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ABSTRACT 
We propose a high-level approach to software architecture that 
bridges the gap between system requirements (in the problem 
space) and the architectural design (in the solution space).  We use 
abstract constraint- and intent-based architectural prescriptions to 
enable architectural reflection, reification, and distributed 
configuration discovery as the basis for designing adaptive, self-
configuring software systems.  We discuss some key architectural 
properties and patterns that facilitate the design and 
implementation of self-configuring systems, and use these as the 
basis for an example prototype architecture for self-evolving 
systems called Distributed Configuration Routing (DCR).  Finally, 
we propose the development of architectural prescription 
languages (APLs) and enhanced system design environments to 
provide better support for intent-based architectures. 

1. INTRODUCTION 
Adaptive, self-evolving systems are systems that are able to 
evolve dynamically in response to changes in their environment.  
While systems may adapt at any level, for maximum flexibility, 
the software architecture [17] itself should be self-evolving.  
Architectures defined at high levels of abstraction using problem 
domain terminology expressed in terms of system goals and 
constraints tend to be relatively flexible and easy to evolve 
because they derive implementation configurations directly from 
system requirements, enhancing the ability of the system to reason 
about its level of conformance to the requirements.  Most existing 
approaches to software architecture focus on implementation 
design.  This often results in architectures that offer little support 
for reasoning about conformance to system requirements, and 
subsequent system evolution usually only exacerbates this 
disconnection between requirements and architecture. 
To avoid these limitations, and expand the theoretical and 
practical foundation for self-evolving system architectures, we 
present an architectural approach that builds a more direct 
connection between problem-domain approaches like goal-
oriented requirements engineering (RE) [12] and the 
implementation architecture.  We start with the goal-oriented RE 
entities used to specify system requirements:  goals (functionality 
requirements) and constraints (prescriptions regarding functional 
and non-functional properties of the system).  To these, we add 
activities to model application-domain tasks and processes, and 
roles to specify any constraints that govern the use of a given 
solution-domain component in a given problem-domain context.  
A robust intent model enables the system to reify implementation 
architectures from incomplete abstract problem-domain 
specifications by providing a semantic framework for the system 

to reason about the behavioral aspects of all components.  
Defining the architecture at this level of abstraction allows 
adaptive systems to select the most suitable component to satisfy a 
given system role based on real-time system and environmental 
conditions.  We discuss some basic requirements for adaptive 
systems, along with a few key architecture styles, patterns and 
techniques that enhance those properties.  We present an example 
prototype architecture for self-configuring systems called 
Distributed Configuration Routing (DCR).  And lastly, we 
propose extensions to existing system design tools, common 
frameworks to support role and intent abstractions, and 
development of architectural prescription languages (APLs). 

2. A PRESCRIPTIVE APPROACH 
Perhaps the most useful property adaptive system architectures 
can have is the ability to ensure conformance to system 
requirements specifications during self-configuration.  
Prescriptive architectures [1,2] “naturally” exhibit this property 
because they directly utilize the requirements to derive 
implementation architectures.  Practical prescriptive architectural 
approaches are an important step toward conformant self-
configuring systems. 
This section describes a conceptual framework that builds on 
recent goal-oriented requirements engineering research [12], and 
recent research on transforming requirements to architecture 
specifications [1,2,11,13,21].  We use semantically rich problem 
and solution domain abstraction models to effectively bridge the 
gap between requirements engineering and the implementation 
domain.  Our approach enforces problem domain goals and 
constraints, while decreasing the coupling between goal-driven 
architectures and implementation object types, enabling multiple 
subsequent prescriptive architectures to be derived from a given 
requirements specification.  This framework provides the 
foundation for the self-configuring prototype architecture 
described later in this paper. 
Our prescriptive architecture approach starts with goal-oriented 
requirements engineering, a modeling and refinement process in 
which we model system requirements as a set of goals, and refine 
these goals into functional goals and constraints.  Functional 
goals describe the functionality of the system, while constraints 
prescribe quantitative or qualitative properties of specific 
functional goals or of the system as a whole.  Examples of 
constraints include performance and quality requirements. 
Once the functional goals and constraints are specified, we model 
the system as the set of activities the system will perform to fulfill 
the functional goals.  Activities model what the system will do, 
using problem domain terms.  Examples of activities are 
“Financial Data Analysis”, “Pumping Station Control”, or any 
other functionality that makes sense for the application domain.  
High-level activities that model coarse-grained units of 
functionality are analogous to application subsystems.  We 
decompose high-level activities into lower-level activities until 
they are “atomic” enough to be fulfilled by one, or only a few, 
implementation object roles.  We assign a given constraint to any 
activity to which the constraint applies, decomposing constraints 
into lower-level (more specific) constraints as needed to apply 
them to lower-level activities. 
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Roles are abstractions of the role an implementation object will 
play in a certain context in the application.  Roles enable the 
system to model constraints and other information that affects the 
way an application uses a particular object type in a certain 
application context.  This allows different roles to use a given 
implementation object type without requiring implementation 
objects to carry application-specific context.  Context-specific 
behavior is specified by the role and the constraints associated 
with that role.  We want to avoid tight coupling between 
application activities and implementation object types to enable 
system architectures to be defined at a high level of abstraction.  
This allows a given application role to be fulfilled by any number 
of different implementation object types, as long as they 
implement equivalent behavior (have the same functional intent). 
To enable dependable functionality mappings from requirements 
to implementation objects, we need a solution domain model that 
unambiguously specifies the intended use and functionality of 
implementation objects.  We use an intent framework to classify 
and model implementation object functionality.  Intents capture 
the essence of what component types are intended to accomplish 
(their purpose), and also specify their behavioral intent (their 
function).  Used with activities and roles, intents enable us to 
reason about the ability of implementation objects to fulfill system 
goals by formally expressing the kind of information about how to 
use a component that many architectural description languages 
(ADLs) may express informally, if at all.  Unlike typical ADL 
object interface specifications, intents do not directly prescribe the 
object types required or produced by a given object, nor do they 
specify object organization or object-object relations.  Instead, 
intents are behavioral abstractions that specify the purpose and 
functionality of objects.  In other words, intents specify object 
interfaces in the purpose and functionality domains, making them 
orthogonal to traditional interface definitions, which are 
concerned with the object relationship domain.  Both types of 
models are needed to fully specify and reason about an 
implementation object’s use in a system design. 
Intents specify an object type’s behavior using a state change 
model to describe functions the object can perform, specified 
using sets of {from state, to state}).  State changes can range from 
low-level data transformations to system-level tasks or states.  
Intents fully specify object behavior, so any two objects with the 
same intent can be used interchangeably to accomplish the same 
implementation domain purpose [16]. 
Since the intent model specifies verifiable behavior, the system 
has the information necessary to instantiate component and 
runtime monitor instances.  Configuration involves selecting from 
among available implementations with a given intent, using the 
application context information in the role for which an 
implementation is needed both to aid the selection process and to 
apply any role-specific constraints to the selected implementation 
object.  The role’s constraint context determines the number and 
nature of any runtime monitor components that must be reified to 
implement self-reflection required to test runtime constraints. 

 
Figure 1.  Implementation reification process 

Figure 1 depicts the basic conceptual reification process from the 
original requirements specification through selection of 
implementation and runtime monitoring components to reify a 
functioning architectural configuration. 

3. ADAPTIVE SYSTEM REQUIREMENTS 
In this section we briefly discuss some of the basic requirements 
for self-evolving systems and suggest design features and 
techniques that should be useful for designing such systems. 
Self-managing systems must support automatic reconfiguration, 
the ability to reconfigure themselves in response to external events 
and administrative directives. Techniques that support automatic 
reconfiguration include reflection (self-awareness), and loosely 
coupled component designs such as component-connector and 
service provider architectures. 
Any system that reconfigures itself should include a learning and 
planning facility to enable it reason about empirical results and 
evolve its reconfiguration practices based on experience, or much 
of its reconfiguration activity is likely to be counterproductive.  
Performance, error and failure rates, and conformance statistics 
are useful data, among many others.  To establish useful cause-
and-effect relations to guide reconfigurations, observed effects 
must be correlated with the many aspects of the system that may 
influence them, including component types, versions and 
configurations, as well as system information including 
specifications, system type (platform, OS, etc.), and others.  
Ideally, a self-configuring system should also be able to correlate 
runtime results with architectural patterns [3,5].  This information 
can then be used to guide component selection, arrangement and 
configuration.  Algorithms and patterns that support this type of 
learning and planning include correlation coefficient and Bayesian 
inference algorithms, and neural nets.  
Since requirements specifications are usually incomplete, it is 
desirable for an adaptive architecture to support building system 
configurations from incomplete specifications.  Techniques that 
support reification from incomplete specifications include default 
implementations and intent-based implementation taxonomies. 
While not necessarily an essential property of self-evolving 
systems, scalability is certainly a requirement for any practical 
implementation.  Techniques that support scalability include 
distributed architectures, decentralized configuration, and 
distributed service discovery.  And although it is possible to 
design an adaptive system that does not support heterogeneous 
platforms and software frameworks, support for heterogeneity 
enables a system to utilize a richer mix of technologies and off-
the-shelf components, and is an important aspect of design 
diversity for dependable systems [9].  Some of the techniques that 
support heterogeneity are platform-independent frameworks and 
protocols, and adapters. 
And lastly, security is an important concern for all serious 
systems, especially self-configuring systems.  Adaptive systems 
must maintain any prescribed security properties through 
reconfigurations and other adaptive changes.  Self-configuring 
systems should perform authentication and integrity checking on 
components when they register with the system, and distributed 
systems are likely to require runtime integrity checking of events 
and data.  Depending on the application, systems may also need to 
perform authorization checks before allowing certain operations.  
Some applications will also require confidentiality and non-
repudiation.  Techniques that simplify support for security include 
component-connector designs (security functionality can be 
included in smart connectors), and opt-in component registration 
(provides a convenient common point for performing component 
authentication and integrity checking, as well as basic 
authorization, if applicable). 



4. AN EXAMPLE SELF-MANAGING 
ARCHITECTURE 
This section describes Distributed Configuration Routing (DCR), 
a prototype architecture for self-configuring systems based on the 
architectural approach and requirements previously discussed.  To 
enhance scalability and gain the flexibility of loosely coupled 
system components, DCR uses a state-change-based distributed 
service provider configuration discovery architecture with an 
intelligent connector network topology.   Connectors handle all 
component interactions, and also implement an extensible 
component monitor/data adapter framework.  The basic topology 
and instance cardinality are shown in Figure 2. 

 
Figure 2.  Basic connector model topology and cardinality 

4.1 Configuration Route Discovery 
To enable self-configuring systems to respond to unforeseen 
conditions, the DCR configuration architecture implements 
distributed state-change-based configuration route discovery at 
arbitrary levels of granularity, where all services are defined as 
state changes.  Unlike typical service provider networks, where 
available services are limited to the set of functionality explicitly 
programmed into the current set of service providers, DCR 
components can request state changes for which no provider 
exists.  Utilizing the information in the role and intent models to 
reason about constraints and behavior, the configuration route 
discovery architecture enables the network of service provider 
components to compose conformant system and subsystem 
configurations from arbitrary numbers of intermediate partial 
solutions, without requiring the requesting component to know 
anything about the set of services currently available.  Adapted in 
part from wireless network routing protocols, DCR configuration 
route discovery utilizes agent-components that independently 
respond to service requests and incrementally build configurations 
by agreeing to participate in candidate configuration routes for 
which they can provide a partial or complete solution.  The 
algorithm uses only information locally available or contained in 
the service request. 
DCR configuration route discovery begins when a component 
uses its associated role information to generate a Configuration 
Route Request (CRR) for state change service it requires (defined 
as a {start state, target state} pair), and multicasts the CRR to the 
registered service provider components.  Starting from the target 
state and working backwards toward the start state, candidate 
configuration routes grow incrementally as components add 
entries for themselves to CRRs whose current target state (the 
original target state, or the from state of the last component added 
to the CRR) is a state to which the component offers service. 
A component that can provide state changes to the requested 
target state (i.e., a to state it provides matches the CRR target 
state), from any other from state not yet used in the CRR path, 
appends its component ID and state change information to the 
CRR, making its own from state the new CRR target state, and 
retransmits.  To prevent loops, components are usually prohibited 
from responding to requests that already include a response with 
their intent, except when the requester indicates a priori that 
multiple instances of a given state change are needed to complete 

a given path. 
When a component responds to a CRR, it reserves whatever 
processing capability is required to fulfill the functional and 
performance constraints of the request.  The responder maintains a 
soft state reservation that includes request and originator IDs, and 
any applicable information about the level of service reserved 
(QoS or performance constraints, etc.).  This reservation times out 
after a certain interval if the component does not hear a 
Configuration Route Notification (CRN) message from the 
originator.  While a reservation is active, it may affect the 
component’s ability to answer other CRRs because of reduced 
residual capacity, but unless the request is for multiple parallel 
configuration routes, it is safe for a component to add itself to 
multiple non-duplicate configuration routes for the same original 
CRR, since at most one route will be selected. 

 
Figure 3.  CRR showing multiple configuration candidates; 

note branching from cascading CRRs at R4 and R12 
A configuration route is finished when a component whose from 
state matches the original CRR start state responds.  The terminal 
responder adds itself to the route, and unicasts the new candidate 
configuration route to the CRR originator.  Figure 3 depicts CRR 
route building after an origin component transmits a CRR, 
showing how components add themselves to route requests to 
build configurations from the target state to the start state.  Figure 
3 also shows how configurations branch when components in a 
configuration make subsequent route requests to fulfil their 
functionality requirements. Finally, Figure 3 shows the terminal 
components in discovered routes returning candidate 
configuration routes to the CRR origin. 

4.2 Route Reservation and Confirmation 
The CRR originator selects the best configuration route, either by 
using a shortest-path or least-cost metric, or by reasoning about 
the configurations using any number of constraint and 
optimization metrics.  Figure 4 illustrates the use of a cost metric 
to select an optimal configuration route.  Figure 5 shows the 
hierarchical dependency view of the selected configuration. 
Having selected the optimal configuration, the originator then 
multicasts a CRN message to all the components in the 
configuration route. Components participating in the new 
configuration complete the handshake by sending a Configuration 
Route Confirmation (CRC) message back to the originator, and 



the component connectors form the prescribed structure.  After the 
selected route is confirmed, the originating component also sends 
a Configuration Route Cancellation (CRL) message to all 
components that are part of unused configuration routes. 

 
Figure 4.  Origin selects configuration based on metrics 

4.3 Monitors, Adapters and Reconfiguration 
A default monitor monitors each component for aliveness and 
basic performance.  The connector framework includes a flexible 
plug-in mechanism allowing additional monitors and adapters to 
be added as needed to ensure system runtime constraints 
(performance, etc.), or to resolve interface data type 
incompatibilities.  These plug-in components are regular DCR 
service provider components.  Connectors use the CRR 
mechanism to request monitoring or adaptation services.  
Monitors that detect system constraint violations or other failures 
can perform local repairs using the CRR mechanism to find a 
more suitable replacement component, or if that fails, send a 
System Reconfiguration Request (SRR) event to a higher-level 
component that can perform reconfiguration.  Eventually, the SRR 
may reach the top system-level component, which can reconfigure 
the entire system if necessary. 

 
Figure 5.  Dependency view of selected configuration 

4.4 Distributed Conformance Reasoning 
The CRR framework includes a rich set of functionality to push 
constraint checking out into the distributed component network by 
specifying configuration constraints as part of CRRs generated for 
a given role.  Distributed nodes can reason about the conformance 
of unfinished configurations at route creation time, and halt 
processing of non-conforming routes.  A flexible multi-
dimensional cost mechanism enables routing components to 
discard routes that exceed specified cost metrics.  Cost may 
include actual costs, or more abstract “costs” such as route 

performance, system and network load factors, etc., enabling 
weighted apples-and-oranges comparisons between widely 
divergent factors.  A CRR may also include architectural pattern 
prescriptions and other non-functional constraints. 

5. DISCUSSION 
The architectural prescription approach we propose extends recent 
research in requirements engineering [12,13] and architectural 
prescriptions [1,2,11].  In particular, our prescriptive reification 
approach is very closely related to [13] and extends their model by 
overlaying first-class role and intent abstractions at the 
requirements-implementation interface to enable us to model the 
implementation architecture in terms of abstractions that make 
sense in the requirements domain, without needing to know 
anything more about the actual implementation objects than their 
intent.  This also serves to decouple the architecture from 
implementation object types and instances, allowing us to delay 
the binding of application roles to actual implementation objects 
until configuration time (e.g., during adaptive DCR 
reconfiguration). Overall, our approach builds on, and requires, 
the kind of requirements domain model analysis described in [13]. 
The DCR architecture enables self-configuring system behavior 
without the scalability bottleneck of a centralized controller that 
must reason about the universe of possible configurations, or the 
need for distributed components to maintain a global system 
configuration view.  The distributed route discovery protocol can 
discover unplanned “composite” services that may be required to 
solve unforeseen application domain or system problems.  Broken 
components can even be replaced by confederations of lower-
level components that are able to self-organize in new ways to 
perform the required service.  The system implements self-
reflection using a federation of loosely coupled components, with 
an architecture functionally derived from the problem domain, 
enabling high-level reasoning about conformance to system goals 
and constraints.  And since the DCR system organization is based 
on high-level abstractions of component roles and intents, it will 
allow for diverse ecosystems of components to be built over time, 
which should enhance system dependability [9]. 
The self-organizing system techniques discussed here can also be 
used with architectural prescriptions to instantiate new members 
of a product family architecture [18], for example, by constraining 
component types and their associations, and prescribing other 
architectural style constraints.  In this case, the essential properties 
of the product family architecture are specified as requirements 
domain goals and constraints. 
While the DCR architecture shows promise as a framework for 
developing self-managing systems, there are still several 
outstanding technical issues related to aspects of the system 
design.  We have identified learning and planning as a desirable 
capability for self-evolving systems.  But regardless of which 
learning algorithm we use, causes are complex, and so are effects.  
Determining true causes, and eliminating useless “false positive” 
correlations between multiple effects of the same cause will be 
challenges.  Another issue is how much support the system should 
include for component configuration.  Much of our work to date 
has focused on architectures for system and subsystem-level 
reconfiguration.  While our current design supports architectural 
pattern or style constraints [3,5,17], we are also researching more 
formal ways to specify architectural constraints, as well as 
partially self-configuring systems.  At the same time, we’re not 
completely convinced that we should constrain the result space at 
all in every case, since this may negate many of the potential 
benefits of allowing the network to discover unforeseen 
configurations.  The best (or only) solution may not conform to 
any given prescribed architectural pattern. 



6. RELATED RESEARCH 
As previously discussed, our architectural prescription approach 
builds on the body of requirements engineering research [12,13].  
[10,15] model adaptable architectures as component-connection 
graphs, and represent architectural styles as classes of graphs, 
enabling graph-rewriting rules to be used for reconfiguration.  
[8,19] describe path-based adaptive architectural approaches used 
for adapter-based data stream modification.  Their strongly typed 
data-oriented approaches are less general than our state-change-
based approach, which can be used for general application 
purposes as well as for data transformations. 
More recently, [6] discusses externalized model-based adaptation, 
in which architectural models are used as the basis for problem 
diagnosis and repair, and architectural styles can be tailored to 
support desired system qualities, including partial self-
configurability.  [7] uses architectural constraints as the basis for 
specification, design, and implementation of self-organizing 
architectures for distributed systems.  However, their approach 
requires each component to have a global view of the system 
configuration, so they require reliable and totally ordered 
broadcast, and cannot tolerate network partitions.  Our distributed 
approach is much less centralized; no component has a global 
view of the system configuration.  [14] proposes a 3-tier 
architecture that separates computation, coordination and 
configuration to enable fault treatment using redundant 
components.  [20] discusses extending existing design tools to 
provide better support for runtime architectural adaptation, while 
[4] describes a self-management coordination architecture and 
infrastructure to enable components in self-healing systems to 
work together, incorporating consistent system access, non-
conflicting decision-making, and a consistent system model. 

7. CONCLUSIONS 
We extend the rigorous problem domain modeling of goal-
oriented requirements engineering by developing a reification 
process that bridges the gap between the problem and solution 
domains.  We use activities and roles to effectively extend the 
requirements model, and a robust component intent framework to 
extend the implementation model.  This provides an abstract but 
semantically rich way to use requirements specifications to 
prescribe implementation architectures without knowing 
implementation details.  This approach lays the groundwork for 
developing automated systems that will be able to generate 
implementation architectures directly from system specifications, 
a key step toward developing conformant self-managing system 
architectures.  We discuss some basic requirements for adaptive 
systems, and architecture and design patterns that can aid in their 
design and development, and we provide an example architecture 
for self-managing systems we are currently developing called 
Distributed Configuration Routing (DCR). 
We propose several developments to make prescriptive 
architectural approaches more practical.  First, extend existing 
architectural description languages (ADLs) and requirements 
description languages (RDLs) to enhance their modeling 
capabilities in complementary domains.  Second, common role 
and intent frameworks for software components would give 
architects a common language to use for communicating and 
reasoning about families of requirements domain prescriptions 
and the functional intent of implementation domain objects, 
similar to the way architecture and design patterns have enhanced 
communication about implementation models.  Third, create an 
architectural prescription language (APL) that combines the best 
features of both ADLs and RDLs, including tool support for 
requirements specification, prescriptive architectural design, and 

system configuration.  Such an APL-based environment would 
enable system specification and design to be accomplished as a 
single process within a single framework, and enable reasoning 
about system conformance and design at any stage of completion. 
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