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Abstract 

 
Understanding the impact of software changes has 

been a challenge since software systems were first 
developed. With the increasing size and complexity of 
systems, this problem has become more difficult.  There 
are many ways to identify change impact from the 
plethora of software artifacts produced during 
development and maintenance. We present the analysis of 
the software development process using change and 
defect history data. Specifically, we address the problem 
of small changes. The studies revealed that (1) there is 
less than 4 percent probability that a one-line change will 
introduce an error in the code; (2) nearly 10 percent of 
all changes made during the maintenance of the software 
under consideration were one-line changes; (3 the 
phenomena of change differs for additions, deletions and 
modifications as well as for the number of lines affected. 

 
1. Introduction 
 

Change is one of the essential characteristics of 
software systems [1]. The typical software development 
life cycle consists of requirements analysis, architecture 
design, coding, testing, delivery and finally, maintenance. 
Beginning with the coding phase and continuing with the 
maintenance phase, change becomes ubiquitous through 
the life of the software. Software may need to be changed 
to fix errors, to change executing logic, to make the 
processing more efficient, or to introduce new features 
and enhancements. 

Despite its omnipresence, source code change is 
perhaps the least understood and most complex aspect of 
the development process. An area of concern is the issue 
of software code degrading through time as more and 
more changes are introduced to it – code decay [5]. While 
change itself is unavoidable, there are some aspects of 
change that we can control. One such aspect is the 

introduction of defects while making changes to software, 
thus preventing the need for fixing those errors. 

Managing risk is one of the fundamental problems in 
building and evolving software systems. How we manage 
the risk of small changes varies significantly, even within 
the same company.  We may take a strict approach and 
subject all changes to the same rigorous processes.  Or we 
may take the view that small changes generally have 
small effects and use less rigorous processes for these 
kinds of changes. We may deviate from what we know to 
be best practices to reduce costs, effort or elapse times.  
One such common deviation is not to bother much about 
one line or other small changes at all.  For example, we 
may skip investigating the implications of small changes 
on the system architecture; we may not perform code 
inspections for small changes; we may skip unit and 
integration testing for them; etc.  We do this because our 
intuition tells us that the risk associated with small 
changes is also small. 

However, we all know of cases where one line 
changes have been disastrous. Gerald Weinberg [9] 
documents an error that cost a company 1.6 billion dollars 
and was the result of changing a single character in a line 
of code.  

In either case, innocuous or disastrous, we have very 
little actual data on small changes and their effects to 
support our decisions. We base our decisions about risk 
on intuition and anecdotal evidence at best. 

Our approach is different from most other studies that 
address the issue of software errors because we have 
based the analysis on the property of the change itself 
rather than the properties of the code that is being 
changed [7]. Change to software can be made by addition 
of new lines, modifying existing lines, or by deleting 
lines. We expect each of these different types of change 
to have different risks of failure.  

Our first hypothesis is specific to one-line changes, 
namely that the probability of a one-line change resulting 
in an error is small. Our second hypothesis is that the 
failure probability is higher when the change involves 
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adding new lines than either deleting or modifying 
existing lines of code. 

To test our hypotheses, we used data from the source 
code control system (SCCS) of a large scale software 
project. The Lucent Technologies 5ESS™ switching 
system software is a multi-million line distributed, high 
availability, real-time telephone switching system that 
was developed over two decades [6]. The source code of 
the 5ESS project, mostly written in the C programming 
language, has undergone several hundred thousand 
changes. 

Our primary contribution in this empirical research is 
an initial descriptive and relational study of small 
changes.  We are the first to study this phenomenon. 
Another unique aspect of our research is that we have 
used a combination of product measures such as the lines 
of code and process measures such as the change history 
(change dependency) to analyze the data. In doing so, we 
have tried to gain the advantages of both measures while 
removing any bias associated with each of them. 

While several papers discuss the classification of 
changes based on its purpose (corrective, adaptive, 
preventive) there is virtually no discussion on the type of 
change: software can be changed by adding lines, deleting 
lines or by modifying existing lines. As a byproduct of 
our analyses, we have provided useful information that 
gives some insight into the impact of the type of change 
on the software evolution process. 
 
2. Background – Change Data Description 
 

In the 5ESS, a feature is the fundamental unit of 
system functionality. Each feature is implemented by a set 
of Initial Modification Requests (IMRs) where each IMR 
represents a logical problem to be solved.  Each IMR is 
implemented by a set of Modification Requests (MRs) 
where each MR represents a logical part of an IMR’s 
solution. The change history of the files is maintained 
using the Extended Change Management System (ECMS) 
(as shown in Figure.1 [3][5][7]) for initiating and tracking 
changes and the Sources Code Control System for 
managing different versions of the files. The ECMS 
records information about each MR. Each MR is owned 
by a developer, who makes changes to the necessary files 
to implement the MR. The changes themselves are 
maintained by SCCS in the form of one or more deltas 
depending on the way the changes are committed by the 
developer. Each delta provides information on the  
attributes of the change: lines added, lines deleted, lines 
unchanged, login of the developer, and the time and date 
of the change. 

While it is possible to make all changes that are 
required to be made to a file by an MR in a single delta, 
developers often perform multiple deltas on a single file 

for an MR. Hence there are typically many more records 
in the delta relation than there are files that have been 
modified by an MR. 

The 5ESS™ source code is organized into 
subsystems, and each subsystem is subdivided into a set 
of modules. Any given module contains a number of 
source lines of code.  For this research, we use data from 
one of the subsystems of the project. The Office 
Automation (OA) subsystem contains 4550 modules that 
have a total of nearly 2 million lines of code. Over the last 
decade, the OA subsystem had 31884 modification 
requests (MR) that changed nearly 4293 files. So nearly 
95 percent of all files were modified after first release of 
the product. 

Change to software can be introduced and interpreted 
in many ways. However, our definition of change to 
software is driven by the historic data that we used for the 
analysis: A change is any alteration to the software 
recorded in the change history database [5]. In 
accordance with this definition, in our analysis the 
following were considered to be changes: 

 
• One or more modifications to single/multiple lines; 
• One or more new statements inserted between 

existing lines; 
• One or more lines deleted; and,  
• A modification to a single/multiple lines 

accompanied by insertion or/and deletion of one or 
more lines. 

 
The following changes would qualify to be a one-line 

change when an MR consists of either: 
 

• One or more modifications to a single line; 
• One or more lines replaced by a single line; 
• One new statement inserted between existing lines; 

or, 
• One line deleted. 
 

Previous studies such as [14] do not consider deletion 
of lines as a change. However, from preliminary analysis, 
we found that lines were deleted for fixing bugs as well as 
making modifications. Moreover, in the SCCS system, a 
line modification is tracked as a line deleted and a line 
added. Hence in our research, we have analyzed the 
impact of deleting lines of code on the software 
development process. 
 
3. Approach 
 

In this section, we document the steps we took to 
obtain useful information from our project database. We 
first discuss the preparation of the data for the analysis 
and then explain some of the categories into which the 



data is classified. The final stage of the analysis identifies 
the logical and physical dependencies that exist between 
files and MRs. 

 
3.1 Data Preparation 
 

The change history database provides us with a large 
amount of information. Since our research focuses on 
analyzing one-line changes and changes that were 
dependent on other changes, one of the most important 
aspects of the project was to derive relevant information 
from this data pool. While it was possible to make all 
changes that are required to be made for a MR in a file in 
a single delta, developers often performed multiple deltas 
on a single file for an MR. Hence there were lot more 
delta records than the number of files that needed to be 
modified by MRs. 

In the change process hierarchy, an MR is the lowest 
logical level of change. Hence if the MR was created to 
fix a defect, all the modifications that are required by an 
MR would have to be implemented to fix the bug. Hence 
we were interested in change information for each 
effected file at the MR level. For example, in Table 1, the 
MR oa101472pQ changes two files. Note that the file 
oaMID213 is changed in two steps. In one of the deltas, it 
modifies only one-line. However, this cannot be 
considered to be a one-line change since for the complete 
change, the MR changed 3 lines of the file. With nearly 
32000 MRs that modified nearly 4300 files in the OA 
subsystem, the aggregation of the changes made to each 
file at the MR level gave us 72258 change records for 
analysis. 

Table 1: Delta relation snapshot 
DELTA relation 

MR FILE Add Delete Date 

Oa101472pQ oaMID213 2 2 9/3/1986 

Oa101472pQ oaMID213 1 1 9/3/1986 

Oa101472pQ oaMID90 6 0 9/3/1986 

Oa101472pQ oaMID90 0 2 9/3/1986 

 
3.2. Data classification 
 

Change data can be classified based on the purpose of 
the change and also based on how the change was 
implemented. The classification of the MRs based on the 
change purpose was derived from the work done by 
Mockus and Votta [3]. They classified MRs based on the 
keywords in the textual abstract of the change. For 
example, if keywords like ‘fix’, ‘bug’, ‘error’, and ‘fail’ 
were present, the change was classified as corrective. In 
Table 2 we provide a summary of the change information 

classified based on its purpose. The naming convention is 
similar to the work done in their original paper. 

However, there were numerous instances when 
changes made could not be classified clearly. For 
example, certain changes were classified as ‘IC’ since the 
textual abstract had keywords that suggested changes 
from inspection (I) as well as corrective changes (C). 
Though this level of information provides for better 
exploration and understanding, in order to maintain 
simplicity, we made the following assumptions: 

 
• Changes with multiple ‘N’ were classified as ‘N’ 
• Changes with multiple ‘C’ were classified as ‘C’ 
• Changes containing at least one ‘I’ were classified as 

‘I’ 

Table 2: Change Classification (purpose) 
ID Change  type Change  purpose 

B Corrective Fix defects 

C Perfective 
Enhance 

performance 

N Adaptive New development 

I Inspection Following inspection 

 
Changes which had ‘B’ and ‘N’ combinations were 

left as ‘Unclassified’ since we did not want to corrupt the 
data. Classification of these as either a corrective or 
adaptive change would have introduced validity issues in 
the analysis. Based on the above rules, we were able to 
classify nearly 98 percent of all the MR into corrective, 
adaptive or perfective changes.  

Table 3: Change classification (implementation) 
ID Change Type Description 

C Modify Change existing lines 

I Insert Add new lines 

D Delete Delete existing lines 

IC Insert/Modify Inserts and modifies lines 

ID Insert/Delete Inserts and deletes lines 

DC Delete/Modify Deletes and modifies lines 

DIC All of the above Inserts, deletes and modifies lines 

 
Another way to classify changes is on the basis of the 

implementation method into insertion, deletion, or 
modification. But the SCCS system maintains records of 
only the number of lines inserted or deleted for the 
change and not the type of change. Modifications to the 
existing lines are tracked as old lines being replaced by 
new lines (delete and insert). However, for every changed 
file SCCS maintains an SCCS file that relates the MR to 



the insertions and deletions made to the actual module. 
Scripts were used to parse these files and categorize the 
changes made by the MR into inserts, deletes or 
modifications. Table 3 lists different types of changes 
based on their implementation method. 

 
3.3 Identifying file dependencies 
 

Our primary concern was in isolating those changes 
that resulted in errors. To do so, we identified those 
changes that were dependencies – changes to lines of 
code that were changed by an earlier MR. If the latter 
change was a bug fix our assumption was that the original 
change was in error. The one argument against the 
validity of this assumption would be that the latter change 
might have fixed a defect that was introduced before the 
original change was made. However, in the absence of 
prima facie evidence to support either case, and since 
preliminary analysis of some sample data did not support 
the challenging argument, we ruled out this possibility. In 
this report, we will refer to those files in which changes 
were made to those lines that were changed earlier by 
another MR as dependent files. 

The dependency, as we have defined earlier, may have 
existed due to bug fixes (corrective), enhancements 
(perfective), changes from inspection, or new 
development (adaptive). 2530 files in the OA subsystem 
were found to have undergone dependent change. That is 
nearly 55 percent of all files in the subsystem and nearly 
60 percent of all changed files. So, in nearly 60 percent of 
cases, lines that are changed were changed again. This 
kind of information can be very useful to the 
understanding of the maintenance phase of a software 
project. We had 51478 dependent change records and this 
data was the core of our analysis. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

New/Dependent 
change 

classification

Corrective
(B)

Perfective (C) Adaptive (N) Inspection (I)

Original change classification

Inspection (I)
Adaptive (N)
Perfective (C)
Corrective (B)

 
 

Figure 1: Distribution of change classification on 
dependent files 

 
In Figure 1, we show the distribution of change 

classifications of the dependent files across the original 

files. The horizontal axis shows the types of changes 
made to the dependent files originally. In the vertical axis, 
we distribute the new changes based on their 
classification based on the implementation type. From the 
distribution it can be noted that most bug fixes were made 
to code that was already changed by an earlier MR to fix 
bugs. At this point of time, we can conclude that roughly 
40 percent of all changes made to fix errors introduced 
more errors. 

It is also interesting to note that nearly 40 percent of 
all the dependent changes were of the adaptive type and 
most perfective changes were made to lines that were 
previously changed for the same reason, i.e., enhancing 
performance or removing inefficiencies. 
 
4. Analysis Summary and Next Steps 
 

We have found that the probability that a one-line 
change would introduce at least one error is less than 4 
percent. This result supports the typical risk strategy for 
one line changes and puts a bound on our search for 
catastrophic changes. 

Interestingly, this result is very surprising considering 
the intial claim:  “one-line changes are erroneous 50 
percent of the time” [21]. This large deviation may be 
attributed to the structured programming practices and 
development and evolution processes involving code 
inspections and walkthroughs that were practiced for the 
development of the project under study. Earlier research 
[9] shows that without proper code inspection procedures 
in place, there is a very high possibility that one-line 
changes could result in error. 

In summary, some of the more interesting 
observations that we made during our analysis include: 
• Nearly 95 percent of all files in the software project 

were maintained at one time or another. If the 
common header and constants files are excluded 
from the project scope, we can conclude that nearly 
100 percent of files were modified at some point in 
time after the initial release of the software product. 

• Nearly 40 percent of the changes that were made to 
fix defects introduced one or more other defects in 
the software. 

• Nearly 10 percent of changes involved changing only 
a single line of code; nearly 50 percent of all changes 
involved changing fewer than 10 lines of code; 
nearly 95% of all changes were those that changed 
fewer than 50 lines of code. 

• Less than 4 percent of one-line changes result in 
error.  

• The probability that the insertion of a single line 
might introduce a defect is 2 percent; there is nearly a 
5 percent chance that a one-line modification will 
cause a defect. There is nearly a 50 percent chance of 



at least one defect being introduced if more than 500 
lines of code are changed. 

• Less than 2.5 percent of one-line insertions were for 
perfective changes, compared to nearly 10 percent of 
insertions towards perfective changes when all 
change sizes were considered. 

• The maximum number of changes was made for 
adaptive purposes, and most changes were made by 
inserting new lines of code.  

• There is no credible evidence that deletions of fewer 
than 10 lines of code resulted in defects. 

To fully understand these effects of small changes in 
particular, and changes in general, this study should be 
replicated across systems in different domains and of 
different sizes. 
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