
Exploiting Architectural Prescriptions for Self-Managing,
Self-Adaptive Systems: A Position Paper

Matthew J. Hawthorne
Department of Electrical and Computer Engineering

The University of Texas at Austin
hawthorn@ece.utexas.edu

Dewayne E. Perry
Department of Electrical and Computer Engineering

The University of Texas at Austin
perry@elgar.ece.utexas.edu

ABSTRACT
We propose a high-level approach to software architecture that
bridges the gap between system requirements (in the problem
space) and the architectural design (in the solution space). We use
abstract constraint- and intent-based architectural prescriptions to
enable architectural reflection, reification, and distributed
configuration discovery as the basis for designing adaptive, self-
configuring software systems. We discuss some key architectural
properties and patterns that facilitate the design and
implementation of self-configuring systems, and use these as the
basis for an example prototype architecture for self-evolving
systems called Distributed Configuration Routing (DCR). Finally,
we propose the development of architectural prescription
languages (APLs) and enhanced system design environments to
provide better support for intent-based architectures.

1. INTRODUCTION
Adaptive, self-evolving systems are systems that are able to
evolve dynamically in response to changes in their environment.
While systems may adapt at any level, for maximum flexibility,
the software architecture [17] itself should be self-evolving.
Architectures defined at high levels of abstraction using problem
domain terminology expressed in terms of system goals and
constraints tend to be relatively flexible and easy to evolve
because they derive implementation configurations directly from
system requirements, enhancing the ability of the system to reason
about its level of conformance to the requirements. Most existing
approaches to software architecture focus on implementation
design. This often results in architectures that offer little support
for reasoning about conformance to system requirements, and
subsequent system evolution usually only exacerbates this
disconnection between requirements and architecture.
To avoid these limitations, and expand the theoretical and
practical foundation for self-evolving system architectures, we
present an architectural approach that builds a more direct
connection between problem-domain approaches like goal-
oriented requirements engineering (RE) [12] and the
implementation architecture. We start with the goal-oriented RE
entities used to specify system requirements: goals (functionality
requirements) and constraints (prescriptions regarding functional
and non-functional properties of the system). To these, we add
activities to model application-domain tasks and processes, and
roles to specify any constraints that govern the use of a given
solution-domain component in a given problem-domain context.
A robust intent model enables the system to reify implementation
architectures from incomplete abstract problem-domain
specifications by providing a semantic framework for the system

to reason about the behavioral aspects of all components.
Defining the architecture at this level of abstraction allows
adaptive systems to select the most suitable component to satisfy a
given system role based on real-time system and environmental
conditions. We discuss some basic requirements for adaptive
systems, along with a few key architecture styles, patterns and
techniques that enhance those properties. We present an example
prototype architecture for self-configuring systems called
Distributed Configuration Routing (DCR). And lastly, we
propose extensions to existing system design tools, common
frameworks to support role and intent abstractions, and
development of architectural prescription languages (APLs).

2. A PRESCRIPTIVE APPROACH
Perhaps the most useful property adaptive system architectures
can have is the ability to ensure conformance to system
requirements specifications during self-configuration.
Prescriptive architectures [1,2] “naturally” exhibit this property
because they directly utilize the requirements to derive
implementation architectures. Practical prescriptive architectural
approaches are an important step toward conformant self-
configuring systems.
This section describes a conceptual framework that builds on
recent goal-oriented requirements engineering research [12], and
recent research on transforming requirements to architecture
specifications [1,2,11,13,21]. We use semantically rich problem
and solution domain abstraction models to effectively bridge the
gap between requirements engineering and the implementation
domain. Our approach enforces problem domain goals and
constraints, while decreasing the coupling between goal-driven
architectures and implementation object types, enabling multiple
subsequent prescriptive architectures to be derived from a given
requirements specification. This framework provides the
foundation for the self-configuring prototype architecture
described later in this paper.
Our prescriptive architecture approach starts with goal-oriented
requirements engineering, a modeling and refinement process in
which we model system requirements as a set of goals, and refine
these goals into functional goals and constraints. Functional
goals describe the functionality of the system, while constraints
prescribe quantitative or qualitative properties of specific
functional goals or of the system as a whole. Examples of
constraints include performance and quality requirements.
Once the functional goals and constraints are specified, we model
the system as the set of activities the system will perform to fulfill
the functional goals. Activities model what the system will do,
using problem domain terms. Examples of activities are
“Financial Data Analysis”, “Pumping Station Control”, or any
other functionality that makes sense for the application domain.
High-level activities that model coarse-grained units of
functionality are analogous to application subsystems. We
decompose high-level activities into lower-level activities until
they are “atomic” enough to be fulfilled by one, or only a few,
implementation object roles. We assign a given constraint to any
activity to which the constraint applies, decomposing constraints
into lower-level (more specific) constraints as needed to apply
them to lower-level activities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSS'04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

Roles are abstractions of the role an implementation object will
play in a certain context in the application. Roles enable the
system to model constraints and other information that affects the
way an application uses a particular object type in a certain
application context. This allows different roles to use a given
implementation object type without requiring implementation
objects to carry application-specific context. Context-specific
behavior is specified by the role and the constraints associated
with that role. We want to avoid tight coupling between
application activities and implementation object types to enable
system architectures to be defined at a high level of abstraction.
This allows a given application role to be fulfilled by any number
of different implementation object types, as long as they
implement equivalent behavior (have the same functional intent).
To enable dependable functionality mappings from requirements
to implementation objects, we need a solution domain model that
unambiguously specifies the intended use and functionality of
implementation objects. We use an intent framework to classify
and model implementation object functionality. Intents capture
the essence of what component types are intended to accomplish
(their purpose), and also specify their behavioral intent (their
function). Used with activities and roles, intents enable us to
reason about the ability of implementation objects to fulfill system
goals by formally expressing the kind of information about how to
use a component that many architectural description languages
(ADLs) may express informally, if at all. Unlike typical ADL
object interface specifications, intents do not directly prescribe the
object types required or produced by a given object, nor do they
specify object organization or object-object relations. Instead,
intents are behavioral abstractions that specify the purpose and
functionality of objects. In other words, intents specify object
interfaces in the purpose and functionality domains, making them
orthogonal to traditional interface definitions, which are
concerned with the object relationship domain. Both types of
models are needed to fully specify and reason about an
implementation object’s use in a system design.
Intents specify an object type’s behavior using a state change
model to describe functions the object can perform, specified
using sets of {from state, to state}). State changes can range from
low-level data transformations to system-level tasks or states.
Intents fully specify object behavior, so any two objects with the
same intent can be used interchangeably to accomplish the same
implementation domain purpose [16].
Since the intent model specifies verifiable behavior, the system
has the information necessary to instantiate component and
runtime monitor instances. Configuration involves selecting from
among available implementations with a given intent, using the
application context information in the role for which an
implementation is needed both to aid the selection process and to
apply any role-specific constraints to the selected implementation
object. The role’s constraint context determines the number and
nature of any runtime monitor components that must be reified to
implement self-reflection required to test runtime constraints.

Figure 1. Implementation reification process

Figure 1 depicts the basic conceptual reification process from the
original requirements specification through selection of
implementation and runtime monitoring components to reify a
functioning architectural configuration.

3. ADAPTIVE SYSTEM REQUIREMENTS
In this section we briefly discuss some of the basic requirements
for self-evolving systems and suggest design features and
techniques that should be useful for designing such systems.
Self-managing systems must support automatic reconfiguration,
the ability to reconfigure themselves in response to external events
and administrative directives. Techniques that support automatic
reconfiguration include reflection (self-awareness), and loosely
coupled component designs such as component-connector and
service provider architectures.
Any system that reconfigures itself should include a learning and
planning facility to enable it reason about empirical results and
evolve its reconfiguration practices based on experience, or much
of its reconfiguration activity is likely to be counterproductive.
Performance, error and failure rates, and conformance statistics
are useful data, among many others. To establish useful cause-
and-effect relations to guide reconfigurations, observed effects
must be correlated with the many aspects of the system that may
influence them, including component types, versions and
configurations, as well as system information including
specifications, system type (platform, OS, etc.), and others.
Ideally, a self-configuring system should also be able to correlate
runtime results with architectural patterns [3,5]. This information
can then be used to guide component selection, arrangement and
configuration. Algorithms and patterns that support this type of
learning and planning include correlation coefficient and Bayesian
inference algorithms, and neural nets.
Since requirements specifications are usually incomplete, it is
desirable for an adaptive architecture to support building system
configurations from incomplete specifications. Techniques that
support reification from incomplete specifications include default
implementations and intent-based implementation taxonomies.
While not necessarily an essential property of self-evolving
systems, scalability is certainly a requirement for any practical
implementation. Techniques that support scalability include
distributed architectures, decentralized configuration, and
distributed service discovery. And although it is possible to
design an adaptive system that does not support heterogeneous
platforms and software frameworks, support for heterogeneity
enables a system to utilize a richer mix of technologies and off-
the-shelf components, and is an important aspect of design
diversity for dependable systems [9]. Some of the techniques that
support heterogeneity are platform-independent frameworks and
protocols, and adapters.
And lastly, security is an important concern for all serious
systems, especially self-configuring systems. Adaptive systems
must maintain any prescribed security properties through
reconfigurations and other adaptive changes. Self-configuring
systems should perform authentication and integrity checking on
components when they register with the system, and distributed
systems are likely to require runtime integrity checking of events
and data. Depending on the application, systems may also need to
perform authorization checks before allowing certain operations.
Some applications will also require confidentiality and non-
repudiation. Techniques that simplify support for security include
component-connector designs (security functionality can be
included in smart connectors), and opt-in component registration
(provides a convenient common point for performing component
authentication and integrity checking, as well as basic
authorization, if applicable).

4. AN EXAMPLE SELF-MANAGING
ARCHITECTURE
This section describes Distributed Configuration Routing (DCR),
a prototype architecture for self-configuring systems based on the
architectural approach and requirements previously discussed. To
enhance scalability and gain the flexibility of loosely coupled
system components, DCR uses a state-change-based distributed
service provider configuration discovery architecture with an
intelligent connector network topology. Connectors handle all
component interactions, and also implement an extensible
component monitor/data adapter framework. The basic topology
and instance cardinality are shown in Figure 2.

Figure 2. Basic connector model topology and cardinality

4.1 Configuration Route Discovery
To enable self-configuring systems to respond to unforeseen
conditions, the DCR configuration architecture implements
distributed state-change-based configuration route discovery at
arbitrary levels of granularity, where all services are defined as
state changes. Unlike typical service provider networks, where
available services are limited to the set of functionality explicitly
programmed into the current set of service providers, DCR
components can request state changes for which no provider
exists. Utilizing the information in the role and intent models to
reason about constraints and behavior, the configuration route
discovery architecture enables the network of service provider
components to compose conformant system and subsystem
configurations from arbitrary numbers of intermediate partial
solutions, without requiring the requesting component to know
anything about the set of services currently available. Adapted in
part from wireless network routing protocols, DCR configuration
route discovery utilizes agent-components that independently
respond to service requests and incrementally build configurations
by agreeing to participate in candidate configuration routes for
which they can provide a partial or complete solution. The
algorithm uses only information locally available or contained in
the service request.
DCR configuration route discovery begins when a component
uses its associated role information to generate a Configuration
Route Request (CRR) for state change service it requires (defined
as a {start state, target state} pair), and multicasts the CRR to the
registered service provider components. Starting from the target
state and working backwards toward the start state, candidate
configuration routes grow incrementally as components add
entries for themselves to CRRs whose current target state (the
original target state, or the from state of the last component added
to the CRR) is a state to which the component offers service.
A component that can provide state changes to the requested
target state (i.e., a to state it provides matches the CRR target
state), from any other from state not yet used in the CRR path,
appends its component ID and state change information to the
CRR, making its own from state the new CRR target state, and
retransmits. To prevent loops, components are usually prohibited
from responding to requests that already include a response with
their intent, except when the requester indicates a priori that
multiple instances of a given state change are needed to complete

a given path.
When a component responds to a CRR, it reserves whatever
processing capability is required to fulfill the functional and
performance constraints of the request. The responder maintains a
soft state reservation that includes request and originator IDs, and
any applicable information about the level of service reserved
(QoS or performance constraints, etc.). This reservation times out
after a certain interval if the component does not hear a
Configuration Route Notification (CRN) message from the
originator. While a reservation is active, it may affect the
component’s ability to answer other CRRs because of reduced
residual capacity, but unless the request is for multiple parallel
configuration routes, it is safe for a component to add itself to
multiple non-duplicate configuration routes for the same original
CRR, since at most one route will be selected.

Figure 3. CRR showing multiple configuration candidates;

note branching from cascading CRRs at R4 and R12
A configuration route is finished when a component whose from
state matches the original CRR start state responds. The terminal
responder adds itself to the route, and unicasts the new candidate
configuration route to the CRR originator. Figure 3 depicts CRR
route building after an origin component transmits a CRR,
showing how components add themselves to route requests to
build configurations from the target state to the start state. Figure
3 also shows how configurations branch when components in a
configuration make subsequent route requests to fulfil their
functionality requirements. Finally, Figure 3 shows the terminal
components in discovered routes returning candidate
configuration routes to the CRR origin.

4.2 Route Reservation and Confirmation
The CRR originator selects the best configuration route, either by
using a shortest-path or least-cost metric, or by reasoning about
the configurations using any number of constraint and
optimization metrics. Figure 4 illustrates the use of a cost metric
to select an optimal configuration route. Figure 5 shows the
hierarchical dependency view of the selected configuration.
Having selected the optimal configuration, the originator then
multicasts a CRN message to all the components in the
configuration route. Components participating in the new
configuration complete the handshake by sending a Configuration
Route Confirmation (CRC) message back to the originator, and

the component connectors form the prescribed structure. After the
selected route is confirmed, the originating component also sends
a Configuration Route Cancellation (CRL) message to all
components that are part of unused configuration routes.

Figure 4. Origin selects configuration based on metrics

4.3 Monitors, Adapters and Reconfiguration
A default monitor monitors each component for aliveness and
basic performance. The connector framework includes a flexible
plug-in mechanism allowing additional monitors and adapters to
be added as needed to ensure system runtime constraints
(performance, etc.), or to resolve interface data type
incompatibilities. These plug-in components are regular DCR
service provider components. Connectors use the CRR
mechanism to request monitoring or adaptation services.
Monitors that detect system constraint violations or other failures
can perform local repairs using the CRR mechanism to find a
more suitable replacement component, or if that fails, send a
System Reconfiguration Request (SRR) event to a higher-level
component that can perform reconfiguration. Eventually, the SRR
may reach the top system-level component, which can reconfigure
the entire system if necessary.

Figure 5. Dependency view of selected configuration

4.4 Distributed Conformance Reasoning
The CRR framework includes a rich set of functionality to push
constraint checking out into the distributed component network by
specifying configuration constraints as part of CRRs generated for
a given role. Distributed nodes can reason about the conformance
of unfinished configurations at route creation time, and halt
processing of non-conforming routes. A flexible multi-
dimensional cost mechanism enables routing components to
discard routes that exceed specified cost metrics. Cost may
include actual costs, or more abstract “costs” such as route

performance, system and network load factors, etc., enabling
weighted apples-and-oranges comparisons between widely
divergent factors. A CRR may also include architectural pattern
prescriptions and other non-functional constraints.

5. DISCUSSION
The architectural prescription approach we propose extends recent
research in requirements engineering [12,13] and architectural
prescriptions [1,2,11]. In particular, our prescriptive reification
approach is very closely related to [13] and extends their model by
overlaying first-class role and intent abstractions at the
requirements-implementation interface to enable us to model the
implementation architecture in terms of abstractions that make
sense in the requirements domain, without needing to know
anything more about the actual implementation objects than their
intent. This also serves to decouple the architecture from
implementation object types and instances, allowing us to delay
the binding of application roles to actual implementation objects
until configuration time (e.g., during adaptive DCR
reconfiguration). Overall, our approach builds on, and requires,
the kind of requirements domain model analysis described in [13].
The DCR architecture enables self-configuring system behavior
without the scalability bottleneck of a centralized controller that
must reason about the universe of possible configurations, or the
need for distributed components to maintain a global system
configuration view. The distributed route discovery protocol can
discover unplanned “composite” services that may be required to
solve unforeseen application domain or system problems. Broken
components can even be replaced by confederations of lower-
level components that are able to self-organize in new ways to
perform the required service. The system implements self-
reflection using a federation of loosely coupled components, with
an architecture functionally derived from the problem domain,
enabling high-level reasoning about conformance to system goals
and constraints. And since the DCR system organization is based
on high-level abstractions of component roles and intents, it will
allow for diverse ecosystems of components to be built over time,
which should enhance system dependability [9].
The self-organizing system techniques discussed here can also be
used with architectural prescriptions to instantiate new members
of a product family architecture [18], for example, by constraining
component types and their associations, and prescribing other
architectural style constraints. In this case, the essential properties
of the product family architecture are specified as requirements
domain goals and constraints.
While the DCR architecture shows promise as a framework for
developing self-managing systems, there are still several
outstanding technical issues related to aspects of the system
design. We have identified learning and planning as a desirable
capability for self-evolving systems. But regardless of which
learning algorithm we use, causes are complex, and so are effects.
Determining true causes, and eliminating useless “false positive”
correlations between multiple effects of the same cause will be
challenges. Another issue is how much support the system should
include for component configuration. Much of our work to date
has focused on architectures for system and subsystem-level
reconfiguration. While our current design supports architectural
pattern or style constraints [3,5,17], we are also researching more
formal ways to specify architectural constraints, as well as
partially self-configuring systems. At the same time, we’re not
completely convinced that we should constrain the result space at
all in every case, since this may negate many of the potential
benefits of allowing the network to discover unforeseen
configurations. The best (or only) solution may not conform to
any given prescribed architectural pattern.

6. RELATED RESEARCH
As previously discussed, our architectural prescription approach
builds on the body of requirements engineering research [12,13].
[10,15] model adaptable architectures as component-connection
graphs, and represent architectural styles as classes of graphs,
enabling graph-rewriting rules to be used for reconfiguration.
[8,19] describe path-based adaptive architectural approaches used
for adapter-based data stream modification. Their strongly typed
data-oriented approaches are less general than our state-change-
based approach, which can be used for general application
purposes as well as for data transformations.
More recently, [6] discusses externalized model-based adaptation,
in which architectural models are used as the basis for problem
diagnosis and repair, and architectural styles can be tailored to
support desired system qualities, including partial self-
configurability. [7] uses architectural constraints as the basis for
specification, design, and implementation of self-organizing
architectures for distributed systems. However, their approach
requires each component to have a global view of the system
configuration, so they require reliable and totally ordered
broadcast, and cannot tolerate network partitions. Our distributed
approach is much less centralized; no component has a global
view of the system configuration. [14] proposes a 3-tier
architecture that separates computation, coordination and
configuration to enable fault treatment using redundant
components. [20] discusses extending existing design tools to
provide better support for runtime architectural adaptation, while
[4] describes a self-management coordination architecture and
infrastructure to enable components in self-healing systems to
work together, incorporating consistent system access, non-
conflicting decision-making, and a consistent system model.

7. CONCLUSIONS
We extend the rigorous problem domain modeling of goal-
oriented requirements engineering by developing a reification
process that bridges the gap between the problem and solution
domains. We use activities and roles to effectively extend the
requirements model, and a robust component intent framework to
extend the implementation model. This provides an abstract but
semantically rich way to use requirements specifications to
prescribe implementation architectures without knowing
implementation details. This approach lays the groundwork for
developing automated systems that will be able to generate
implementation architectures directly from system specifications,
a key step toward developing conformant self-managing system
architectures. We discuss some basic requirements for adaptive
systems, and architecture and design patterns that can aid in their
design and development, and we provide an example architecture
for self-managing systems we are currently developing called
Distributed Configuration Routing (DCR).
We propose several developments to make prescriptive
architectural approaches more practical. First, extend existing
architectural description languages (ADLs) and requirements
description languages (RDLs) to enhance their modeling
capabilities in complementary domains. Second, common role
and intent frameworks for software components would give
architects a common language to use for communicating and
reasoning about families of requirements domain prescriptions
and the functional intent of implementation domain objects,
similar to the way architecture and design patterns have enhanced
communication about implementation models. Third, create an
architectural prescription language (APL) that combines the best
features of both ADLs and RDLs, including tool support for
requirements specification, prescriptive architectural design, and

system configuration. Such an APL-based environment would
enable system specification and design to be accomplished as a
single process within a single framework, and enable reasoning
about system conformance and design at any stage of completion.

8. REFERENCES
[1] Brandozzi, M. and Perry, D. Architectural Prescriptions for

Dependable Systems. ICSE WADS 2002, May 2002.
[2] Brandozzi, M. and Perry, D. From Goal-Oriented Requirements

to Architectural Prescriptions: The Preskriptor Process. Intl.
Workshop From Software Requirements to Architectures, May
2003, 107-113.

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal,
M. Pattern-Oriented Software Architecture: A System of
Patterns. Wiley, 1996.

[4] Cheng, S., Huang, A., Garlan, D., Schmerl, B., and Steenkiste,
P. An Architecture for Coordinating Multiple Self-Management
Systems. WICSA-4, 2004.

[5] Garlan, D., Allen, R.J. and Ockerbloom, J. Exploiting Style in
Architectural Design. Proc. SIGSOFT '94 FSE-2, 175-188.

[6] Garlan, D., Schmerl, B. Model-Based Adaptation for Self-
Healing Systems. WOSS‘02, 2002, 27-32.

[7] Georgiadis I., Magee J. and Kramer J. Self-Organising
Software Architectures for Distributed Systems. WOSS‘02,
2002.

[8] Gribble, S., Welsh, M., von Behren, R., Brewer, E., Culler, D.,
Borisov, N., Czerwinski, S., Gummadi, R., Hill, J., Joseph, A.,
Katz, R., Mao, Z., Ross, S., and Zhao, B. The Ninja
Architecture for Robust Internet-Scale Systems and Services.
IEEE Comp. Networks, Special Issue on Pervasive Computing,
Vol. 35, No. 4, Mar. 2001.

[9] Hawthorne, M. and Perry, D. Applying Design Diversity to
Aspects of System Architectures and Deployment
Configurations to Enhance System Dependability. WADS’04,
June 30, 2004.

[10] Hirsch, D, Inverardi, P. and Montanari, U. Graph Grammars
and Constraint Solving for Software Architecture Styles. 3rd
Intl. Workshop on Software Arch., 1998, 69-72.

[11] Jani, D. Deriving Architecture Specifications from Goal
Oriented Requirements Specifications. Master's Thesis, Dept.
Electrical and Comp. Eng., The Univ. of Texas at Austin, May
2003. Supr.: Dewayne E. Perry.

[12] van Lamsweerde, A. Requirements Engineering in the Year 00:
A Research Perspective. ICSE 2000, June 2000, 5-19.

[13] van Lamsweerde, A. From System Goals to Software
Architecture. SFM 2003, 25-43.

[14] de Lemos, R., Fiadeiro, J. An Architectural Support for Self-
Adaptive Software for Treating Faults. WOSS’02, 2002.

[15] Metayer, D. Software Architecture Styles as Graph Grammars.
Proc. SIGSOFT’96 FSE-4, Nov. 1996, 15-23.

[16] Perry, D. The Inscape Environment. ICSE 1989, May 1989.
[17] Perry, D. Wolf, A. Foundations for the Study of Software

Architecture. ACM SEN, Vol. 17 No. 4, 1992, 40–52.
[18] Perry, D. Generic Architecture Descriptions for Product Lines.

ARES II: S/W Arch. Prod. Families 1998, 1998.
[19] Reiher, P., Guy, R., Yarvis, M., and Rudenko, A. Automated

Planning for Open Architectures. Proc. OPENARCH 2000 –
Short Paper Session, Mar. 2000, 17-20.

[20] Schmerl, B. and Garlan D. Exploiting Architectural Design
Knowledge to Support Self-repairing Systems. 14th Intl. Conf.
Software Eng. and Knowledge Eng., 2002.

[21] Vanderveken, D. Deriving Architectural Descriptions from
Goal-Oriented Requirements. Master's Thesis, Dept.
d'Ingenierie Informatique, Univ. Catholique dl Louvain, June
2004. Suprs.: Axel van Lamsweerde and Dewayne E. Perry.

