
Automating and Validating Program Annotations

Mark Grechanik, Kathryn S. McKinley, and Dewayne E. Perry
Department of Computer Sciences
The University of Texas at Austin

Abstract

Program annotations help to catch errors, improve program understanding, and

specify invariants. Adding annotations, however, is often a manual, laborious, tedious,

and error prone process especially when programs are large. We offer a novel approach

for automating a part of this process. Developers first specify an initial set of annotations

for a few variables and types. Our LEearning ANnnotations (Lean) system combines

these annotations with run-time monitoring, program analysis, and machine-learning

approaches to discover and validate these annotations on unannotated variables. We

evaluate our prototype implementation on open-source software projects and our results

suggest that a modest set of annotations capture many program variables, and Lean can

generalize from a small set of annotated variables to annotate many other variables. After

users annotate approximately 6% of the program variables and types, Lean correctly

annotates an additional 69% of variables in the best case, 47% in the average, and 12% in

the worst case.

1. Introduction
Program annotations assert facts about programs and add them to the source code

as comments or with language support. For example, an annotation may assert that values

of program variables stay within certain ranges. Annotations may be used to describe

program types, values, or identifiers. Program annotations help to catch errors, improve

program understanding, recover software architecture, and specify invariants. One of the

major uses of program annotations is to help programmers understand legacy systems. A

Bell Labs study shows that up to 80% of programmer’s time is spent discovering the

meaning of legacy code when trying to evolve it [1]. Thus, the extra work required to

annotate programs is likely to reduce development and maintenance time, as well as to

improve software quality. However, annotating programs is often a manual, tedious, and

 1

error prone process especially for large programs. Although some programming

languages (e.g., C#, Java) have support for annotations, many programmers do not

sufficiently annotate or do not annotate their code at all.

Often programmers lack full knowledge of the source code to be capable of good

annotations. Curtis’ law [2] states that application and domain knowledge is thinly

spread, and at most one or two team members may possess the full knowledge of a

software system. Poor annotation quality is a result of this law since it is combined with

the difficulty of mapping semantic concepts onto source code. A fundamental question

for creating more robust and extensible software is how to annotate program source code

with a high degree of automation and precision.

In this work, we focus on deriving semantic concepts for unannotated variables

from an initial set of annotated variables. Simply stated, semantic concept annotations are

nouns with well-accepted meanings in public or domain-specific knowledge. For

example, the noun Address is a semantic concept meaning a place where a person or

institution is located. Programmers may introduce variables named Address, Add, or

S[1], all for the Address concept1. The name of the variable S[1] does not match

Address, and relating this variable to the Address concept is challenging. While the

variable named Add partially matches Address, it is ambiguous if the program also

uses a Summation concept for adding numbers.

Our solution, called LEarning ANnotations (Lean), combines program analysis,

run-time monitoring, and machine learning to automatically apply a small set of initial

semantic annotations to additional unannotated types and variables. The input to Lean is

program source code and a concept diagram describing relations between semantic

concepts. The core idea of Lean is that after programmers provide a few initial

annotations of some variables and types with these semantic concepts, the system will

glean enough information from these annotations to annotate much the rest of the

program automatically. We define annotation rules that guide the assignment of semantic

concepts to program entities, and resolve conflicts when they arise.

igure 1
1 These names are taken from open-source program Vehicle Maintenance Tracker whose code fragments
are shown in F .

 2

Lean works as follows. After programmers specify initial annotations, Lean

instruments a program to perform run-time monitoring of program variables. Lean

executes this program and collects a profile of the values of instrumented variables. Lean

uses this profile to train its learners to identify variables with similar profiles. Lean’s

learners then classify the rest of program variables by matching them with the semantic

concept annotations. Once a match is determined for a variable, Lean annotates it with

the matching semantic concept.

Annotating 100% of variables automatically is not realistic. Many reasons exists:

machine learning approaches do not guarantee 100% success in solving problems;

concept diagrams representing program design specifications may not match the entire

program; and some concepts may be difficult to relate to program variables due to lack of

modularity. Consequently, Lean makes some mistakes when learning annotations. In

order to improve its precision, Lean uses relations between variables and their

corresponding concepts to validate learnt annotations. Program analysis determines

relations among annotated variables, and these relations are compared with

corresponding relations in concept diagrams. If a relation is presented between two

variables in the program code and there is no relation between concepts with which these

variables are annotated, then Lean flags it as a possible annotation error.

We evaluate our approach on open-source software projects and obtain results

that suggest it is effective. Our results show that after users annotate approximately 6% of

the program variables and types, Lean correctly annotates an additional 69% of variables

in the best case, 47% in the average, and 12% in the worst case.

2. A Motivating Example
The Vehicle Maintenance Tracker (VMT) is an open source Java application that records

the maintenance of vehicles (e.g., boats, planes, or cars) [3]. Fragments of the VMT code

from three different files are shown in Figure 1a-c, and a concept diagram is shown in

Figure 1d.

A fragment of code from the file vendors.java shown in Figure 1a contains

the declaration of the class vendors whose member variables of type String are Name,

Add, Pho, Email, and Web. These variables stand for the vendor’s name, address,

 3

public class vendors { public class VendorEdit extends InternalFrame {

 private String Name, Add, Pho, Email, Web; private Text NameText;

 ……………. private TextArea AddressText;

} private TextArea PhoneText;

 private Text EmailText;

a) File vendors.java private Text WebText; }

b) File VendorEdit.java
public void addMaintenanceEditor(String[] S) {
addMaintenanceServices(new String[]{

Address Phone Email

Vendor

Name Web

 ((MaintenanceEdit)Desktop.getSelectedFrame()).
 getName(), S[4], S[5]});
 }
};
String s = S[1];
if (s.equalsIgnoreCase(""))
 s = "New"; d) A concept diagram for the

 VMT application
String residence = S[3];

c) File VMT.java

phone number, email, and web page concepts respectively. A fragment of the code from

the file VendorEdit.java shown in Figure 1b contains the declaration of the class

VendorEdit whose member variables of types Text and TextArea represent the

same concepts. Even though the names of these variables in the class VendorEdit are

different from the names of the corresponding variables in the class vendors, their

names partially match. For example, the variable name Pho in the class vendors

matches the variable PhoneText in the class VendorEdit more than any other

variable of this class when counting the number of consecutive letters matched.

Figure 1. Code fragments from programs of the VMT project and its concept diagram.

This matching procedure does not work for the fragment of code shown in Figure

1c. To what semantic concept does the variable S, which is the parameter to the method

addMaintenanceEditor, correspond? It turns out that the variable S is an array of

Strings, and its elements S[1], S[2], S[3], S[4], and S[5] hold values of

vendor’s identifier, address, email, phone number, and web page concepts respectively.

No VMT documentation mentions this information, and programmers have to run the

program and observe the values of these variables in order to discover their meanings.

Lean can automate the process of annotating classes and variables shown in

Figure 1a-c with concepts from the diagram shown in Figure 1d. This diagram is a graph

 4

whose nodes designate semantic concepts and edges specify relations among these

concepts. We observe that spelling of some variable names are similar to the names of

corresponding concepts, i.e., Pho – Phone, Add – Address, Web – WebSite, Name

– Name, and Email – Email. Specifically, parts of the names of the variables are

contained within the names of the concepts and vice versa. Lean uses these similarities

match names of variables and concepts, and subsequently annotate variables with

semantic concepts.

Variables residence and Address are spelled differently, but they are

synonyms. Extended with a vocabulary linking synonymic words, Lean hypothesizes

about similarities between words that are spelled differently but have the same meaning.

These vocabularies can link domain-specific concepts used by different programmers

thereby establishing common meanings for different programs. For example, “chip” and

“dice” mean “microprocessor” in semiconductor manufacturing. If the name of some

variables contain these words, they are likely to correspond to the microprocessor

concept.

By observing patterns in values of program variables Lean can determine whether

they should be annotated with certain concepts. To observe patterns, Lean instruments

source code to collect run-time values of the program variables. After running the

instrumented program, Lean creates a table containing sample data for each variable. A

sample table for the VMT application is shown in Table 1. Each column in this table

contains variable name and values it held. Some values have distinct structures. The

variable Pho contains only numbers and dashes in the format xxx-xxx-xxxx, where x

stands for a digit and the dash is a separator. The variable Name contains only alphabetic

characters. Values held by the variable Email have a distinct structure with the @

symbol and dots used as separators. Lean learns the structures of values for annotated

variables using machine-learning algorithms, and it then assigns the appropriate semantic

concepts to variables whose values match the learnt structures.

Lean can also exploit statistical information with additional rules. For example, if

words like Circle, Drive, Road occur in values, then Lean learners can classify this

variable as the Address concept.

 5

Email Pho Name Web Add
tc@abc.com 512-342-8434 John Smith http://www.utexas.edu/~john Tamara Circle, Austin
mcn@jump.net 512-232-3432 Mark Grechanik http://www.utexas.edu/~mark McNeil Drive, Austin
sims@su.edu 512-232-6453 John Perry http://www.utexas.edu/~perry Sims Road, Dallas
lg@ibm.com 512-877-3254 Mark Holtz http://www.utexas.edu/~holtz Laguna Hwy, Dallas

Table 1. Sample values taken by the program variables.

We also observe that if concepts are related in a diagram, then types and variables

that are annotated with these concepts are related in the code too. The relation between

concepts in a diagram means that instances of data described by these concepts are linked

in some way. For example, the concept Name is related in the concept Vendor, in the

concept diagram shown in Figure 1d. This relation can be expressed as “Vendor has a

Name.” The variable Name which is annotated with the concept Name is contained by

the class vendors which is annotated with the concept Vendor. The containment

relation in the source code corresponds to the “has-a” relation in the concept diagram.

Lean explores program source code to analyze relations between program variables and

types, and then compares them with relations among corresponding concepts in diagrams

in order to infer and validate annotations. We explain this process in Section X.

3. The Problem Statement
This section defines the problem of automating and validating program annotation

and validation formally. We define the structure of concept diagrams and types of

relations between concepts in diagrams and variables and types in program code. Then,

we present rules for annotating program variables and types, and give a formal definition

of the problem.

3.1. Definitions
Feature modeling is a technique for modeling software with feature diagrams,

where a feature is an end-user-visible characteristic of a system describing a unit of

functionality relevant to some stakeholder [4][5]. For example, for the code shown in

Figure 1 features are Vendor, Name, Email, Phone, Website, and Address.

Concept diagrams used in feature modeling are called feature diagrams (FD). Feature

diagrams are graphs whose nodes designate features and edges (also called variation

points) specify how two features are attached to each other.

 6

mailto:tc@abc.com
mailto:mcn@jump.net
http://www.utexas.edu/~mark
mailto:sims@su.edu

Four basic types of diagrams are shown in Figure 2. Features f1 and f2 are

optional if one of them or both or none can be attached to the base feature P. Mandatory

are features f3 and f4 since both of them should be attached to the base feature P.

Features f5 and f6 are alternative if either f5 or f6 are attached to the base feature P.

Finally, an or-feature diagram specifies that either feature f7 or feature f8 and either

feature f9 or feature f10 are attached to the base feature P.

Programmers start the annotation process with Java source code and a feature diagram

which they use to specify initial mappings between features and a subset of program

types and variables. This mapping is formalized in the definition of the Annotation

Function.

Definition: Annotation Function. The annotation function αo: oT2F maps a program

object (variable) to a subset of features in a feature diagram F, and the annotation

function αt: τT2F maps a type (basic type, class, interface, or method) to a subset of

features.

The dependency between a type and an object is expressed by the function Type(o) =

τ, which maps the object o to its type τ∈Τ , where Τ is the set of types. Without the loss

of generality we use the annotation function

α: πT2F that maps a program entity π (i.e., variable or type) to a subset of features in

some feature diagram, where program entity { },π∈ τ ο .

Definition: Expression. The n-ary relation Expression Œ v1µv2…µvn specifies an

expression, where v1,v2,…,vn are variables or methods used in this expression.

Definition: Navigate. The navigation relation Navigate(p,q) Œ Expression(p,

q) is the expression p.q where q is a member (e.g., field or method) of object p.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

P PPP

Or-featureOptional Mandatory Alternative

Figure 2. Basic types of feature diagrams.

 7

Definition: Assign. The assignment relation Assign Œ p µ Expression

specifies the assignment expression p = Expression, where p is the variable on the

left-hand side and Expression relation stands for some expression on the right-hand

side.

Definition: Cast. The cast relation Cast(p, q) Œ Expression(p, q) is the cast

expression (q)p where p ∈ o and q ∈ T i.e., casting an object p to some type q.

Definition: Subtype. The relation SubType(p, q) specifies that a type p is a

subtype of some type q. In Java this function is implemented via the implement interface

clause. That is, a class p that implements some interface q is related to this interface via

the SubType relation.

Definition: Inherit. The Inherit(p, q) relation specifies that a type p inherits (or

extends in Java terminology) some type q.

Definition: Contains. The Contains(p, q) relation specifies that type or object p is

contained within the scope of some type q. We call interfaces, classes, and methods

containment types because they contain other types, fields and variables as part of their

definitions. That is, interfaces contain method declarations, classes contain definitions of

fields and methods, and methods contain uses of fields and declarations and uses of local

variables that are instances of some types.

Definition: δ-relation. The relation δ(πk, πn) stands for “programming entity πk is used in

the same expression with programming entity πn.“ For example, if two variables p and q

are related via the Expression, Navigate, Assign, or Cast relations, then these

variables are also related via the δ-relation, δ(p, q).

This relation is irreflexive, antisymmetric, and transitive. For example, from the

expression x = y + z we can build four δ relations: δ(x, y), δ(x, z), δ(y, z),

and δ(z, y). If variables are used in the same expression and their values are not

changed after this expression is evaluated, then their order is not relevant in the δ-

relation. However, if the value of a variable is changed as a result of the evaluation of the

expression, then this variable is the first component of the corresponding δ-relation.

Definition: γ-relation. The relation γ(fp, fq) stands for “feature fp is connected to

feature fq via a variation point.“

 8

This relation is irreflexive, antisymmetric, and transitive. For example, from the

mandatory feature diagram shown in Figure 2, we can build two γ relations: γ(P, f3)

and γ(P, f4). If features are not connected by a variation point, then their order is not

relevant in the γ-relation. However, if a feature fr is attached to a feature fs, then feature

fs is the first component of the corresponding γ relation.

The function α maps pairs from the relation δ to pairs from the relation γ. Suppose

that (a, b) ∈ δ and (c, d) ∈ γ. Then the element (a, b) is annotated with the

element (c, d) if and only if c ∈ α(a) and d ∈ α(b). As a shorthand we write (c, d)

∈ α((a, b)).

3.2. Rules of Program Annotations
When programmers map types (i.e., interfaces, classes, and methods) and their variables

(i.e., fields and objects) to features, these mappings may conflict with one another. For

example, if a class is mapped to one feature and it implements an interface that is mapped

to a different feature, then what default mapping would be valid for an instance of this

class? This section offers heuristic rules to resolve ambiguities when annotating

programs.

Direct mapping: in general, we write γ ∈ α(δ) to express the fact that for a δ-relation

between objects in the source code that are annotated with feature labels there is a

corresponding γ-relation between the corresponding features in some feature diagram.

Entity mapping: types and variables can be mapped to a set of features in the feature

diagram. This rule is defined by the function α: π T 2F, where F is a set of features. When

a type is mapped to some feature, this type bears the label that is the name of the feature.

Instances of this type are automatically annotated with its feature label. We write this rule

as Type(o) = τ /\ f ∈ α(τ) T f ∈ α(o). If the container type is mapped to some feature,

then all of its members are automatically mapped to the same feature, i.e., Contain(p, q) /\

f ∈ α(q) T f ∈ α(p).

Expression annotation: if variables in an expression defined by the relation

Expression(v1,…,vn)are annotated with some set of features, that is, without the

loss of generality f1 ∈ α(v1), …, fn ∈ α(vn), then Lean annotates it with a set

of features as f1 U f2 U…U fn.

 9

Assignment annotation: Given the relation Assign(p, expr), the expression expr

is annotated with a set of features f, then the variable p is annotated with the same set of

features. The converse holds true, i.e., Assign(p, expr) /\ (f ∈ α(p) ‹ f ∈

α(expr)). For example, the variable s in the fragment of code shown in Figure 1c is

assigned the value of the variable S[2]. This variable is mapped to the concepts

Address. According to the assignment rule the variable s maps to the concept

Address.

Cast annotation: casting an object p to some type q automatically remaps this object p

to the feature to which this type is mapped. If the type q is not mapped to any feature,

then the original mapping of the object p is not changed. That is, Cast(p, q) /\ α(q) = f T

α(p) = f and Cast(p, q) /\ α(p) = f /\ α(q) = ∅ T α(p) = f.

Let us consider a frequent case of casting an object in the fragment of code shown

below.

int index;

SomeClass o;

......................

vectorObj.put(o);

......................

ParentClass pc = (ParentClass)

The ParentClass class is the parent of the class SomeClass which is mapped

to the set of features F. The class ParentClass is mapped to a different set of features

G. According to the basic rule, the object o is annotated with the feature label F. The

object o is stored in a vector represented by the object vectorObj. When retrieved

from the vector the object o is cast to the class ParentClass, and its annotation

changes to the feature label G.

Sometimes a default mapping should be overwritten. For example, a class may be

mapped to one feature, but its instances should be mapped to some other features. The

following is the rule to handle this condition.

 10

Containment: if an object p is a member of type q that is annotated with feature label f,

then the object p is also annotated with the feature label f: Contain(p, q) /\ f ∈ α(q) T f ∈

α(p).

Instance overriding: annotation of an object overrides the default feature labels assigned

to this object by the basic rule: Type(o) = τ /\ f ∈ α(τ) /\ g ∈ α(o) T f ∈ α(τ) /\ g ∈ α(o).

Member overriding: the mappings for members of the containment types can be

overwritten: Contain(p, q) /\ f ∈ α(p) /\ g ∈ α(q) T f ∈ α(p) /\ g ∈ α(q).

Precedence: if the containment type is mapped to one feature and the type of a member

variable of this containment is mapped to a different feature, then this variable is mapped

to the same feature to which its type is mapped: Contain(p, o) /\ f ∈ α(p) /\ g ∈ α(q) /\

Type(o) = q T g ∈ α(o).

Interface: when programmers map interfaces to features, these mappings are preserved

in classes that implement mapped interfaces: Subtype(p, q) /\ f ∈ α(q) /\ Contains(q, z) T

f ∈ α(z) /\ Contains(p, z). That is, if fields or methods are declared in an interface that is

mapped to some features and is implemented by some class that is mapped to different

features, then the interface fields and methods inherit the interface feature mapping.

Inheritance: if a class extends some other class that is mapped to some feature, then the

extended class is automatically mapped to the same feature: Inherit(p, q) /\ f ∈ α(q) /\

α(p) = ∅T f ∈ α(p). This rule is dictated by the Java idiom of inheritance stating that a

class may implement may interfaces, but it can extend only one class. The extended class

can be explicitly remapped to a different feature without affecting the mapping defined

for the parent class.

3.3 The Formal Problem Statement
When programmers specify the initial mapping between program entities and

features, they define a partial function α0 over the domain of program entities π0 Œ π and

a range of features f0 Œ f. The goal of Lean is to compute the partial function α1 over the

subset of the domain of program entities π1 Œ π and the range of features f1 Œ f abiding by

the rules specified in Section 3.2. Rules of Program Annotations, such that π0 Œ π1 and f0

Œ f1 and " (a, b) ∈ d, a,b ∈ π, c,d ∈ f, s.t. c ∈ α(a) /\ d ∈ α(b) | γ ∈ (c, d). That is, if

program entities a and b are annotated with feature labels c and d respectively, and these

 11

entities are related to each other via some d-relation, then the features labeled c and d in

some FD should be related via some γ-relation.

4. Lean Architecture
The architecture for Lean and a brief process description are shown in Figure 3.

Solid arrows show the process of annotating program entities with feature labels, and

dashed arrows specify the process when training the Learner. The inputs to the system are

program source code and a Feature Diagram (FD). The Mapper is a Graphic User

Interface (GUI) tool whose main components are Java and XML parsers, program and

FD analysis routines, a rule-based engine, and an instrumenter. A Java parser produces a

tree representing program entities. Since FDs are represented as XML data, the Mapper

uses an XML parser to produce a tree representing features and variation points in the

FD. The Mapper GUI presents both the FD and the source code using tree widgets.

Programmers use the Mapper GUI to specify initial mappings between features from the

FD and program entities from the source code.

Once the Mapper presents the FD and program parse trees, the user specifies

initial mappings between features and program entities by establishing links between

program entities from the program tree with features. From these mappings the Mapper

generates the initial annotations. The user can also specify the entities that should not be

annotated and therefore excluded from the annotation process. For example, using Lean

to annotate an integer variable counting the number of iterations in a loop consumes

computing resources while there may not be an appropriate feature for annotating this

variable, or annotating it does not warrant the amount of work required. Variables whose

values contain binary (nonprintable) characters should also be excluded from monitoring

since machine learning algorithms are not yet effective for classifying these variables.

These initial annotations are expanded using the rules from Section 3.2. Rules of

Program Annotations in two steps. First, relations defined in Section 3.1. Definitions are

built using the Mapper’s program analysis routines. Then the Mapper’s rule engine

analyzes these relations and initial annotation links, and expands these initial annotations

to other program entities. For example, if a class is mapped to some feature, then,

according to the containment rule, its members are

 12

mapped to the same feature by default, and according to the basic rule, all instances of

this class are also annotated with this feature label.

The Mapper outputs user annotations in an XML file that consists of a table

whose entries are program entities and their annotations, and δ- and γ-relations. The latter

is obtained from the source code and the FD using the Mapper’s program and FD

analysis routines. This XML file is passed to the Validator. Recall the direct mapping rule

stating that for a δ-relation between annotated objects in the source code there is a γ-

relation between the corresponding features. The Validator validates the initial mappings

by matching these relations when both components of δ-relations are annotated. When

the initial annotations are validated, the Validator supplies them to the Learner for

training. Lean uses variable names and the corresponding feature labels to train the

Learner to classify program entities by their naming patterns.

The Mapper instruments the source code to record run-time values of unannotated

variables, and calls a Java compiler to produce an executable program. Then the program

runs storing names and the values of program variables in the Program Data Table

(PDT). This training uses the content of the annotated variables rather than their names.

Once the Learner is trained, it classifies unannotated program variables. These variables

are supplied to the Learner as the columns of the PDT. In addition, Domain-Specific

Dictionaries (DSDs) increase the precision of the classification. The output of the

Learner is a set of learnt annotations (LAs). Some of these annotations may be incorrect

because the Learner does not guarantee 100% precision. Finding incorrectly learnt

mappings in a large program is a tedious and a laborious exercise. The Validator

Source
Code

Feature
Diagram

(FD)

Program Data
Table (PDT)

Learner

Validator

Learnt
Annotations

(LA)

Mapper DSD

Annotating Mode Training Mode

User
Annotations

1

1

Instrumented
Program Code

2 3

4

5 6

788

8

9

1) Programmers annotate the Source Code with
concepts from the FD using the Mapper

2) The Mapper produces initial mappings
3) The Validator validates initial mappings
4) The Validator supplies the initial annotations to

the Learner for training
5) The Mapper instruments and compiles the source

code
6) The program runs and its instrumentation outputs

the Program Data Table (PDT)
7) Annotated variables and their values from the

PDT are supplied to the Learner for training
8) Learner classifies program variables from the

PDT and produces learnt annotations (LA) with
the help of Domain-Specific Dictionary (DSD)

9) The Validator validates LAs and uses negative
examples to retrain the LearnerFigure 3. Lean Architecture and its process.

 13

automates this process by taking in the learnt program annotations and validating these

annotations by exploring relations between variables in the source code and features in

the FD. The output of the Validator is a list of rejected annotations which the Learner

may use to improve its predictive capabilities.

5. Learning Annotations
This section shows how Lean learns and validates annotations using run-time

monitoring, program analysis, and machine learning. We describe the key idea, present

the organization of the learner, and give the learning algorithm. This section ends with a

discussion on how to extend the learner to adapt to other domains.

5.1. Our Approach
In our approach, automating the program annotation process is treated as a

classification problem: given n features and a program variable, which feature matches

this variable the most? Statistical measures of matching between variables and features

are probabilistic. The Learner classifies program entities with the probabilities that

certain feature labels can be assigned to them. By taking a set of annotated program

variables and their values, a classifier is built and trained to classify an unannotated

variable based on the information learned from the annotated variables.

Initially, all unannotated variables have equal and arbitrary chosen probabilities

(in the interval from 0 to 1) of matching given feature labels. For example, given three

features Email, Web, and Phone the variable S[3] is assigned three initial probabilities

pEmail(S[3]) = pWeb(S[3]) = pPhone(S[3]) = 1/3. Assigning equal

probabilities reflects our lack of knowledge of what feature should match a specific

variable. When classifying this variable these probabilities are recomputed. If the name of

the variable matches the name of the feature, then the probability of annotating this

variable with the feature increases. If the values of S[3] do not contain any digits, then

the probability that this variable is annotated with the Phone concept may decrease to

zero. After classifying the program variable S[3], a learner may assign the probability

pEmail(S[3]) = 0.7 that the variable S[3] represents the Email concept, and

probabilities pWeb(S[3]) = 0.3 and pPhone(S[3]) = 0.1. Since the

probability that the variable S[3] represents the Email concept is the highest, the

 14

learner will issue a prediction that this variable should be annotated with the Email

concept.

5.2. The Organization of the Learner
Lean has its roots in the Learning Source Descriptions (LSD) system developed at

the University of Washington [6] for reconciling schemas of disparate XML data sources.

The purpose of LSD is to learn one-to-one correspondences between elements in XML

schemas. Lean employs the LSD multistrategy learning approach [7, 8], which organizes

multiple learners in layers. The learners located at the bottom layer are called base

learners, and their predictions are combined by metalearners located at the upper layers.

We use three types of learners: name, content, and Naïve Bayes. Even though many

different types of learners can be used with the multistrategy learning approach, we limit

our study to these three types of learners since they proved to give good results when

used in LSD.

We illustrate the multistrategy learning approach with the following example.

One base learner BL1 may issue a prediction that the variable Pho from the example

shown in Figure 1 matches feature Address with the probability 0.3, feature Email

with the probability 0.1, and the feature Phone with the probability 0.7. We write

these matches as variant 1BL

Pho
Address:0.3, Email:0.1, Phone:0.7 , where the

field labels are feature labels and field values are the probabilities of matching a given

variable that is specified as a subscript to the variant. The superscript of the invariant

shows the name of the learner used to classify a given variable. The other base learner

BL2 may issue a different prediction 2BL

Pho
Address:0.2, Email:0.3, Phone:0.9 . A

metalearner combines these predictions by multiplying the probabilities by weights

assigned to each learner and taking the average for the products for the corresponding

labels of the predictions for the same program variable. Thus, the resulting prediction

issued by a metalearner in our example is
ML

Pho
Address:0.25, Email:0.2, Phone:0.8 with weight equal to 1 for both

learners. Based on this prediction, the feature label Phone matches the program variable

 15

Pho with the highest probability 0.8, and based on this result the metalearner assigns

the annotation Email to this variable.

There are three types of base learners used in the Lean learner: a name matcher, a

content matcher, and a Bayes learner. Here we give a brief description; these learners are

described in detail in [6, 10]. Name matchers match the names of program entities with

feature labels. The name matching is based on Whirl, a text classification algorithm based

on the nearest-neighbor class [9]. This algorithm computes the similarity distance

between the name of a program entity and a feature label. This distance should be within

some threshold for the name. This threshold value is determined when the learner is

trained on selected data.

Whirl-based name matchers work well for meaningful names especially if large

parts of them coincide or they are synonyms. They do not perform well when names are

meaningless or consist of combinations of numbers, digits, and some special characters

(e.g., underscore or caret). For example, Whirl is unable to correctly classify the variable

S[3] shown in Figure 1c.

Content matchers work on the same principles and use the same algorithm (Whirl)

as name matchers. The difference is that content matchers operate on the values of

variables rather than their names. Content matchers work especially well on string

variables that contain long textual elements, and they perform poorly on binary

(nonprintable) and numeric types of variables. For example, values of S[3] may contain

sentence “Email to: John@ax.com”, and the presence of the word Email indicates that

this variable should be classified as the Email concept.

Finally, Bayes learners, particularly the Naïve Bayes classifier, are among the

most practical and competitive approaches to classification problems [10]. Naïve Bayes

classifiers are studied extensively [10, 11], so we only state what they do in the context of

the problem that we are solving here. For each variable varj we parse its values into

words and create a bag of words that the values of this variable take. Given feature labels

{f1, …, fm} the Naïve Bayes classifier assigns varj to some feature label fk, 1 ≤ k ≤

m, such that the probability that p(fk | varj) that the variable varj belongs to the

feature fk, is maximized.

 16

5.3. Overview of Learning Algorithm
Lean learning algorithm consists of two phases: the training phase and the

annotating phase. The training phase improves the ability of the learners to predict correct

annotations for program variables. Trained learners classify program variables with

feature labels, and based on these classifications, Lean annotates programs. The accuracy

of the classification process depends upon successful training of the Learner.

To disambiguate variables that are given the same names in different scopes (i.e.,

program text regions in which variables bindings are active), each variable is identified

with its access path. For example, if a variable named var is declared in the method M of

the class C which is defined in the package P, then the access path to this variable is

P.C.M.var.

The data for training learners come from an instrumented program. When it runs,

the instrumented code outputs variable names and their values into the program data table

(PDT). Recall that this table contains columns for access paths, and the cells for these

columns are filled with values that the access path destination variables take during

program runs. During the training phase, weights of the base learners are adjusted and

probabilities are computed for each learner using the PDT columns containing data for

annotated variables. Then, during the classification step the previously computed weights

and probabilities are used to predict the feature label for unannotated variables.

Each base leaner is assigned a weight (a real number between 0 and 1) that

characterizes its accuracy in predicting annotations of program variables. Initially, all

weights are the same. For each classified program entity the weights of the learner are

modified to minimize the squared error between the predefined value (i.e., 1 if the

prediction is correct, or 0 otherwise) and the computed probability multipled by the

weight assigned to the learner. This approach is called regression [10].

Most machine learning approaches are as good as the selected training data.

Selecting test data is often characterized by how well the data represents the true value

distribution. Overfitting training data is one of the most common mistakes. Examples of

overfitting is overestimating the importance of some rare words or selecting a set of

training data that covers test data. If the latter occurs, then the classifier cannot be

 17

correctly evaluated since it is important to test its predictive capabilities on data that was

not used for training.

Lean uses the cross-validating [10] training data it divides into few pairs of

training and testing sets. Then, each learner is trained for each pair of training and testing

data sets, and the results are averaged to produce a more accurate estimate.

5.4. Learning Conditional Annotations
Consider a fragment of code shown in Figure 4. The while loop iterates over the

integer variable counter whose value modulo two serves as an input to the method

GetAttribute. This method interates through some dataset and returns String type

values which are assigned to the variable var. Suppose that the value returned by the

method GetAttribute belongs to the concept Address when the value of the

variable counter is even and to the concept Email when the value is odd. It means

that the variable var should be annotated with these two concepts. However, these

annotations are conditional upon the value of the counter.

Temporary variables that are incremented by a predictable amount each time

through the loop, called induction variables [11]. Examples are variables whose

definitions within the loop are of the form counter = counter + c, where c is a

loop invariant. Lean combines induction variable values with the values of other

variables to train the Learner, and subsequently classify the unannotated variables that

depend on these induction variables. For the code fragment shown in Figure 4 values for

the variable var are used in conjunction with the values of the expression counter%2

when training the Learner and later classifying the variable unannotated.

int counter = 0;
String var, unannotated;

while(counter++ < SomeNumber) {
 var = GetAttribute(counter % 2);
 unannotated = GetAttribute((counter+1) % 2);
}

Figure 4. Example of code requiring conditional annotations.

 18

5.5. Extending the Learner
Domains use special terminologies whose dictionary words mean specific things.

Programmers use domain dictionaries to name variables and types in programs written

for these domains. For example, when word “wafer” is encountered in a value of some

variable of a program written for a semiconductor domain, this variable may be annotated

with the wafer concept. Many domains have dictionaries listing special words, their

synonyms, and explaining their meanings. In addition, these domain-specific dictionaries

may specify constraints that can be used to improve the precision of program annotations.

For example, a list of diameters of wafers permitted by certain standards can be included

in the definition of the wafer in a semiconductor domain dictionary.

Lean incorporates the knowledge supplied by these dictionaries. Each concept in

these dictionaries has a number of words that are characteristic of this concept. If a word

from the dictionary is encountered in a value of a variable, then this variable may be

classified and subsequently annotated by this concept. We use a simple heuristic to

change the probabilities that variables should be annotated with certain feature labels. If

no dictionary word is encountered among the values of a variable, then its probabilities

remain unchanged. Otherwise, if a word belongs to some concept, then the probability

that the given variable belongs to this concept is incremented by some small real number

Dp, i.e., pconcept(var) = pconcept(var) + Dp. We choose this number

experimentally as 1/(# of words in a DSD). If the resulting probability is

greater than 1.0 after adding Dp, then the probability remains 1.0.

6. Inferring and Validating Annotations
This section describes how we infer and validate program annotations using

program analysis. First, we state the rationale for inferring and validating annotations.

Then, we illustrate the core idea for inferring and validating annotation on an illustrative

example. Next, we give the algorithm for inferring annotations for δ-relations containing

annotated and unannotated components. Finally, we show how to validate program

annotations.

 19

6.1. The Rationale
Lean cannot annotate all variables due to a number of factors. Machine learning

approaches are only as good as the training data, and they do not guarantee 100%

classification accuracy. Some variables cannot be classified because they take hard-to-

analyze values. Examples are variables whose values are binary (nonprintable) strings, or

integer variables holding values for salaries and zip codes. The former makes it difficult

to train classifiers since patterns in binary data are inherently complex. The latter

example demonstrates that when values of two variables are approximately the same, it is

difficult to train the classifier to recognize these variables by their values.

Algorithms for inferring and validating annotations predict annotations for

partially annotated δ-relations (i.e., when one component of a δ-relation is annotated, and

the other is not) and detect when incorrect annotations are assigned in certain situations.

These algorithms are not sound. They can miss incorrect annotations and they cannot

pinpoint the source of the fault that led to incorrect annotations. However, these

algorithms perform well in practice for the majority of cases as our experiments show.

6.2. An Illustrative Example
Consider an expression c = d + e, where c, d, and e are variables, and a

mandatory FD whose features p and q are attached to the base feature f. Since variables

c, d, and e are related via the δ-relation, we write δ(c, d), δ(c, e), and δ(d, e).

We write γ(f, p) and γ(f, q) for features f, p, and q since they are related. The

variable c is mapped to the feature f during the initial mapping, i.e. f ∈ α(c).

Consider some other expression a = b + d, where a, b, and d are variables,

and a mandatory FD whose features v and p are attached to some other feature u. This

expression is defined in the same scope as the previous expression, and the variable d is

the same in both expressions. Feature p is shared by both FDs. Since variables a, b, and

d are related via the δ-relation, we write δ(a, b), δ(a, d), δ(b, d). We write

γ(u, p) and γ(u, v) for features u, p, and v since they are related too. The variable

a is mapped to the feature u during the initial mapping, i.e. u ∈ α(a).

Our goal is to validate the annotation assigned by the Lean classifiers to the

variables in the given expressions. The solution to this validation problem is to infer sets

 20

of possible annotations, and then determine whether assigned annotations exist in the

inferred sets. If they exist, then Lean assigned annotations correctly.

Let us illustrate the solution to the validation problem. Let us apply the annotation

function to the δ-relations δ(c, d) and δ(c, e): α(δ(c, d)) = γ(α(c), α(d)) and

α(δ(c, e)) = γ(α(c), α(e)). By substituting the initial mapping α(c) = f, we obtain γ(f,

α(d)) and γ(f, α(e)). Recall from the main rule stated in Section 3.2. Rules of Program

Annotations that for each δ-relation between objects in the source code which are

annotated with feature labels there is a corresponding γ-relation between the

corresponding features in some feature diagram. We make the annotation function α total

by adding concept ? to its range. All unannotated program entities are mapped by α to the

concept ?.

Since no annotation is defined for variables d and e, we replace α(d) and α(e)

with ? in relations γ(f, α(d)) and γ(f, α(e)) obtaining the pattern relation γ(f,?). In

this pattern relation the symbol ? is used to match the second unknown component. To

find features that are the values of the unknown component, we should find γ relations

whose first component is the feature label f. Then, the second components of the δ-

relations can be mapped to the second components of these γ relations. Specifically, α(d)

= α(e) = {{p},{q}}. Repeating the same process for the other expression we obtain

α(b) = α(d) = {{p},{v}}. Thus, possible annotations for variables b, d, and e

have been inferred. We can make the set of possible annotations more precise for the

variable d. Since both expressions are located in the same scope, the variable d should be

mapped to the same sets of features. By taking the intersection of the sets to which the

variable d is mapped, we obtain α(d) = {p}. If the intersection yields an empty set, then

the annotations of the variable d are flagged as possible errors.

Suppose that after running Lean it annotates the variable e with the feature label

v. In order to validate whether this annotation is correct, we evaluate if the feature v

exists in the set of possible annotations for the variable e.

6.3. The Annotation Inference Algorithm
The algorithm InferAnnotations for inferring annotations is shown in

Figure 5. Its input is the set of δ-relations, γ-relations, and mappings α between program

 21

entities and sets of features. The algorithm iterates through all δ-relations to find partially

annotated ones (i.e., when one component of a δ-relation is annotated, and the other is

not). Then, for each found δ-relation the annotation function is applied to the annotated

component to obtain the set of features with which this component is annotated. Then, for

each feature in this set all γ-relations are found whose component matches this feature.

The other components of the obtained γ-relations make it into the set of possible

annotations with which the unannotated component of the δ-relation may be annotated.

The main for-loop of the algorithm explores all δ-relations. It checks each

variable in each δ-relation to see if it is annotated. If the annotating set of features is

empty for one

InferAnnotations(δ, γ, α)
for each (a, b) ∈ δ do
 α(a) # fk
 α(b) # fm
 if fk = « then
 for each (c, d) ∈ γ do
 if d ∈ fm then
 fk # fk U {c}
 else if c ∈ fm
 fk # fk U {d}
 endif
 endfor
 else if fm = « then
 for each (c, d) ∈ γ do
 if d ∈ fk then
 fm # fm U {c}
 else if c ∈ fk
 fm # fm U {d}
 endif
 endfor
 endif
 if $(u,v) ∈ δ s.t. u = a \/ v = a then
 α(u) # fs
 α(u) = fs … fk
 α(a) = fs … fk
 endif
endfor

Figure 5. Algorithm for inferring additional annotations.

variable and nonempty for the other, then all γ-relations are searched whose component is

 22

a subset in the annotating set of features. If such γ-relation is found, then its other

component is added to the annotation set of the unannotated variable in the δ-relation.

The last if condition in the algorithm deals with the same variable, namely a,

used in

6.4. The Validating Algorithm
lgorithm shown in Figure 6 validates whether

annotat

iterates through all δ-relation, and annotations fk and fm for

compon

s not specify what the correct annotation of a program variable

is or w

potentially incorrect.

 two or more expressions in the same scope. This variable may be annotated

differently. In this case an intersection is taken of the feature sets with which the uses of

this variable are annotated. The result of this operation is an empty feature set, a reduced

feature set, or the full set if the annotations coincide.

The ValidateAnnotation a

ions are correct. The key criteria for validating annotations is to check that for

each δ-relation between annotated entities in the source code there is a corresponding γ-

relation between the corresponding features in some feature diagram. The input to this

algorithm is the set of δ-relations, γ-relations, and mappings α between program entities

and sets of features. Each δ-relation has a color associated with it which is initially set to

red. The red color means that a given δ-relation is not correctly annotated, and the green

color means that all components of a given δ-relation are annotated correctly, or not all

components are annotated.

The outer for-loop

ents of each relation are obtained. If one or both components of a given δ-relation

are not annotated, then this relation is colored green. Otherwise, the inner for-loop

searches through γ-relations to find one whose components are members of fk or fm

annotation sets. If such a γ-relation exists, then the corresponding δ-relation is colored

green and the inner loop is exited. Otherwise, if the inner loop exits without finding a γ-

relation whose components are members of fk or fm annotation sets, then the δ-relation is

red and may not be valid.

This algorithm doe

hat caused the error in program annotation. In fact, annotation errors many be

caused by incorrect feature diagram, errors in program source code, or both. The last

for-loop iterates through all δ-relations, checks the colors, and prints red relations as

 23

6.5. The Computational Complexity

Suppose a program has n variables and a feature diagram has m features. Then it

is possible to build n(n-1)/2 δ-relations and m(m-1)/2 γ-relations. Thus, the space

c y is deterimed by two for-loops in the

(1)

prototype implementation of Lean is based on its architecture shown in

Figure 3. Its main elements are the Mapper, the Learner, and the Validator. The Mapper

is a code in a tree format along with

feature

omplexity is O(n2 + m2). The time complexit

ValidateAnnotation and InferAnnotations algorithms. The external for-

loops iterate over all δ-relations and the internal for-loops iterate over all γ-relations.

Considering all other operations in the algorithms taking O , the time complexity is

O(n2m2).

7. The Prototype Implementation
The

 GUI tool written in C++ that presents Java source

 diagrams which are represented in XML format. The Mapper includes an EDG

Java parser [13] and an MS XML parser. An example of FD in XML format is shown in

Figure 6. Algorithm for validating annotations.

ValidateAnnotations
for each (a, b) ∈ δ do

(δ, γ, α)

 color((a, b)) # red

hen
 each (c, d) ∈ γ do

if (c ∈ f /\ d ∈ fk) \/ (c ∈ fk /\ d ∈ fm) then
or((a, b)) # green

 ∫ green then
print error

 α(a) # fk
 α(b) # fm
 if fk ∫ « /\ fm ∫ « t
 for
 m
 col
 break;
 endif
 endfor
 else
 color((a, b)) # green
 endif
endfor
for each (a, b) ∈ δ do
 if color((a,b))

 endif
endfor

 24

Figure 7. The root of the XML data is the tag FD whose attribute Name specifies the

name of the application to which this FD is applicable. The child element of the root is

Feature with the attribute Name whose value if the name of the feature. Children tags

VarPoint describe variation points to which other features are attached. Each element

VarPoint has the attribute Type whose value specifies the type of a feature

attachment, i.e., mandatory, optional, alternative, or or-feature. If the type of the variation

point is alternative or or-feature, then this VarPoint element contains children

VarPoint elements whose types are mandatory or optional.

Programmers map features to program entities using the Mapper GUI which

o ure 8. The root of the XML

data

utputs an XML file whose example content is shown in Fig

is the element Annotations whose attributes FD and

<Annotations FD=”VMT” Program=”vendors.java”>
 <Annotation Entity=”Type”>
 <AccessPath Type=”Class”>vendors</AccessPath>
 <Feature>Vendor</Feature>
 </Annotation>
 <Annotation Entity=”Field”>
 <AccessPath Type=”String”>vendors.Pho</AccessPath>
 <Feature>Phone</Feature>
 </Annotation>
 <Exclusions>
 <AccessPath Type=”String”>vendors.Email</AccessPath>
 </Exclusions>
</Annotations>

Figure 8. XML file containing annotations of program entities.

<FD Name=”VMT”>
 <Feature Name=”Vendor”>
 <VarPoint Type=”Alternative”>

VarPoint Type=”Mandatory”>
e=”Phone”/>

 <
 <Feature Nam
 </VarPoint>
 <VarPoint Type=”Optional”>
 <Feature Name=”Email”/>
 </VarPoint>
 </VarPoint>
 </Feature>
</FD>
Figure 7. Representation of a feature diagram in the XML format.

 25

Program specify the feature diagram used and the name of the programs whose

v and

fe sions element contains a list of

v ocess. These variables are

d s.

and data flow analyses. Obtaining γ-relations from FDs is much simpler than δ-relations

s . The output

of these analyses is an XML file containing γ and δ relations as shown in Figure 9. The

r and Gammas. These elements

g is added

after th

Annotations and

Valid

he collection is done by instrumenting

program source code and running the program with statements that log the run-time

ariables are annotated, respectively. Each variable is specified by its access path,

atures are specified by their names. The Exclu

ariables that should be excluded from the annotation pr

escribed by children elements AccessPath of the element Exclusion

The Mapper obtains δ and γ relations from the source code by applying control

ince checking only the parent and children of VarPoint elements is required

oot element Relations has children elements Deltas

contain the collections of δ and γ relations respectively. The Delta elements are used to

specify δ-relations and the Gamma elements specify γ-relations.

The Mapper instruments the source code by adding calls that log runtime values

of program variables. These are the variables that are not annotated initially, and whose

annotations should be learned from the content of their values. Runtime loggin

e definitions of the variables and after statements and expressions to where the

monitored variables are assigned. Lean’s data flow analysis framework locates variable

definitions and traces the uses of these variables until either the end of the scope for the

definitions or the definition of new variables overwrite previous definitions. Only distinct

values of the monitored variables are collected.

Once the initial mapping is complete, the Mapper sends the XML annotation and relation

file rules to the Validator. Algorithms Infer

ateAnnotations constitute the core of the Validator. It uses the algorithm

InferAnnotations to add possible annotations to program entities, and then it applies the

ValidateAnnotations algorithm to validate annotations assigned by programmers

or by the Learner.

Both the Validator and the runtime logger code output data in the Attribute Relation File

Format (ARFF) file format. ARFF serves as an input to the Learner which is based on a

machine-learning Java-based open source system WEKA [14][15]. The Learner is trained

on the collection of data from program runs. T

 26

<Relations FD=”VMT” Program=”vendors.java”>
 <Deltas>

 <AccessPath Type=”String”>vendors.Pho</AccessPath>
 <AccessPath Type=”String”>vendors.Email</AccessPath>
 </Delta>
 </Deltas>
 <Gammas>
 <G

 <Delta ID=”1”>

amma ID=”2”>

values of program variables in the ARFF file called Program Data Table in the Lean

in Figure 1a which contains the definition of the

c Add.

A s run, the run-time logging code outputs training data in

th mple is shown in Figure 10. This ARFF file contains the

v time. The structure of ARFF files is described

in

@attribute. Two attributes are shown

in Figure 10: the attribute Add followed by its type string, and the nominal attribute

 <Feature>Vendor</Feature>
 <Feature>Phone</Feature>
 </Gamma>
 </Gammas>
</Relations>
Figure 9. XML file containing δ and γ relations.

architecture.

Recall the code fragment shown

lass vendors. A user provides the initial annotation Address for the variable

fter the instrumented program i

e ARFF format whose sa

alues taken by the variable Add at the run

 detail in [14][15].

%ARFF file for training the Lean Learner

d string

cle, Austin”, Address
“McN
“xxx

@relation AddressTraining
@attribute Ad
@attribute concept? {Address, Unknown}

@data
“Tamara Cir

The ARFF file can be viewed as a table with attributes. Its header contains the keyword

@relation followed by the name of the training set AddressTraining, and a

series of attributes prepended with the keyword

eil Drive, Austin”, Address
123 yy”, Unknown

“Sims Road, Dallas”, Address
Figure 10. A sample ARFF fileFigure 4.

 27

concept followed with the ? sign meaning that it is used to classify the attribute Add.

T s and Unknown for the attribute concept give us two

c data instances of these attributes follow the

section definition @data. This data instances in this section are produced as a result of

r sifying each data instance.

tated variables is accomplished by obtaining runtime

values of these variables and supplying them to the Learner which emits predictions for

fe ables should be annotated. These predictions are

MS) is an

application for animal sanctuaries and shelters that includes document generation, full

rep rch engine, and web interface. Finally,

Integra

wo nominal values dresAd

hoices of classifying program variables. The

un-time monitoring and manual clas

The classification of unanno

ature labels with which these vari

refined during the validation stage by manual inspection. The refined predictions are

supplied to the Learner for training to improve its accuracy. This continuing process of

annotating, validating annotations, and learning from the validated annotations makes

Lean effective for long-term evolution and maintenance of software systems.

8. Experimental Evaluation
In this section we describe the methodology and provide the results of

experimental evaluation of Lean on open-source Java programs.

8.1. Subject Programs
We experiment with a total of seven Java programs that belong to different

domains. MegaMek is a networked Java clone of BattleTech, a turn-based sci-fi

boardgame for two or more players. PMD is a Java source code analyzer which finds

unused variables, empty catch blocks, etc. FreeCol is an open version of a Civilization

game in which the player conquers new worlds. Jetty is an Open Source HTTP Server

and Servlet container. The Vehicle Maintenance Tracker (VMT) tracks the maintenance

of vehicles (e.g., boats, cars, and planes). The Animal Shelter Manager (A

orting, charts, internet publishing, pet sea

ted Hospital Information System (IHIS) is a program for maintaining health

information records.

 28

8.2. Methodology
To evaluate Lean, we carry out two experiments to explore how effectivly Lean

annotates programs and how training affects the accuracy of predicting annotations. We

also investigate the cases the validation algorithm rejected annotations.

In the first experiment, we create a domain-specific dictionary (DSD) and a

feature diagram (FD) for each subject program. Then we annotate a subset of variables

for each program and run Lean to annotate the rest of the program. The goal of this

experiment is to determine how effective Lean is in annotating program variables for

programs of different sizes and from different domains. Each annotation experiment is

run with and without a DSD in order to study the effect of the presence of DSDs on the

quality of Lean annotations.

, where

nd experiment is to evaluate the effect of training on the

Lean’s

We measure the number of variables annotated by Lean as well as the number of

annotations rejected by the validating algorithm. The number of variables that Lean can

possibly annotate, , is vars vars = total – (excluded + initial)

total is the total number of variables in a program, excluded is the number of

variables excluded from the annotation process by the user, and initial is the number

of variables annotated by the user. Lean’s accuracy ratio is computed as accuracy =

(vars – rejected)/vars, where vars is the number of variables annotated by

Lean and rejected is the number of annotations rejected by the validating algorithm.

The goal of the seco

classification accuracy. Specifically, it is important to see the amount of training

involved to increase the accuracy of annotating programs. Training the Lean Learner is

accomplished by running instrumented programs with distinct sets of input data. If the

Learner should be trained continuously, then certain applications may be exempt from

our approach. On the contrary, if a program should run a reasonable number of times in

order to collect distinct data sets for training and classification, then our approach is

practical and can be used in the industrial settings.

8.3. Results
Table 2 contains the name of a program, the size of the DSD, the number of lines

of code, the number of features in an FD, the number of variables that Lean could

 29

potentially annotate, the percentage of initial annotations computed as ratio

initial/total, where total is the total number of variables in a program, and

initial is the number of variables annotated by users. The next two columns compare

the percentage of total annotations without and with the DSD. The last column of Lean

this table shows the accuracy of Lean when used with DSDs.

The highest accuracy is achieved with programs that access and manipulate

dom formation without a strong influence of any

d

ain-specific data rather than general in

omain terminology. The lowest level of accuracy was with the program PMD which

analyzes Java programs and it not based on any specific domain. The highest level of

accuracy was achieved with the programs ASM and VMT which are written for specific

domains with well-defined terminologies, and whose variable names are easy to interpret

and classify.
PROGRAM SIZE OF

DSD,
WORDS

LINES OF
CODE,
LOC

OF
FEAT-
URES

NUM-
BER OF
VARS

USER
ANNOTA-
TIONS, %

LEAN
ANNOTS
W/O DSD

LEAN
ANNOTS
WITH DSD

ACCU-
RACY,
%

Megamek 60 23,782 25 328 10% 58% 64% 64%
PMD 20 3,419 12 176 7.4% 23% 34% 35%
FreeCol 30 6,855 17 527 4.7% 56% 73% 79%
Jetty 30 4,613 6 96 12.5% 42% 81% 52%
VMT 80 2,926 8 143 5.6% 65% 72% 83%
ASM 60 12,294 23 218 5.5% 57% 79% 87%
IHIS 80 1,883 14 225 8% 53% 66% 68%
Table 2. Results of the experimental evaluation of Lean on open source program.

The next experiment evaluates the accuracy of the Lean learner. Figure 11 shows

that when annotating the AMS application, the Learner achieved the highest accuracy,

0%. This accuracy was achieved w e o t tr am

0. The results of this experim nt show that app ed to be run o

ndred tim ith di inp ata er th ner t eve g

 Since t appli run at least several thousand durin r test

ean as a of ap n t ing t ota ram ce co pract

ially, if a low-cost m m app o c rai ampl r the

otations with the

volution of programs.

close to 9 hen th number f distinc

e

aining s ples

reached 50 e lications n nly

few hu es w fferent ut d in ord to train e Lear o achi ood

accuracy. mos cations times g thei ing,

using L part plicatio est o ann te prog sour de is ical.

Potent echanis is lied t ollect t ning s es ove life

time of an application, then Lean can maintain and evolve program ann

e

 30

Finally, we used the Learner trained for the VMT application to annotate

variables in other applications. This methodology is called true-advice versus self-advice

which uses the same program for training and evaluation. Figure 12 shows the percentage

of variables that the Lean Learner annotates with self-advise (left bar) versus the true-

advice annotations (right bar) when the Learner is trained on the VMT application. This

experiment shows that Lean can be trained on one application and used to annotate other

programs if they operate on the same domain-specific concepts. ASM and IHIS have

common concepts with the VMT application, and it allows learners to be trained and used

interch

notation process.

Figure 11. The graph of the accuracy of the Lean learner.

angeably achieving the high degree of automation in annotating program

variables.

9. Related Work
The importance of annotations for program checking and verification is

emphasized in [16]. In addition to the benefits outlines in Section 1, getting annotations

into programs is important for developing algorithms and techniques for the verifying

compiler. Although many notable publications are written on the use of annotations for

various purposes, only few of them describe approaches and tools for automating the

program an

0

10

20

0 100 200 300 400 500 600

Distinct training samples

C
l

30

40
50

60

70

80

90

as
si

fic
at

io
n

ac
cu

ra
cy

100
ASM

PMD

Jetty

 31

One of the earliest papers on automating program annotations [17] describes a

technique for annotating Algol-like programs automatically given their specifications.

The annotation techniques are based on the Hoare-like inference rules which derive

invariants from the assignment statements, from the control structure of the program, or,

from suggested invariants. Like the Lean approach, the annotation process is guided by a

set of rules. The program is incrementally annotated with invariant relationships that hold

between program variables at interm oints. Unlike our approach program

annotation process is viewed strictly as discovery of invariants. By automating this

process the authors meant applying their inference rules in a fashion that does not require

significant laborious intellectual efforts and creativity.

A comprehensive study of program annotations is given in [18]. This paper

presents a classification of the assertions that were most effective at detecting faults and

 tool that addresses ease-of-use and

ffectiveness

ediate p

describes experience using an assertion processing

e

10

20

30

40

50

60

70

80

90

Va
rs

, %

Self-advice
True-advice

0
Megamek PMD FreeCol Jetty ASM IHIS

Applications

Figure 12. Percentage of variables that the Lean Learner annotates with self-advise (left bar) versus
the true-advise annotations (right bar) when the Learner is trained on the VMT application.

 32

of program annotations. Unlike our approach, the tool proposed in this paper does not

automate the annotation process.

A technique that can be used to annotate source code with syntactic tags in XML

format is described in [19]. Parser generator bison is modified to emit annotating XML

tags for an arbitrary LALR grammar. This technique was applied to modify the gcc

compiler to annotate C, Objective C, C++ and Java programs with XML tags. While this

approach is based on a representation of the parse tree and does not have the same

semantic richness as other approaches, it does have the advantage of being language

independent, and thus reusable in a number of different domains. Like our research, this

parse tree approach uses grammars as external semantic relations to guide the automatic

annotation of program code. However, this approach is tightly linked to grammars that do

not express domain-specific concepts and relations among them. By contrast, our

technique operates on semantic relations and diagrams that are not linked to program

urce code or a grammar of any language. Their goal is to indicate what language

eals with annotating program code with arbitrary semantic concepts.

stems is driven by annotations that identify run-time

constan

Typically, print statements are inserted in C source code to record the values of

so

statement or expression corresponds to what grammar construct, while our approach

d

Calpa is a tool for automating selective dynamic compilation [20]. Calpa’s

selective dynamic compilation sy

ts, and it can achieve significant program speedups. Calpa is a system that

generates annotations automatically for the DyC dynamic compiler by combining

execution frequency and value profile information with a model of dynamic compilation

cost to choose run-time constants and other dynamic compilation strategies. Calpa is

shown to generate annotations of the same or better quality as those found by a human,

but in a fraction of the time.

A method for deriving path and loop annotations automatically for object-oriented

real-time programs is presented in [21]. Such annotations are necessary when the worst

case execution time of programs should be calculated. Normally these annotations must

be given manually by the programmer.

A system called Daikon for automatic inferences of program invariants is based

on recording values of program variables at runtime with their following analysis [22].

 33

parameters to functions and their variables before and after functions are called. Then,

these values are analyzed to find variables whose values are not changed throughout the

executi

ch in automating text annotations is presented by the

OpenT

elps the user to annotate chunks of text selected

by the

losion in the amount of biological data being generated worldwide

is surp

date, as a

result o

on of certain functions. These variables constitute invariants that annotate

respective functions.

Like our research, Daikon, Calpa and the method proposed in [21] automate the

generation of annotations and the user is relieved from a task that can be quite difficult

and highly critical. Rather than identifying run-time constants and low-level code

properties that are extracted from the source code, our approach enables programmers to

automate the process of annotating programs with arbitrary semantic concepts.

An interesting approa

ext.org project [23]. It is a web-based initiative to develop annotated Greek texts

and tools for their analysis. Texts are annotated with various levels of linguistic

information, such as text-critical, grammatical, semantic and discourse features. The

project offers an annotation tools that h

user with the semantic case roles. The result of the annotation is kept in an XML

format which is later converted in a format required by a machine learning program (i.e.

Weka). Like in Lean, machine learning algorithms are used to classify text and assign

annotations based on the results of the classification. The major difference between our

approach and opentext.org is that the latter is used to annotate texts while the former

annotates program code.

The rapid exp

assing efforts to manage analysis of the data. As part of an ongoing project to

automate and manage bioinformatics analysis, the authors have designed and

implemented a simple automated annotation system [24]. The system is applied to

existing GenBank/DDBJ/EMBL entries and compared with existing annotations to

illustrate not only potential errors but also that they are generally not up-to-

f new versions of analysis tools and updates of genomic repositories.

The problem of annotating interfaces of object-oriented application frameworks is

studied in [25]. Since frameworks provide an established way of reusing the design and

implementation of applications in a specific domain its correct usage is important.

However, using a framework for creating applications is not a trivial task, however, and

 34

special tools are needed for supporting the process. Tool support, in turn, requires explicit

annotations of the reuse interfaces of frameworks. Unfortunately these annotations

typically become quite extensive and complex for non-trivial frameworks. In this paper

the authors focus on describing techniques for minimizing the work needed for creating

framework annotations. They discuss the possibility of generating annotations based on

frameworks’ and example applications’ source code, automating annotation creation with

dedicat

ng it to two

kinds o

e data

sets. A

ed wizards, and introducing coding conventions and advanced language features,

such as inheritance, for framework annotations languages. They also introduce a

programming environment that supports framework annotation and specialization.

A technique for automatically deriving traceability relations between parts of a

specification and parts of synthesized programs is described in [26]. The technique is

very lightweight and may work for any process in which one artifact is automatically

derived from another. The generality of the technique is illustrated by applyi

f automatic generation: synthesis of Kalman Filter programs from specifications

using the AUTOFILTER program synthesis system, and generation of assembly language

programs from C source code using the GCC C compiler. This work is related to our

algorithms that enable validation of determined annotations.

The use of semantic annotation in the biochip domain is presented in [27]. They

propose a semi-automatic method using the information extraction (IE) techniques for

facilitating the generation of ontology-based annotations for scientific articles. The

authors evaluate and discuss their method by applying it to the annotation of textual

corpus provided by biologists working in the biochip domain. Finally, the authors show

that ontology based semantic annotation can improve information retrieval.

10. Discussion and Future Work
One documented problem with WEKA is that it is slow especially with larg

s a consequence we do not measure the performance of Lean and plan to address

this problem in the future. Clearly, collecting all values of all variables may be

prohibitive because it is time consuming and it affects the performance of the program.

Currently, we provide a means for programmers to specify variables that should be

excluded from monitoring. Eventually, we plan to expand the Lean with an efficient

 35

monitoring framework [28] that collects values of selected variables continuously with

approximately 3% overhead.

11

s. Our results

show that after users annotate approximately 6% of the program variables and types,

Lea ectly the best case, 47% in the

average

ter Rombach, A Handbook of Software and Systems

Engineering: Empirical Observations, Laws, and Theories. Addison Wesley; May 2003.

[3]

. Conclusions
We present a novel approach for automating and validating program variables and

types with semantic annotations. Our system, called Lean, uses a combination of run-time

monitoring, program analysis, and machine-learning approaches to discover and validate

annotations for unannotated types and variables based on few initial mappings provided

by programmers. We evaluate our approach on open-source software project

n corr annotates an additional 69% of variables in

, and 12% in the worst case. We also show that true-advice annotation is possible

by training the Learner on few programs and applying it to annotate other programs.

References

[1] Joseph W. Davison, Dennis Mancl, William F. Opdyke: Understanding and

addressing the essential costs of evolving systems. Bell Labs Technical Journal 5(2): 44-

54 (2000)

[2] Albert Endres and Die

http://vmt.sourceforge.net/

[4] Feature-Oriented Domain Analysis (FODA) Feasibility Study [CMU/SEI-90-TR-21]

[5] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, June 2000

[6] AnHai Doan, Pedro Domingos, Alon Y. Halevy: Reconciling Schemas of Disparate

Data Sources: A Machine-Learning Approach. SIGMOD Conference 2001

[7] AnHai Doan, Pedro Domingos, Alon Y. Halevy: Learning to Match the Schemas of

Data Sources: A Multistrategy Approach. Machine Learning 50(3): 279-301 (2003)

[8] R. Michalski and G. Tecuci. Machine Learning: A Multistrategy Approach. Morgan

Kaufmann, 1994.

 36

[9] W. Cohen and H. Hirsh. Joins that generalize: text classification using Whirl.

roceedings of the 4th International Conference on Knowledge Discovery and Data

ork, and Peter E. Hart. Pattern Classification, Wiley, 2nd

izing compiler, Butterworth-Heinemann, 1998.

ww.edg.com

P

Mining, 1998.

[10] Tom M. Mitchell, Machine Learning. McGraw-Hill, March 1997.

[11] O. Duda, David G. St

edition, November 2001.

[12] Robert Morgan, Building an optim

[13] Edison Design Group. http://w

[14] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, 2nd edition, June 2005.

[15] http://www.cs.waikato.ac.nz/~ml/weka/index.html

[16] C. A. R. Hoare: The Verifying Compiler: A Grand Challenge for Computing

Research. 262-272 Compiler Construction, 12th International Conference, CC 2003,

Warsaw, Poland, April 7-11, 2003.

[17] Nachum Dershowitz and Zohar Manna, Inference rules for program annotation.

Third International Conference on Software Engineering, Atlanta, 1978, p. 158 - 167

ating Dynamic

s. In Engineering of distributed control

[18] David S. Rosenblum, A Practical Approach to Programming with Assertions, IEEE

Transactions on Software Engineering, vol. 21, no. 1, Jan. 1995, pp. 19-31

[19] James F. Power and Brian A. Malloy: Program Annotation in XML: A Parse-Tree

Based Approach. WCRE 2002: p.190

[20] Mock, M. Chambers, C. Eggers, S.J. Calpa: A Tool for Autom

Compilation, 33rd Annual IEEE/ACM International Symposium on Microarchitecture,

2000. MICRO-33, pp. 291-302.

[21] Jan Gustafsson and Andreas Ermedahl, Automatic derivation of path and loop

annotations in object-oriented real-time program

systems, p. 81 – 98, 2001

[22] Michael D. Ernst, Jake Cockrell, William G. Griswold, David Notkin: Dynamically

ICSE 1999Discovering Likely Program Invariants to Support Program Evolution. : 213-

224

[23] http://www.opentext.org

 37

http://www.cs.waikato.ac.nz/~ml/weka/index.html

[24] Kim Carter and Akira Oka, Bioinformatics Issues for Automating the Annotation of

n Instructions

enmark, August 18-20, 2002

Genomic Sequences, Genome Informatics 12: 204–211 (2001)

[25] Antti Viljamaa and Jukka Viljamaa, Creating Framework Specializatio

for Tool Environments, The Tenth Nordic Workshop on Programming and Software

Development Tools and Techniques, D

[26] Julian Richardson and Jeff Green, Automating Traceability for Generated Software

Artifacts, IEEE Conference on Automated Software Engineering (ASE), Linz, Austria,

September 20-24, 2004

[27] Khaled Khelif and Rose Dieng-Kuntz Ontology-Based Semantic Annotations for

Biochip Domain, Workshop on Knowledge Management and Organizational Memories

ECAI 2004, August 2004

[29] Matthew Arnold, Barbara G. Ryder: A Framework for Reducing the Cost of

Instrumented Code. PLDI 2001: 168-179

 38

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cockrell:Jake.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Griswold:William_G=.html

	Automating and Validating Program Annotations
	Abstract
	Introduction
	A Motivating Example
	The Problem Statement
	3.1. Definitions
	3.2. Rules of Program Annotations
	3.3 The Formal Problem Statement

	Lean Architecture
	Learning Annotations
	5.1. Our Approach
	5.2. The Organization of the Learner
	5.3. Overview of Learning Algorithm
	5.4. Learning Conditional Annotations
	5.5. Extending the Learner

	Inferring and Validating Annotations
	6.1. The Rationale
	6.2. An Illustrative Example
	6.3. The Annotation Inference Algorithm
	6.4. The Validating Algorithm
	6.5. The Computational Complexity

	The Prototype Implementation
	Experimental Evaluation
	8.1. Subject Programs
	8.2. Methodology
	8.3. Results

	Related Work
	Discussion and Future Work
	Conclusions
	References

