
Architectural Styles for Adaptable Self-Healing
Dependable Systems

Matthew J. Hawthorne

Empirical Software Engineering Lab (ESEL)
ECE, The University of Texas at Austin

hawthorn@ece.utexas.edu

Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)
ECE, The University of Texas at Austin

perry@ece.utexas.edu

ABSTRACT
Of all the possible architectural approaches to improving the
dependability of software-based systems, only systems designed
to be self-healing are able to adapt themselves at runtime in
response to changing environmental or operational circumstances.
In this paper, we discuss the basic functional requirements for
self-healing systems, and explore a number of major issues related
to architectural designs for incorporating runtime reflection and
adaptation into software systems. We present several conceptual
architectures for self-adaptation, and analyze the features,
advantages and disadvantages of each architecture. Finally, we
propose enhancements to currently used architectural description
languages (ADLs) and system design tools to add explicit support
for self-adaptive architectures.

Categories and Subject Descriptors
[Software Engineering]: D.2.11 Software Architectures –
patterns, domain-specific architectures; D.2.9: Management –
software configuration management, life cycle; D.2.7:
Distribution, Maintenance, and Enhancement – restructuring,
reengineering; D.2.4: Software/Program Verification – reliability,
programming by contract, model checking; D.2.13: Reusable
Software – domain engineering.

General Terms
Design, Management, Reliability, Performance, Security.

Keywords
Dependable Systems, Self-Adaptive Systems, Self-Healing
Systems.

1. INTRODUCTION
Adaptive, self-healing systems are designed to reconfigure
themselves in response to changing environmental or operational
conditions, including errors or failures resulting from hardware or
software faults, network problems, system loads, unexpected user
or data inputs, and other runtime conditions. Self-adapting
systems are intrinsically more flexible than fixed-configuration or
human-configurable systems; the increase in flexibility is directly
proportional to the number and scope of options the system
adaptability framework supports for reconfiguring the system,

along with the ability of the system’s self-reflection mechanism to
accurately detect and diagnose conditions for which
reconfiguration is necessary or desirable, and the ability of the
reconfiguration mechanism to effectively reason about input from
self-reflection and select self-healing actions that utilize the
configuration options the system provides. This is summarized in
the following equation:

 ∆Flexibility ≡ Options × Reflection × Reasoning ,

where ∆Flexibility is the change in system flexibility as a result of
adding self-healing functionality; Options is the number of
different kinds of reconfiguration options the adaptation
framework supports; Reflection is a measure of the ability of the
self-reflection mechanism to accurately detect and diagnose
problems; and Reasoning is a measure of the ability of the
reconfiguration mechanism to effectively reconfigure the system
using the available options.

Because of this potential increase in system flexibility, and by
implication, dependability in the face of unexpected runtime
conditions, designing self-healing capabilities into software-based
systems can greatly enhance their dependability whenever all
potential permutations of runtime conditions and failures cannot
be known a-priori during system design, as is normally the case.
In the remainder of this paper, we discuss how self-adaptation is
related to system dependability, followed by a brief analysis of
the basic architectural requirements for self-adaptive systems. We
then discuss some of the more important architectural design
issues for self-adaptive systems, and present several different
architectural approaches for implementing self-healing systems.
We analyze each of the architectures, using them to illustrate
architectural directions that show the most promise for producing
the greatest gains in dependability. We discuss related research
and present our conclusions including several specific
recommendations for enhancements in architectural description
languages (ADLs) and system design environments to incorporate
explicit support for self-adaptive architectural frameworks.

2. ADAPTATION AND DEPENDABILITY
Software-based systems are designed and implemented to operate
under a given set of environmental and operational circumstances.
Every system design is based on assumptions about the state of
the system, the platforms on which it will execute, and the
networks over which it will communicate. These assumptions
may be either explicit (highly desirable), or implicit (undesirable,
but common). Even well-designed systems tested against an
explicit set of expected conditions often experience faults or
failures when unforeseen circumstances violate one or more
expectations. While robust architectures and good system design

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005…$5.00.

practices have always led to systems that respond relatively
gracefully to system or platform faults, even if that means little
more than to say that well-designed systems fail relatively
gracefully, for most applications and platforms, highly
dependable systems must also be self-adaptive – that is, they must
incorporate functionality that enables them to reconfigure
themselves in response to unforeseen conditions – to actually
achieve high levels of dependability.

The increase in dependability from self-healing is proportional to
the probability that a given explicit or implicit assumption will be
violated, and the probability of a system failure given such a
violation, and the probability that self-healing will prevent the
failure, divided by the overall probability of system failure for any
reason.

where ∆Dependability|Self-Healing is the change in system
dependability as a result of introducing self-healing functionality
that may address a given runtime violation of the system
assumptions; if P(x|y) is the probability that x will occur given y,
then P(violation) is the unconditional probability that a given
violation will occur, P(fail|violation) is the probability that the
violation will cause a system failure if it does occur,
P(adapt|violation) is the probability that the self-healing
mechanism will successfully adapt the system in response to the
violation, and P(failuresystem) is the overall probability that the
system will fail for any reason.

By extension, the overall change in system dependability is
proportional to the sum of the increases in dependability over
every possible violation of the system’s operational assumptions.

For each i ∈{assumptions}, where {assumptions} is the set of all
explicit and implicit design and implementation-time system
assumptions that may be violated at runtime:

where ∆Dependabilitysystem|Self-Healing is the overall change in
system dependability as a result of introducing self-healing
functionality.

Note that neither of these equations takes into account the
possibility that a poorly designed self-healing mechanism might
degrade system dependability in other ways.

While the preceding equations are admittedly simplistic, even
such simplistic equations demonstrate the potential for adaptive
self-healing systems to enhance dependability where any of the
assumptions underlying the system implementation may be
violated. And unless the system is being built on a completely
deterministic execution platform, using machine language or a
real-time operating system, and all possible combinations of data
input and system state are able to be generated and tested before
the system is deployed, self-healing is a critical strategy for
enhancing system dependability for any applications where the
cost of system failure would be prohibitive.

3. ADAPTIVE SYSTEM REQUIREMENTS
Since self-adaptive systems must detect runtime conditions for
which some kind of adaptation should be done, and then perform
some kind of adaptive configuration in response, it follows that
adaptive system architectures have three basic requirements: a
reflection mechanism to detect internal or external conditions to
which the system should respond; a reasoning mechanism to
determine what actions should be performed in response to input
from the reflection mechanism; and a configuration mechanism to
perform the necessary changes to repair or optimize the system as
directed by the reasoning mechanism. Adaptation
implementations can range from simple, ad-hoc solutions
consisting of hard-coded inline program statements that check for
and respond to specific runtime conditions, to comprehensive
hierarchical agent-based monitor-configurator frameworks.

Figure 1 shows a conceptual model for self-healing architectures.
The adaptation mechanism consists of components that perform
reflection, reasoning and configuration. Each adaptation
component either monitors or configures one or more aspects of
the system or the system environment.

Figure 1. Conceptual architectural model.

4. DESIGN ISSUES
Of the many aspects of self-healing architectural design that could
be discussed, this section focuses on four major design issues
related to the organization and communication among the major
adaptive entities in the architecture (reflection, reasoning and
configuration). Architectural aspects explored include the degree
of inter-component coupling, the direction and level of inter-
component communications, configuration dispatch styles, and
ways to specify configuration functionality. In this paper, runtime
reflection components are called monitors, and configuration
components are called configurators. Configurators may also
encapsulate reasoning functionality; separate system-level
reasoning components are called configuration managers.

4.1 Tight vs. Loose Coupling
The first major architectural design issue for adaptive systems is
the level of inter-component coupling. In a tightly coupled
adaptation system, the reflection, reasoning and configuration
components have direct, explicit interdependencies. Examples of
tight coupling include systems where the monitoring,
configuration and configuration management implementation
entities (components, objects, or methods) explicitly invoke one
another without an intervening layer of logical abstraction.

 ∆Dependability|Self-Healing ≡
 (P(violation) × P(fail|violation) × P(adapt|violation)) /
 P(failuresystem) ,

 ∆Dependabilitysystem|Self-Healing ≡
 ∑i(P(violationi) × P(fail|violationi) × P(adapt|violationi)) /
 P(failuresystem) ,

Tightly coupled systems may be somewhat simpler to implement,
but this apparent simplicity comes at the cost of flexibility and
scalability. Tight coupling is a particularly risky architectural
style for a self-healing system because certain types of tight
coupling can make the self-healing mechanism itself vulnerable to
being disabled when system components fail, leading to the
paradoxical situation where the self-healing system itself may
need healing. And since any system where hard-coded references
must be recoded in order to change implementation objects is
probably too inflexible to use for serious large-scale system
development anyway, loosely coupled adaptation frameworks are
far more practical for large, complex systems. Loosely coupled
systems can also exploit the full abstractive and adaptive power of
the component-connector abstraction, which allows connectors to
handle and encapsulate inter-component connection and
communication concerns, freeing system components to focus on
application-related functionality.

4.2 Instance vs. Intent-based Selection
How the adaptation system or its components specify one another
when they need to request a service (e.g., reconfiguration) is
another important aspect of a self-healing architecture, and is
closely related to the degree of inter-component coupling.
Specifying a particular implementation of a monitor or
configurator leads to logical dependencies, or logical tight
coupling, among the adaptation mechanism entities. A better
design is for the adaptation mechanism to be designed so that its
components identify one another by functional intent [8], i.e., by
their logical or functional role in the system. This requires all
adaptation entities to be identifiable by functional role, and it
requires the system to include a directory service, service provider
request mechanism, or similar functionality that the system or its
components can use to locate and establish a connection with the
appropriate component or components that will fulfill the required
service. Note that intent- or functionality-based specification only
results in looser coupling if the supporting directory or service
request mechanism is flexible (i.e., functional role to component
instance mappings are not hard-coded, the system supports adding
and removing component instances at runtime, etc.).

4.3 Peer-to-Peer vs. Hierarchical Organization
Peer-to-peer approaches allocate self-adaptive functionality to
symmetrical sets of monitor and configurator peer components.
Each monitor interacts with a peer-level configurator, and vice-
versa. The configurator peer may delegate configuration duties,
or escalate to a higher-level configurator if necessary (see the
aggregator-escalator-peer style, below). Similarly, the monitor
peer may pass alerts and other messages on to a higher-level
aggregator monitor, which communicates with its higher-level
configurator peer.

Peer-to-peer styles are simple and symmetrical, and are similar in
many ways to common network protocol architectures. However,
more hierarchical approaches allow monitor messages to reach
higher-level configurator or configuration manager components,
which are able to make more comprehensive subsystem- or
system-level reconfiguration decisions if needed.

4.4 Single vs. Multiple Dispatch Configuration
It may be desirable to use a “chain of commands” style of

configurators; if one configurator cannot handle a given
configuration request, or if a configurator unsuccessfully attempts
to handle a request, the configurator or the configuration manager
can pass the request to the next configurator in the chain.
Alternately, the configuration functionality can be allocated to a
sequential or branching chain of configurators; each configurator
performs its part of the configuration and then passes the request
to the next configurator until the request has traversed the entire
chain or tree, and all the configuration actions have been
performed.

5. ARCHITECTURAL APPROACHES
In this section, we present and discuss several reference
architectural styles that illustrate the architectural design issues
from the previous section. Each architecture includes a diagram,
a brief explanation of how the architectural style works, and a
short discussion of some of its strengths and weaknesses as they
relate to the previously discussed design issues, and any other
issues that may affect the utility of the style for practical system
design.

Figure 2. Aspect Peer-to-Peer architectural style.

5.1 Aspect Peer-to-Peer
The aspect peer-to-peer architectural style is a simple approach
that allocates a monitor component to monitor each aspect of the
system or environment that needs to be monitored, and a peer
configurator component to reconfigure the system (or delegate
configuration; see, e.g., the aggregator-escalator-peer style
below). This style is similar to network protocol architectures
where each level in the protocol stack has a peer-level counterpart
at the other end of the communication link. Such a strict peer-to-
peer approach, while conceptually simple, has serious drawbacks
for most self-healing applications, because an actual configurator
or configuration manager may require output from more than one
monitor to make a decision about the optimal reconfiguration
actions to take. As a result, the aspect peer-to-peer approach
needs to be combined with one or more additional strategies (e.g.,
aggregator-escalator-peer or chain-of-configurators, described
below) to be useful. Figure 2 shows the aspect peer-to-peer
architectural style.

5.2 Aggregator-Escalator-Peer
The aggregator-escalator-peer adaptation style overcomes some of
the limitations of a strictly peer-to-peer monitor-configurator
approach by allowing monitors to pass their outputs to higher-
level aggregator monitors, which then package the combined

output from the lower-level monitors into a coherent composite
package. This composite output is then passed to a peer
configurator, which benefits from getting a single consistent
picture of related monitor outputs, instead of receiving all the
outputs separately, and having to either cache the data until it has
received enough (maintaining data ages and TTL timers as well),
or worse, having to respond to each low-level monitor alert
separately.

Figure 3 shows a simple example that demonstrates how a self-
healing system can use an aggregator-escalator-peer adaptation
architecture to aggregate output from multiple environmental
monitors, and pass a comprehensive set of monitor output data to
a higher-level configurator that will be able to make better
configuration decisions and operate more efficiently than it would
if it received and responded to each low-level monitor alert
separately.

Figure 3. Aggregator-Escalator-Peer architectural style.

5.3 Chain-of-Configurators
The chain-of-configurators architectural style is really two
different styles. In the first variation, similar to the Chain-of-
Responsibility design pattern, multiple configurators are chained
together in a linear or other traversable structure (e.g., tree). The
configuration request is passed along the configurator chain until
a configurator is able to successfully handle the request. This
enhances loose coupling, and also makes it easy to implement
runtime addition and removal of configurator instances. The
chain-of-configurators style allows self-healing systems to try all
available configuration strategies for repairing a given problem.
The system can then promote successful strategies and demote or
prune less-successful strategies while the system is running, just
by manipulating the list.

The second chain-of-configurators variant is similar to the first,
except that it utilizes a Visitor pattern, in which configurator
chaining is used to compose higher-order configuration
functionality using a group of lower-order configurators. This
visitor-style variant enhances the power and flexibility of the
adaptability mechanism by allowing the adaptation reasoning or
configuration management mechanism to construct new
configuration solutions at runtime from existing lower-level
solutions. While the visitor variant does not enhance loose
coupling by itself, combining the two approaches can lead to
powerful and flexible configuration solutions.

The visitor-style variant of the chain-of-configurators can also be
used to implement configuration functionality similar to the
aggregator-escalator-peer style in peer-to-peer monitor-
configurator systems; in this case, the configurator chain
aggregates the output from all the necessary peer-level monitors,
and passes it on to the next higher-level configurator.

Since both variants of the chain-of-configurators style lack any
intrinsic organization, beyond the traversal order of the list or tree
data structures used, the configuration mechanism or human
system engineer must enforce any ordering constraints, etc., on
the set of configurator components in the chain. For example, to
implement a strategy that tries all localized configuration
strategies first, then escalates to a higher-order configurator or the
system configuration manager, the last-resort configuration entity
must be at the end of the chain.

Figure 4 depicts the chain-of-configurators architectural styles for
self-adaptive systems, including an optional configuration
manager.

Figure 4. Chain-of-Configurators architectural style.

5.4 Configuration Manager
The configuration manager architectural style utilizes a
configuration manager component to centralize and encapsulate
the logic involved with reasoning about configuration changes. In
addition, the configuration manager is typically also the central
communication clearinghouse for the other adaptation entities
(e.g., monitors and configurators), since the configuration
manager must ultimately make any reconfiguration decisions and
communicate those decisions to the configurator components that
will be involved in making the required changes.

Figure 5. Configuration Manager architectural style.

Configuration manager architectures can be combined with other
architectures, e.g., aggregator-escalator or chain-of-configurators),
but regardless of other architectural styles used, the centralized
control imposed by a configuration manager strongly affects the
fundamental nature of the self-configuration mechanism. While
the peer-to-peer approaches are intended to support more
decentralized and distributed modes of inter-component
communication and configuration reasoning, a configuration
manager centralizes at least the system’s self-healing logic, and
closely related supporting functionality such as learning and

planning. A configuration manager may still utilize loose
coupling if it delegates monitoring and reconfiguration, and the
system includes a mechanism that supports functional intent-
based component specification or a similar technique. Figure 5
shows the basic configuration manager style for self-adaptation.

6. DISCUSSION
Loosely coupled adaptation architectures are better than tightly
coupled architectures. In particular, systems where the
components that reason about and perform reconfiguration can be
specified by function instead of explicitly by implementation type
or instance will be much more flexible than systems where the
configuration structure is deterministically programmed prior to
deployment.

Low-level monitors and configurators combined with aggregation
and escalation to enable higher-level solutions can be a powerful
and flexible architectural style for self-healing systems.
Configurator chaining gives the system even more flexibility
(chain of responsibility) or expressive power (visitor style) for
performing configurations.

Largely because a centralized configuration control component is
easier to implement than, e.g., a distributed agent-based service,
configuration managers are common architectural features in self-
healing systems. A central configuration manager also offers
some intrinsic advantages for aspects of system ownership like
system administration and security. Depending on the design
details of the configuration manager, it may introduce a potential
single point of failure, or alternately, the configuration manager
itself may be designed to be self-healing. Mirrored servers and
similar redundancy strategies may also be employed to mitigate
against single-point failure concerns. Care must be taken to
ensure that a single configuration manager-based architecture will
be scalable enough for the system being designed, since
scalability concerns may weigh in favor of more federated or
distributed configuration approaches as systems become very
large or distributed.

7. CONCLUSIONS
Since dependable systems must often be implemented using less-
than-dependable platforms and networks, and even dependable
hardware and software still fails occasionally, especially in the
presence of unexpected user input or other data- and state-related
issues, adaptive self-healing systems are an important strategy for
software engineers who develop such systems. We argue for the
potential of self-healing mechanisms to enhance system
dependability; then, starting from the basic requirements of self-
healing systems, we present a general conceptual architecture for
adaptive systems, discuss several important architectural design
issues, briefly analyze several architectural styles for self-healing
systems, and use that analysis to recommend several specific
architectural style directions that show the most promise for
implementing adaptive self-healing systems.

Finally, to enable system architects to more easily select and
incorporate appropriate adaptation architectures, and to promote
separation of concerns between application and adaptation
architectures, we propose the following enhancements to current
architectural description languages (ADLs) and system design
environments to incorporate explicit support for self-healing
architectural frameworks:

• Self-healing ADLs: Add new syntactic constructs to
specify, define and combine architectural strategies for
self-healing systems, along with component-level
interfaces for runtime monitoring and configuration, etc.

• System design toolsets: Enhance with explicit self-
healing system support, including self-adaptive
architectural styles.

• Visualization: Add self-healing design views such
system aspects views; monitor views; alert condition
editors; configurator views; and alert type views.

• Additional requirements: Enhance meta-data support,
e.g., for system- and component-level properties that
may be monitored.

Adding capabilities such as these to ADLs and system design
tools promises to contribute significantly to the productivity of
system designers who need to design architectures for self-healing
systems. But even more importantly, this kind of explicit design
environment support will immediately help engineers design
better-quality self-healing architectures, as well as contributing to
improved documentation, sharing and standardization of
architectural styles for self-healing systems, all of which will
serve to enhance system dependability.

8. REFERENCES
[1] Blair, G., Coulson, G., Blair, L., Duran-Limon, H., Grace, P.,

Moreira, R., Parlavantzas, N. Reflection, Self-Awareness, and
Self-Healing. WOSS’02, Nov. 18, 2002.

[2] Brandozzi, M. and Perry, D. Architectural Prescriptions for
Dependable Systems. WADS’2002, May 2002

[3] Cheng, S., Huang, A., Garlan, D., Schmerl, B., and Steenkiste,
P. An Architecture for Coordinating Multiple Self-Management
Systems. WICSA-4, 2004.

[4] Garlan, D., Cheng, S., Schmerl, B. “Increasing System
Dependability through Architecture-based Self-Repair,”
Architecting Dependable Systems. de Lemos, R., Gacec, C., and
Romanovsky, A., eds., LNCS 2677, Springer-Verlag, 2003.

[5] Garlan, D., Schmerl, B. Model-Based Adaptation for Self-Healing
Systems. WOSS’02, 2002.

[6] Hansson, H., Akerholm, M., Crnkovic, I., and Torngren, M.
“SaveCCM – a Component Model for Safety-Critical Real-Time
Systems.” In Proceedings of 30 Euromicro Conference, Special
Session Component Models for Dependable Systems, Sept. 2004.

[7] Hawthorne, M., Perry, D. Applying Design Diversity to Aspects of
System Architectures and Deployment Configurations to Enhance
System Dependability. WADS’04, June 30, 2004.

[8] Hawthorne, M., Perry, D. Exploiting Architectural
Prescriptions for Self-Managing, Self-Adaptive Systems: A
Position Paper. WOSS’04, Oct. 31-Nov. 1, 2004.

[9] Klein, F., Giese, H., “Separation of concerns for mechatronic
multi-agent systems through dynamic communities.” Software
Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications. Choren, Ricardo, Garcia, Alessandro,
Lucena, Carlos, Romanovsky, Alexander, eds., LNCS,
Springer-Verlag, Dec. 2004.

[10] Koopman, P. Elements of the Self-Healing System Problem
Space. WADS’03, May, 2003.

[11] de Lemos, R., Fiadeiro, J. An Architectural Support for Self-
Adaptive Software for Treating Faults. WOSS’02, 2002.

[12] Perry, D., Wolf, A. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes,
17(4):40, Oct. 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

