specified by its access path,

atures are specified by their names. The Exclu

ariables that should be excluded from the annotation pr

escribed by children elements AccessPath of the element Exclusion

The Mapper obtains δ and γ relations from the source code by applying control 

ince checking only the parent and children of VarPoint elements is required

oot element Relations has children elements Deltas

contain the collections of δ and γ relations respectively. The Delta elements are used to 

specify δ-relations and the Gamma elements specify γ-relations. 

The Mapper instruments the source code by adding calls that log runtime values 

of program variables. These are the variables that are not annotated initially, and whose 

annotations should be learned from the content of their values. Runtime loggin

e definitions of the variables and after statements and expressions to where the 

monitored variables are assigned. Lean’s data flow analysis framework locates variable 

definitions and traces the uses of these variables until either the end of the scope for the 

definitions or the definition of new variables overwrite previous definitions. Only distinct 

values of the monitored variables are collected. 

Once the initial mapping is complete, the Mapper sends the XML annotation and relation 

file rules to the Validator. Algorithms Infer

ateAnnotations constitute the core of the Validator. It uses the algorithm 

InferAnnotations to add possible annotations to program entities, and then it applies the 

ValidateAnnotations algorithm to validate annotations assigned by programmers 

or by the Learner.  

Both the Validator and the runtime logger code output data in the Attribute Relation File 

Format (ARFF) file format. ARFF serves as an input to the Learner which is based on a 

machine-learning Java-based open source system WEKA [14][15]. The Learner is trained 

on the collection of data from program runs. T
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<Relations FD=”VMT” Program=”vendors.java”> 
 <Deltas> 

   <AccessPath Type=”String”>vendors.Pho</AccessPath> 
   <AccessPath Type=”String”>vendors.Email</AccessPath> 
  </Delta> 
 </Deltas> 
 <Gammas>
  <G

  <Delta ID=”1”> 

 
amma ID=”2”> 

values of program variables in the ARFF file called Program Data Table in the Lean 

in Figure 1a which contains the definition of the 

c Add. 

A s run, the run-time logging code outputs training data in 

th mple is shown in Figure 10. This ARFF file contains the 

v time. The structure of ARFF files is described 

in

@attribute. Two attributes are shown 

in Figure 10: the attribute Add followed by its type string, and the nominal attribute 

   <Feature>Vendor</Feature> 
   <Feature>Phone</Feature> 
  </Gamma> 
 </Gammas> 
</Relations> 
Figure 9. XML file containing δ and γ relations. 

architecture.  

Recall the code fragment shown 

lass vendors. A user provides the initial annotation Address for the variable 

fter the instrumented program i

e ARFF format whose sa

alues taken by the variable Add at the run

 detail in [14][15]. 

%ARFF file for training the Lean Learner 

d string 

cle, Austin”, Address 
“McN
“xxx 

@relation AddressTraining 
@attribute Ad
@attribute concept? {Address, Unknown} 
 
@data 
“Tamara Cir

The ARFF file can be viewed as a table with attributes. Its header contains the keyword 

@relation followed by the name of the training set AddressTraining, and a 

series of attributes prepended with the keyword 

eil Drive, Austin”, Address 
123 yy”, Unknown 

“Sims Road, Dallas”, Address 
Figure 10. A sample ARFF fileFigure 4. 

 27



concept followed with the ? sign meaning that it is used to classify the attribute Add. 

T s and Unknown for the attribute concept give us two 

c  data instances of these attributes follow the 

section definition @data. This data instances in this section are produced as a result of 

r sifying each data instance. 

tated variables is accomplished by obtaining runtime 

values of these variables and supplying them to the Learner which emits predictions for 

fe ables should be annotated. These predictions are 

MS) is an 

application for animal sanctuaries and shelters that includes document generation, full 

rep rch engine, and web interface. Finally, 

Integra

wo nominal values dresAd

hoices of classifying program variables. The

un-time monitoring and manual clas

The classification of unanno

ature labels with which these vari

refined during the validation stage by manual inspection. The refined predictions are 

supplied to the Learner for training to improve its accuracy. This continuing process of 

annotating, validating annotations, and learning from the validated annotations makes 

Lean effective for long-term evolution and maintenance of software systems. 

8. Experimental Evaluation 
In this section we describe the methodology and provide the results of 

experimental evaluation of Lean on open-source Java programs.  

8.1. Subject Programs 
We experiment with a total of seven Java programs that belong to different 

domains. MegaMek is a networked Java clone of BattleTech, a turn-based sci-fi 

boardgame for two or more players. PMD is a Java source code analyzer which finds 

unused variables, empty catch blocks, etc. FreeCol is an open version of a Civilization 

game in which the player conquers new worlds. Jetty is an Open Source HTTP Server 

and Servlet container. The Vehicle Maintenance Tracker (VMT) tracks the maintenance 

of vehicles (e.g., boats, cars, and planes). The Animal Shelter Manager (A

orting, charts, internet publishing, pet sea

ted Hospital Information System (IHIS) is a program for maintaining health 

information records. 
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8.2. Methodology 
To evaluate Lean, we carry out two experiments to explore how effectivly Lean 

annotates programs and how training affects the accuracy of predicting annotations. We 

also investigate the cases the validation algorithm rejected annotations. 

In the first experiment, we create a domain-specific dictionary (DSD) and a 

feature diagram (FD) for each subject program. Then we annotate a subset of variables 

for each program and run Lean to annotate the rest of the program. The goal of this 

experiment is to determine how effective Lean is in annotating program variables for 

programs of different sizes and from different domains. Each annotation experiment is 

run with and without a DSD in order to study the effect of the presence of DSDs on the 

quality of Lean annotations. 

, where 

nd experiment is to evaluate the effect of training on the 

Lean’s 

We measure the number of variables annotated by Lean as well as the number of 

annotations rejected by the validating algorithm. The number of variables that Lean can 

possibly annotate, , is vars vars = total – (excluded + initial)

total is the total number of variables in a program, excluded is the number of 

variables excluded from the annotation process by the user, and initial is the number 

of variables annotated by the user. Lean’s accuracy ratio is computed as accuracy = 

(vars – rejected)/vars, where vars is the number of variables annotated by 

Lean and rejected is the number of annotations rejected by the validating algorithm.  

The goal of the seco

classification accuracy. Specifically, it is important to see the amount of training 

involved to increase the accuracy of annotating programs. Training the Lean Learner is 

accomplished by running instrumented programs with distinct sets of input data. If the 

Learner should be trained continuously, then certain applications may be exempt from 

our approach. On the contrary, if a program should run a reasonable number of times in 

order to collect distinct data sets for training and classification, then our approach is 

practical and can be used in the industrial settings.  

8.3. Results 
Table 2 contains the name of a program, the size of the DSD, the number of lines 

of code, the number of features in an FD, the number of variables that Lean could 
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potentially annotate, the percentage of initial annotations computed as ratio 

initial/total, where total is the total number of variables in a program, and 

initial is the number of variables annotated by users.  The next two columns compare 

the percentage of total annotations without and with the DSD. The last column of Lean 

this table shows the accuracy of Lean when used with DSDs. 

The highest accuracy is achieved with programs that access and manipulate 

dom formation without a strong influence of any 

d

 

ain-specific data rather than general in

omain terminology. The lowest level of accuracy was with the program PMD which 

analyzes Java programs and it not based on any specific domain. The highest level of 

accuracy was achieved with the programs ASM and VMT which are written for specific 

domains with well-defined terminologies, and whose variable names are easy to interpret 

and classify. 
PROGRAM SIZE OF 

DSD, 
WORDS 

LINES  OF 
CODE, 
LOC 

# OF 
FEAT-
URES 

NUM-
BER OF 
VARS 

USER 
ANNOTA- 
TIONS, % 

LEAN 
ANNOTS 
W/O DSD 

LEAN 
ANNOTS 
WITH DSD 

ACCU-
RACY,
% 

Megamek 60 23,782 25 328 10% 58% 64% 64% 
PMD 20 3,419 12 176 7.4% 23% 34% 35% 
FreeCol 30 6,855 17 527 4.7% 56% 73% 79% 
Jetty 30 4,613 6 96 12.5% 42% 81% 52% 
VMT 80 2,926 8 143 5.6% 65% 72% 83% 
ASM 60 12,294 23 218 5.5% 57% 79% 87% 
IHIS 80 1,883 14 225 8% 53% 66% 68% 
Table 2. Results of the experimental evaluation of Lean on open source program. 
 

The next experiment evaluates the accuracy of the Lean learner. Figure 11 shows 

that when annotating the AMS application, the Learner achieved the highest accuracy, 

0%. This accuracy was achieved w e o t tr am

0. The results of this experim nt show that app ed to be run o

ndred tim ith di inp ata er  th ner t eve g

 Since t appli  run at least several thousand  durin r test

ean as a  of ap n t ing t ota ram ce co pract
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reached 50 e lications n nly 
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Finally, we used the Learner trained for the VMT application to annotate 

variables in other applications. This methodology is called true-advice versus self-advice 

which uses the same program for training and evaluation. Figure 12 shows the percentage 

of variables that the Lean Learner annotates with self-advise (left bar) versus the true-

advice annotations (right bar) when the Learner is trained on the VMT application. This 

experiment shows that Lean can be trained on one application and used to annotate other 

programs if they operate on the same domain-specific concepts. ASM and IHIS have 

common concepts with the VMT application, and it allows learners to be trained and used 

interch

notation process.  

 
Figure 11. The graph of the accuracy of the Lean learner. 

angeably achieving the high degree of automation in annotating program 

variables. 

9. Related Work 
The importance of annotations for program checking and verification is 

emphasized in [16]. In addition to the benefits outlines in Section 1, getting annotations 

into programs is important for developing algorithms and techniques for the verifying 

compiler. Although many notable publications are written on the use of annotations for 

various purposes, only few of them describe approaches and tools for automating the 

program an
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One of the earliest papers on automating program annotations [17] describes a 

technique for annotating Algol-like programs automatically given their specifications. 

The annotation techniques are based on the Hoare-like inference rules which derive 

invariants from the assignment statements, from the control structure of the program, or, 

from suggested invariants. Like the Lean approach, the annotation process is guided by a 

set of rules. The program is incrementally annotated with invariant relationships that hold 

between program variables at interm oints. Unlike our approach program 

annotation process is viewed strictly as discovery of invariants. By automating this 

process the authors meant applying their inference rules in a fashion that does not require 

significant laborious intellectual efforts and creativity.  

A comprehensive study of program annotations is given in [18].  This paper 

presents a classification of the assertions that were most effective at detecting faults and 
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Figure 12. Percentage of variables that the Lean Learner annotates with self-advise (left bar) versus 
the true-advise annotations (right bar) when the Learner is trained on the VMT application. 
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of program annotations. Unlike our approach, the tool proposed in this paper does not 

automate the annotation process. 

A technique that can be used to annotate source code with syntactic tags in XML 

format is described in [19]. Parser generator bison is modified to emit annotating XML 

tags for an arbitrary LALR grammar. This technique was applied to modify the gcc 

compiler to annotate C, Objective C, C++ and Java programs with XML tags. While this 

approach is based on a representation of the parse tree and does not have the same 

semantic richness as other approaches, it does have the advantage of being language 

independent, and thus reusable in a number of different domains. Like our research, this 

parse tree approach uses grammars as external semantic relations to guide the automatic 

annotation of program code. However, this approach is tightly linked to grammars that do 

not express domain-specific concepts and relations among them. By contrast, our 

technique operates on semantic relations and diagrams that are not linked to program 

urce code or a grammar of any language. Their goal is to indicate what language 

 

eals with annotating program code with arbitrary semantic concepts. 

stems is driven by annotations that identify run-time 

constan

Typically, print statements are inserted in C source code to record the values of 

so

statement or expression corresponds to what grammar construct, while our approach

d

Calpa is a tool for automating selective dynamic compilation [20]. Calpa’s 

selective dynamic compilation sy

ts, and it can achieve significant program speedups. Calpa is a system that 

generates annotations automatically for the DyC dynamic compiler by combining 

execution frequency and value profile information with a model of dynamic compilation 

cost to choose run-time constants and other dynamic compilation strategies. Calpa is 

shown to generate annotations of the same or better quality as those found by a human, 

but in a fraction of the time.   

A method for deriving path and loop annotations automatically for object-oriented 

real-time programs is presented in [21]. Such annotations are necessary when the worst 

case execution time of programs should be calculated. Normally these annotations must 

be given manually by the programmer.  

A system called Daikon for automatic inferences of program invariants is based 

on recording values of program variables at runtime with their following analysis [22]. 
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parameters to functions and their variables before and after functions are called. Then, 

these values are analyzed to find variables whose values are not changed throughout the 

executi

ch in automating text annotations is presented by the 

OpenT

elps the user to annotate chunks of text selected 

by the 

losion in the amount of biological data being generated worldwide 

is surp

date, as a 

result o

on of certain functions. These variables constitute invariants that annotate 

respective functions. 

Like our research, Daikon, Calpa and the method proposed in [21] automate the 

generation of annotations and the user is relieved from a task that can be quite difficult 

and highly critical.  Rather than identifying run-time constants and low-level code 

properties that are extracted from the source code, our approach enables programmers to 

automate the process of annotating programs with arbitrary semantic concepts. 

An interesting approa

ext.org project [23]. It is a web-based initiative to develop annotated Greek texts 

and tools for their analysis. Texts are annotated with various levels of linguistic 

information, such as text-critical, grammatical, semantic and discourse features. The 

project offers an annotation tools that h

user with the semantic case roles. The result of the annotation is kept in an XML 

format which is later converted in a format required by a machine learning program (i.e. 

Weka).  Like in Lean, machine learning algorithms are used to classify text and assign 

annotations based on the results of the classification. The major difference between our 

approach and opentext.org is that the latter is used to annotate texts while the former 

annotates program code. 

The rapid exp

assing efforts to manage analysis of the data. As part of an ongoing project to 

automate and manage bioinformatics analysis, the authors have designed and 

implemented a simple automated annotation system [24]. The system is applied to 

existing GenBank/DDBJ/EMBL entries and compared with existing annotations to 

illustrate not only potential errors but also that they are generally not up-to-

f new versions of analysis tools and updates of genomic repositories.  

The problem of annotating interfaces of object-oriented application frameworks is 

studied in [25]. Since frameworks provide an established way of reusing the design and 

implementation of applications in a specific domain its correct usage is important. 

However, using a framework for creating applications is not a trivial task, however, and 
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special tools are needed for supporting the process. Tool support, in turn, requires explicit 

annotations of the reuse interfaces of frameworks. Unfortunately these annotations 

typically become quite extensive and complex for non-trivial frameworks. In this paper 

the authors focus on describing techniques for minimizing the work needed for creating 

framework annotations. They discuss the possibility of generating annotations based on 

frameworks’ and example applications’ source code, automating annotation creation with 

dedicat

ng it to two 

kinds o

e data 

sets. A

ed wizards, and introducing coding conventions and advanced language features, 

such as inheritance, for framework annotations languages. They also introduce a 

programming environment that supports framework annotation and specialization.  

A technique for automatically deriving traceability relations between parts of a 

specification and parts of synthesized programs is described in [26]. The technique is 

very lightweight and may work for any process in which one artifact is automatically 

derived from another. The generality of the technique is illustrated by applyi

f automatic generation: synthesis of Kalman Filter programs from specifications 

using the AUTOFILTER program synthesis system, and generation of assembly language 

programs from C source code using the GCC C compiler. This work is related to our 

algorithms that enable validation of determined annotations. 

The use of semantic annotation in the biochip domain is presented in [27]. They 

propose a semi-automatic method using the information extraction (IE) techniques for 

facilitating the generation of ontology-based annotations for scientific articles. The 

authors evaluate and discuss their method by applying it to the annotation of textual 

corpus provided by biologists working in the biochip domain. Finally, the authors show 

that ontology based semantic annotation can improve information retrieval. 

10. Discussion and Future Work 
One documented problem with WEKA is that it is slow especially with larg

s a consequence we do not measure the performance of Lean and plan to address 

this problem in the future. Clearly, collecting all values of all variables may be 

prohibitive because it is time consuming and it affects the performance of the program. 

Currently, we provide a means for programmers to specify variables that should be 

excluded from monitoring. Eventually, we plan to expand the Lean with an efficient 

 35



monitoring framework [28] that collects values of selected variables continuously with 

approximately 3% overhead. 

11

s. Our results 

show that after users annotate approximately 6% of the program variables and types, 

Lea ectly  the best case, 47% in the 

average

ter Rombach, A Handbook of Software and Systems 

Engineering: Empirical Observations, Laws, and Theories. Addison Wesley; May 2003. 

[3] 

. Conclusions 
We present a novel approach for automating and validating program variables and 

types with semantic annotations. Our system, called Lean, uses a combination of run-time 

monitoring, program analysis, and machine-learning approaches to discover and validate 

annotations for unannotated types and variables based on few initial mappings provided 

by programmers. We evaluate our approach on open-source software project

n corr  annotates an additional 69% of variables in

, and 12% in the worst case. We also show that true-advice annotation is possible 

by training the Learner on few programs and applying it to annotate other programs. 
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