

Towards Understanding the Rhetoric of Small Changes

-- Extended Abstract --

Ranjith Purushothaman
Server Operating Systems Group

Dell Computer Corporation
Round Rock, Texas 78682
ranjith_purush@dell.com

Dewayne E. Perry
Electrical & Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

perry@ece.utexas.edu

Abstract

Understanding the impact of software changes has

been a challenge since software systems were first
developed. With the increasing size and complexity of
systems, this problem has become more difficult. There
are many ways to identify change impact from the
plethora of software artifacts produced during
development and maintenance. We present the analysis of
the software development process using change and
defect history data. Specifically, we address the problem
of small changes. The studies revealed that (1) there is
less than 4 percent probability that a one-line change will
introduce an error in the code; (2) nearly 10 percent of
all changes made during the maintenance of the software
under consideration were one-line changes; (3 the
phenomena of change differs for additions, deletions and
modifications as well as for the number of lines affected.

1. Introduction

Change is one of the essential characteristics of
software systems [1]. The typical software development
life cycle consists of requirements analysis, architecture
design, coding, testing, delivery and finally, maintenance.
Beginning with the coding phase and continuing with the
maintenance phase, change becomes ubiquitous through
the life of the software. Software may need to be changed
to fix errors, to change executing logic, to make the
processing more efficient, or to introduce new features
and enhancements.

Despite its omnipresence, source code change is
perhaps the least understood and most complex aspect of
the development process. An area of concern is the issue
of software code degrading through time as more and
more changes are introduced to it – code decay [5]. While
change itself is unavoidable, there are some aspects of
change that we can control. One such aspect is the

introduction of defects while making changes to software,
thus preventing the need for fixing those errors.

Managing risk is one of the fundamental problems in
building and evolving software systems. How we manage
the risk of small changes varies significantly, even within
the same company. We may take a strict approach and
subject all changes to the same rigorous processes. Or we
may take the view that small changes generally have
small effects and use less rigorous processes for these
kinds of changes. We may deviate from what we know to
be best practices to reduce costs, effort or elapse times.
One such common deviation is not to bother much about
one line or other small changes at all. For example, we
may skip investigating the implications of small changes
on the system architecture; we may not perform code
inspections for small changes; we may skip unit and
integration testing for them; etc. We do this because our
intuition tells us that the risk associated with small
changes is also small.

However, we all know of cases where one line
changes have been disastrous. Gerald Weinberg [9]
documents an error that cost a company 1.6 billion dollars
and was the result of changing a single character in a line
of code.

In either case, innocuous or disastrous, we have very
little actual data on small changes and their effects to
support our decisions. We base our decisions about risk
on intuition and anecdotal evidence at best.

Our approach is different from most other studies that
address the issue of software errors because we have
based the analysis on the property of the change itself
rather than the properties of the code that is being
changed [7]. Change to software can be made by addition
of new lines, modifying existing lines, or by deleting
lines. We expect each of these different types of change
to have different risks of failure.

Our first hypothesis is specific to one-line changes,
namely that the probability of a one-line change resulting
in an error is small. Our second hypothesis is that the
failure probability is higher when the change involves

mailto:ranjith_purush@dell.com
mailto:perry@ece.utexas.edu

adding new lines than either deleting or modifying
existing lines of code.

To test our hypotheses, we used data from the source
code control system (SCCS) of a large scale software
project. The Lucent Technologies 5ESS™ switching
system software is a multi-million line distributed, high
availability, real-time telephone switching system that
was developed over two decades [6]. The source code of
the 5ESS project, mostly written in the C programming
language, has undergone several hundred thousand
changes.

Our primary contribution in this empirical research is
an initial descriptive and relational study of small
changes. We are the first to study this phenomenon.
Another unique aspect of our research is that we have
used a combination of product measures such as the lines
of code and process measures such as the change history
(change dependency) to analyze the data. In doing so, we
have tried to gain the advantages of both measures while
removing any bias associated with each of them.

While several papers discuss the classification of
changes based on its purpose (corrective, adaptive,
preventive) there is virtually no discussion on the type of
change: software can be changed by adding lines, deleting
lines or by modifying existing lines. As a byproduct of
our analyses, we have provided useful information that
gives some insight into the impact of the type of change
on the software evolution process.

2. Background – Change Data Description

In the 5ESS, a feature is the fundamental unit of
system functionality. Each feature is implemented by a set
of Initial Modification Requests (IMRs) where each IMR
represents a logical problem to be solved. Each IMR is
implemented by a set of Modification Requests (MRs)
where each MR represents a logical part of an IMR’s
solution. The change history of the files is maintained
using the Extended Change Management System (ECMS)
(as shown in Figure.1 [3][5][7]) for initiating and tracking
changes and the Sources Code Control System for
managing different versions of the files. The ECMS
records information about each MR. Each MR is owned
by a developer, who makes changes to the necessary files
to implement the MR. The changes themselves are
maintained by SCCS in the form of one or more deltas
depending on the way the changes are committed by the
developer. Each delta provides information on the
attributes of the change: lines added, lines deleted, lines
unchanged, login of the developer, and the time and date
of the change.

While it is possible to make all changes that are
required to be made to a file by an MR in a single delta,
developers often perform multiple deltas on a single file

for an MR. Hence there are typically many more records
in the delta relation than there are files that have been
modified by an MR.

The 5ESS™ source code is organized into
subsystems, and each subsystem is subdivided into a set
of modules. Any given module contains a number of
source lines of code. For this research, we use data from
one of the subsystems of the project. The Office
Automation (OA) subsystem contains 4550 modules that
have a total of nearly 2 million lines of code. Over the last
decade, the OA subsystem had 31884 modification
requests (MR) that changed nearly 4293 files. So nearly
95 percent of all files were modified after first release of
the product.

Change to software can be introduced and interpreted
in many ways. However, our definition of change to
software is driven by the historic data that we used for the
analysis: A change is any alteration to the software
recorded in the change history database [5]. In
accordance with this definition, in our analysis the
following were considered to be changes:

• One or more modifications to single/multiple lines;
• One or more new statements inserted between

existing lines;
• One or more lines deleted; and,
• A modification to a single/multiple lines

accompanied by insertion or/and deletion of one or
more lines.

The following changes would qualify to be a one-line

change when an MR consists of either:

• One or more modifications to a single line;
• One or more lines replaced by a single line;
• One new statement inserted between existing lines;

or,
• One line deleted.

Previous studies such as [14] do not consider deletion
of lines as a change. However, from preliminary analysis,
we found that lines were deleted for fixing bugs as well as
making modifications. Moreover, in the SCCS system, a
line modification is tracked as a line deleted and a line
added. Hence in our research, we have analyzed the
impact of deleting lines of code on the software
development process.

3. Approach

In this section, we document the steps we took to
obtain useful information from our project database. We
first discuss the preparation of the data for the analysis
and then explain some of the categories into which the

data is classified. The final stage of the analysis identifies
the logical and physical dependencies that exist between
files and MRs.

3.1 Data Preparation

The change history database provides us with a large
amount of information. Since our research focuses on
analyzing one-line changes and changes that were
dependent on other changes, one of the most important
aspects of the project was to derive relevant information
from this data pool. While it was possible to make all
changes that are required to be made for a MR in a file in
a single delta, developers often performed multiple deltas
on a single file for an MR. Hence there were lot more
delta records than the number of files that needed to be
modified by MRs.

In the change process hierarchy, an MR is the lowest
logical level of change. Hence if the MR was created to
fix a defect, all the modifications that are required by an
MR would have to be implemented to fix the bug. Hence
we were interested in change information for each
effected file at the MR level. For example, in Table 1, the
MR oa101472pQ changes two files. Note that the file
oaMID213 is changed in two steps. In one of the deltas, it
modifies only one-line. However, this cannot be
considered to be a one-line change since for the complete
change, the MR changed 3 lines of the file. With nearly
32000 MRs that modified nearly 4300 files in the OA
subsystem, the aggregation of the changes made to each
file at the MR level gave us 72258 change records for
analysis.

Table 1: Delta relation snapshot
DELTA relation

MR FILE Add Delete Date

Oa101472pQ oaMID213 2 2 9/3/1986

Oa101472pQ oaMID213 1 1 9/3/1986

Oa101472pQ oaMID90 6 0 9/3/1986

Oa101472pQ oaMID90 0 2 9/3/1986

3.2. Data classification

Change data can be classified based on the purpose of
the change and also based on how the change was
implemented. The classification of the MRs based on the
change purpose was derived from the work done by
Mockus and Votta [3]. They classified MRs based on the
keywords in the textual abstract of the change. For
example, if keywords like ‘fix’, ‘bug’, ‘error’, and ‘fail’
were present, the change was classified as corrective. In
Table 2 we provide a summary of the change information

classified based on its purpose. The naming convention is
similar to the work done in their original paper.

However, there were numerous instances when
changes made could not be classified clearly. For
example, certain changes were classified as ‘IC’ since the
textual abstract had keywords that suggested changes
from inspection (I) as well as corrective changes (C).
Though this level of information provides for better
exploration and understanding, in order to maintain
simplicity, we made the following assumptions:

• Changes with multiple ‘N’ were classified as ‘N’
• Changes with multiple ‘C’ were classified as ‘C’
• Changes containing at least one ‘I’ were classified as

‘I’

Table 2: Change Classification (purpose)
ID Change type Change purpose

B Corrective Fix defects

C Perfective
Enhance

performance

N Adaptive New development

I Inspection Following inspection

Changes which had ‘B’ and ‘N’ combinations were

left as ‘Unclassified’ since we did not want to corrupt the
data. Classification of these as either a corrective or
adaptive change would have introduced validity issues in
the analysis. Based on the above rules, we were able to
classify nearly 98 percent of all the MR into corrective,
adaptive or perfective changes.

Table 3: Change classification (implementation)
ID Change Type Description

C Modify Change existing lines

I Insert Add new lines

D Delete Delete existing lines

IC Insert/Modify Inserts and modifies lines

ID Insert/Delete Inserts and deletes lines

DC Delete/Modify Deletes and modifies lines

DIC All of the above Inserts, deletes and modifies lines

Another way to classify changes is on the basis of the

implementation method into insertion, deletion, or
modification. But the SCCS system maintains records of
only the number of lines inserted or deleted for the
change and not the type of change. Modifications to the
existing lines are tracked as old lines being replaced by
new lines (delete and insert). However, for every changed
file SCCS maintains an SCCS file that relates the MR to

the insertions and deletions made to the actual module.
Scripts were used to parse these files and categorize the
changes made by the MR into inserts, deletes or
modifications. Table 3 lists different types of changes
based on their implementation method.

3.3 Identifying file dependencies

Our primary concern was in isolating those changes
that resulted in errors. To do so, we identified those
changes that were dependencies – changes to lines of
code that were changed by an earlier MR. If the latter
change was a bug fix our assumption was that the original
change was in error. The one argument against the
validity of this assumption would be that the latter change
might have fixed a defect that was introduced before the
original change was made. However, in the absence of
prima facie evidence to support either case, and since
preliminary analysis of some sample data did not support
the challenging argument, we ruled out this possibility. In
this report, we will refer to those files in which changes
were made to those lines that were changed earlier by
another MR as dependent files.

The dependency, as we have defined earlier, may have
existed due to bug fixes (corrective), enhancements
(perfective), changes from inspection, or new
development (adaptive). 2530 files in the OA subsystem
were found to have undergone dependent change. That is
nearly 55 percent of all files in the subsystem and nearly
60 percent of all changed files. So, in nearly 60 percent of
cases, lines that are changed were changed again. This
kind of information can be very useful to the
understanding of the maintenance phase of a software
project. We had 51478 dependent change records and this
data was the core of our analysis.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

New/Dependent
change

classification

Corrective
(B)

Perfective (C) Adaptive (N) Inspection (I)

Original change classification

Inspection (I)
Adaptive (N)
Perfective (C)
Corrective (B)

Figure 1: Distribution of change classification on
dependent files

In Figure 1, we show the distribution of change

classifications of the dependent files across the original

files. The horizontal axis shows the types of changes
made to the dependent files originally. In the vertical axis,
we distribute the new changes based on their
classification based on the implementation type. From the
distribution it can be noted that most bug fixes were made
to code that was already changed by an earlier MR to fix
bugs. At this point of time, we can conclude that roughly
40 percent of all changes made to fix errors introduced
more errors.

It is also interesting to note that nearly 40 percent of
all the dependent changes were of the adaptive type and
most perfective changes were made to lines that were
previously changed for the same reason, i.e., enhancing
performance or removing inefficiencies.

4. Analysis Summary and Next Steps

We have found that the probability that a one-line
change would introduce at least one error is less than 4
percent. This result supports the typical risk strategy for
one line changes and puts a bound on our search for
catastrophic changes.

Interestingly, this result is very surprising considering
the intial claim: “one-line changes are erroneous 50
percent of the time” [21]. This large deviation may be
attributed to the structured programming practices and
development and evolution processes involving code
inspections and walkthroughs that were practiced for the
development of the project under study. Earlier research
[9] shows that without proper code inspection procedures
in place, there is a very high possibility that one-line
changes could result in error.

In summary, some of the more interesting
observations that we made during our analysis include:
• Nearly 95 percent of all files in the software project

were maintained at one time or another. If the
common header and constants files are excluded
from the project scope, we can conclude that nearly
100 percent of files were modified at some point in
time after the initial release of the software product.

• Nearly 40 percent of the changes that were made to
fix defects introduced one or more other defects in
the software.

• Nearly 10 percent of changes involved changing only
a single line of code; nearly 50 percent of all changes
involved changing fewer than 10 lines of code;
nearly 95% of all changes were those that changed
fewer than 50 lines of code.

• Less than 4 percent of one-line changes result in
error.

• The probability that the insertion of a single line
might introduce a defect is 2 percent; there is nearly a
5 percent chance that a one-line modification will
cause a defect. There is nearly a 50 percent chance of

at least one defect being introduced if more than 500
lines of code are changed.

• Less than 2.5 percent of one-line insertions were for
perfective changes, compared to nearly 10 percent of
insertions towards perfective changes when all
change sizes were considered.

• The maximum number of changes was made for
adaptive purposes, and most changes were made by
inserting new lines of code.

• There is no credible evidence that deletions of fewer
than 10 lines of code resulted in defects.

To fully understand these effects of small changes in
particular, and changes in general, this study should be
replicated across systems in different domains and of
different sizes.

5. Acknowledgements

We wish to thank Harvey Siy, Bell Laboratories,
Lucent Technologies, for sharing his knowledge of the
5ESS change management process. We would also like to
thank Audrus Mockus, Avaya Research Labs, and Tom
Ball, Microsoft Research, for their contributions and
suggestions.

6. References

[1] Fred Brooks, “The Mythical Man-Month”, Addison-

Wesley, 1975

[2] Dieter Stoll, Marek Leszak, Thomas Heck, “Measuring
Process and Product Characteristics of Software
Components – a Case study”

[3] Audris Mockus, Lawrence G. Votta, “Identifying Reasons
for Software Changes using Historic Databases”, In
International Conference on Software Maintenance, San
Jose, California, October 14, 2000, Pages 120-130

[4] Todd L Graves, Audris Mockus, “Inferring Change Effort
from Configuration Management Databases”, Proceedings
of the Fifth International Symposium on Software
Metrics, IEEE, 1998, Pages 267-273

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S.
Marron, Audris Mockus, “Does Code Decay? Assessing
the Evidence from Change Management Data”, IEEE
Transactions on Software Engineering, Vol. 27, No. 1,
January 2001

[6] Dewayne E. Perry, Harvey P. Siy, “Challenges in
Evolving a Large Scale Software Product”, Proceedings of
the International Workshop on Principles of Software
Evolution, 1998 International Software Engineering
Conference, Kyoto, Japan, April 1998

[7] Audris Mockus, David M. Weiss, “Predicting Risk of
Software Changes”, Bell Labs Technical Journal, April-
June 2000, Pages 169-180

[8] Rodney Rogers, “Deterring the High Cost of Software
Defects”, Technical paper, Upspring Software, Inc.

[9] G. M. Weinberg, “Kill That Code!”, Infosystems, August
1983, Pages 48-49

[10] David M. Weiss, Victor R. Basili, “Evaluating Software
Development by Analysis of Changes: Some Data from
the Software Engineering Laboratory”, IEEE Transactions
on Software Engineering, Vol. SE-11, No. 2, February
1985, Pages 157-168

[11] Myron Lipow, “Prediction of Software Failures”, The
Journal of Systems and Software, 1979, Pages 71-75

[12] Swanson. E. B., “The Dimensions of Maintenance”,
Procedures of the Second International Conference on
Software Engineering, San Francisco, California, October
1976, Pages 492-497

[13] Todd L. Graves, Alan F. Karr, J.S. Marron, Harvey Siy,
“Predicting Fault Incidence Using Software Change
History”, IEEE Transactions on Software Engineering,
Vol. 26, No. 7, July 2000, Pg 653-661

[14] H.E. Dunsmore, J.D. Gannon, “Analysis of the Effects of
Programming Factors on Programming Effort”, The
Journal of Systems and Software, 1980, Pages 141-153

[15] Ie-Hong Lin, David A. Gustafson, “Classifying Software
Maintenance”, 1988 IEEE, Pages 241-247

[16] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta,
“Parallel Changes in Large Scale Software Development:
An Observational Case Study”, ACM Transactions on
Software Engineering and Methodology 10:3 (July 2001),
pp 308-337.

[17 Les Hatton, Programming Research Ltd, “Reexamining
the Fault Density – Component Size Connection”, IEEE
Software, March/April 1997, Vol. 14, No. 2, Pages 89-97

[18] Victor R. Basili, Barry T. Perricone, “Software Errors and
Complexity: An Empirical Investigation”,
Communications of the ACM, January 1984, Vol 27,
Number 1, Pages 42-52

[19] Dewayne E. Perry and W. Michael Evangelist. ``An
Empirical Study of Software Interface Errors'',
Proceedings of the International Symposium on New
Directions in Computing, IEEE Computer Society, August
1985, Trondheim, Norway, pages 32-38

[20] Dewayne E. Perry and W. Michael Evangelist. ``An
Empirical Study of Software Interface Faults --- An
Update'', Proceedings of the Twentieth Annual Hawaii
International Conference on Systems Sciences, January
1987, Volume II, pages 113-126.

[21] Anecdotally related in an email conversation.

