
Data Engineering Education with Real-World Projects
Paul S Grisham, Herb Krasner, and Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)
ECE, The University of Texas at Austin

{grisham, hkrasner, perry}@ece.utexas.edu

ABSTRACT
This paper presents an experience report on teaching Data
Engineering as a graduate-level class using a real-world project
domain. Traditional computer science database courses focus on
relational database theory and typically offer a background in
SQL and database implementation. Our course presented
databases within the context of Systems and Information
Engineering, supplementing traditional relational database theory
with a strong sequence of requirements engineering, data design,
and analysis. The primary deliverable of the course was a
semester-long project to implement an information system in a
real-world application domain (that is, with a real, external
customer with uncertain requirements in a practical business
setting.) We believe that the use of such project domains motivate
students to apply good Software Engineering principles in the
classroom, which consequently encourages those principles to be
extended into industrial practice.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Design, Human Factors, Theory.

Keywords
Software Engineering Education, Systems Engineering,
Requirements Engineering, Database Systems.

1. INTRODUCTION
The Center for Lifelong Engineering Education (CLEE) at the
University of Texas at Austin offers a terminal 1 Master of
Science degree program in Engineering for practicing
professionals. This program, commonly referred to as Option III,
is organized to accommodate a full-time work schedule. The
classes are intensive, and only meet one weekend per month. The
program of study includes 33 graduate credit hours, and is a
combination of standard classroom lecture, topical conference
courses, and a Master’s Report. The Option III program offers a
concentration in Software Engineering. The courses are organized
into Engineering Methods, Software Systems Technology, and
Program Management.

1 By terminal, we mean that the degree plan is appropriate for

students pursuing an M.S. Degree for professional development.
It is not the traditional step in the process of earning a Ph.D. We
note, however, pursuit of a Ph.D. is not precluded, but must be
done through the regular program at UT.

In the Fall Semester of 2004, a new course, ECE 382V: Data
Engineering, was added to the curriculum. The course was
designed to present database concepts within a Systems and
Information Engineering context. The course is unique within the
University of Texas at Austin. The Electrical and Computer
Engineering graduate program, which has a concentration in
Software Engineering, does not offer any database or data
engineering courses at either the undergraduate or graduate level.
The database course offered by the Department of Computer
Sciences in the College of Natural Sciences is a more traditional
course, focusing on relational theory and database
implementations.

The remainder of this paper presents an experience report on the
ECE 382V: Data Engineering course, and in particular, the use of
a large, real-world problem domain for the course project. We
believe that our experiences could help in the design of both
undergraduate and graduate-level courses, which would foster the
use and adoption of good Software Engineering principles in
practice.

2. COURSE ORGANIZATION
The course, ECE 382V: Data Engineering, was initially offered in
the Fall Semester, 2004. The classroom portion of the course
consisted of ten, four-hour lectures, meeting approximately every
fourth weekend from August 20, 2004, through December 3,
2004. Given the long time between class meetings, lectures were
typically highly intensive, with reinforcing homework and
advance readings assigned between class meetings. A lengthy
take-home examination was scheduled so as not to interfere with
the course lecture schedule or project schedule.

The class project was designed to run for the duration of the
semester. The class divided itself into ten teams of four or five
students. Homework assignments were closely related to the
project domain and typically followed the pattern of an individual
submission, followed by team discussion and a joint team
submission. Early in the semester, the homework assignments
required students to perform requirements analysis, while later
assignments called for students to provide the designs and
schemas that formed the basis of their project implementation.

The project domain, described in detail below, is an online
registration system for CLEE. Instead of designing and
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Conference on Software Engineering 2006 (ICSE 2006),
May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

implementing a generic class registration system with generic
requirements, we selected the CLEE domain specifically because
it had complicated and uncertain requirements, such as state
guidelines on certification reporting and integration with other
university information systems.

Students began by evaluating and modeling the current system.
Students held group interviews with a customer representative
over the course of the semester. When the schedule allowed,
group interviews were scheduled during class time. The class used
Blackboard, email, and other online coordination tools to
distribute information about requirements. During the long period
between classes, questions about requirements were typically
emailed to a member of the teaching staff, who compiled them,
interviewed the customer representative, and made the answers
available to the class.

Based on the requirements provided by the customer
representative, a comprehensive System Requirements
Specification (SRS) document was compiled by the teaching staff
and delivered to the students. By this point in the semester,
students had already been required to submit and revise their data
models and schema based on the unorganized requirements. With
the SRS, students were asked to review the requirements and their
designs, identify any shortcomings in their designs, and clarify
any still uncertain requirements. The structure of the SRS was
derived from several different sources, and the final organization
is presented in Figure 1.

The SRS defined 13 operational scenarios, 40 functional and data
requirements, and 16 non-functional requirements. Students were
required to design their data models and schema to accommodate
all of these requirements. However, for purposes of
implementation, the project was scoped down to only require
implementation of 10 scenarios, 39 of the functional
requirements, and 9 of the non-functional requirements. Many of
the eliminated requirements were removed because they were
interfacing or technology requirements outside the scope of the
class. For instance, the data model must contain all information

required to interface with the university’s financial system, but
the students need not implement the scenario that demonstrates
that functionality.

Students were required to implement the project using Apache as
the web information server, PHP4 as the programming
environment, and MySQL as the database management system. In
the interest of making the project fair for all students and
streamlining the technical support, students were not allowed to
use other databases, languages, or environments. In particular,
students were not allowed to use advanced modeling tools that
support automatic generation of code or SQL directives.

Grading was based on two main deliverables: the customer
demonstration and the project notebook. During the final class
meeting, teams were required to demonstrate their systems, this
time to a panel made up of the customer representative, instructor,
and teaching assistant for the class. Each panel member randomly
selected a scenario, and the team was responsible to follow the
scenario from beginning to end, demonstrating the specified
functionality. The team was evaluated on both system
performance and general preparedness to answer customer
questions. The other students were also instructed to provide
anonymous feedback on the team’s presentation through the use
of standard feedback forms.

The project notebook consisted of the revised versions of the
previously submitted homework assignments, plus the full
implementation and any relevant project analysis. Specifically,
the project notebook was required to contain: the E/R model of
the problem domain, a data dictionary of the problem domain, the
relational schema of the database, the SQL DDL of the database,
the SQL DML for all queries used by the required scenarios,
complete source code (including PHP, HTML, CSS, and graphics
used by the website), test cases and results, a brief discussion of
the design challenges and compromises the team encountered, and
a brief evaluation of the technology used for the project. Source
code was not evaluated for style, or even correctness. Instead, the
project notebook was manually inspected to ensure that each
scenario and requirement within the project scope was sufficiently
implemented. The project notebook was a team submission,
though each team member was also required to submit an
evaluation form on the estimated level of contribution and effort
put in by each teammate.

1. Introduction
- Purpose, scope, definitions, acronyms, etc.

2. General Description
- Existing system analysis
- Stakeholders
- Goals

3. Operational Scenarios
4. Functional and Data Requirements
5. Non-Functional Requirements

- User-Interface Requirements
- Software Interface Requirements
- Performance Requirements
- Security Requirements
- Class-Specific Requirements

6. Open Issues
7. Delivery Requirements and Schedule
Appendix: Collection of CLEE data artifacts

Figure 1. SRS Organization

Including the homework submissions, the project comprised 70%
of the total grade for the course.

3. THE PROJECT DOMAIN
The CLEE Online Registration System is a web-based application
to provide a management system for CLEE's various courses,
conferences, and training programs.

Currently, CLEE handles event registration through several
channels: the current website, faxing or mailing a registration
form, or by placing an order with a CLEE staff member over the
telephone. Regardless of the registration method, the CLEE staff
member responsible for the event must process the registration
manually. Credit card transactions, for instance, are entered by
hand into a Point-of-Sale (POS) terminal. In the case of a check,
money order, or purchase order, the CLEE staff member is
responsible for invoicing and billing the registration and ensuring
that all payment is received in a timely fashion.

Marketing data for the class are transferred from the registration
forms by hand into standard business tools. This data can be used
to create business and financial reports to determine which events
to offer in the future. This data can also be used to create contact
mailing lists and targeted advertising strategies.

The University of Texas system utilizes several large information
systems for tracking financial, auditing, educational, logistical,
and licensing and certification information. Depending on the
type of event, CLEE staff members must enter the event and
registration information into these systems manually.

The goals of the CLEE Online Registration System project are to
automate the existing portions of the existing online registration
system and to add new functionality for logistic support.

The new registration system must integrate registration with
course management. The new system should accept registration
data and begin processing payment automatically. In the event of
a payment through check, money order, or purchase order, the
system should provide support services for billing, invoicing and
collections.

The new system must maintain historical records for use by
individual users and CLEE staff. A user should be able to view a
history of completed courses and certifications, as well as view
and edit upcoming registrations. CLEE staff might use the
historical data to track course attendance and marketing details.
The system should be able to generate a variety of financial and
marketing reports with different levels of detail.

4. PROJECT EVALUATION
Project grading and evaluation was divided into four major
components: homework, project notebook, project demonstration,
and student evaluation.

4.1 Homework
The homework represented incremental delivery of the project,
based on the current state of the project. The initial homework
assignment, for instance, was for the students to review the
current state of the CLEE Online Registration System, perform an
initial evaluation of data requirements, and generate a set of
questions for the customer. As the lectures covered more database
theory, students were required to generate requirements models,
data models, entity-relationship models, schemas, and so on.

Early homework assignments were individual submissions, while
later assignments were team submissions, often including
revisions of previous submissions as requirements changed and
solidified. We graded homework on a satisfactory/unsatisfactory
scale, but we attempted to provide as much constructive feedback
as possible for each submission and revision. Homework made up
20% of the final course grade.

4.2 Project Notebook
The project notebook represented the final versions of the various
models and schemas generated over the semester, including up the
data design as well as the implementation sources and any project
analysis provided by the students. The project notebook was a
team grade, and comprised 20% of the final course grade. Grading
used a spreadsheet-based instrument to track coverage of
requirements.

E/R Model Coverage counted for 25% of the notebook grade. The
data requirements were evaluated on a satisfied/unsatisfactory/
unsatisfied basis and then summed. Model design represented a
subjective evaluation of the quality of the E/R Model on the basis
of elegance, maintainability, and comprehensibility. Design
quality counted for 10% of the notebook grade.

The Implementation Coverage counted for 15% of the notebook
grade, and the SQL DML and implementation code was similarly
inspected to ensure that all scenarios and functional requirements
were implemented. Scenarios were broken down into the
functional requirements that implemented them.

Data dictionary, relational schema, SQL and test data made up a
total of 35% of the notebook grade, and grading consisted mainly
of completeness and accuracy against the final version of the data
model and implementation.

The remaining 15% of the project grade was for the analysis and
discussion. Students were instructed to provide a “brief, but
insightful” discussion of the major design challenges and
compromises as well technical evaluation of the software tools
used in the class. We were intentionally vague on this
requirement, and many of the groups impressed us with their level
of critical analysis of their own projects.

4.3 Project Demonstrations
On the final day of classes, each group was assigned a brief
period to demonstrate their project to an evaluation panel made up
of the customer representative, course instructor, and teaching
assistant. The basic structure was that each member of the review
panel would request one of the 10 scenarios, which the team
would have to demonstrate and subsequently answer any
questions that arose. Each team was also required to demonstrate
one scenario of their choosing, so as to offer a chance to explain
some especially innovative or interesting aspect of their
implementation. In practice, the evaluation panel attempted to
select an even mix of simple and complex scenarios, and to
exercise distinct areas of the implementation.

Grading by the evaluation panel used a standard instrument,
which measured each team’s performance in a number of qualities
against a Likert scale. The questions used in the demonstration
evaluation instrument are listed in Figure 2.

In addition to the evaluation panel, the other students were
required to observe the demonstrations and provide feedback.
Each student was provided a simplified version of the
demonstration evaluation instrument. The project demonstration
was a team grade, and made up 20% of the final course grade.

The team seemed prepared and confident.
The team answered all my questions satisfactorily.
The team website seemed easy to use.
The team website was visually appealing.
I was satisfied with scenario demonstration X.
My overall satisfaction with the system as demonstrated
was…

Figure 2. Demonstration Evaluation Questions

4.4 Teammate Evaluation and Participation
The final component of the project grade was participation, for
which, in part, students were required to rate their teammates in
terms of contribution and level of effort, as well as their own
performance on the team project against that of their teammates.
As with any group project, there were a few teams that had
troublesome team members, either because they were not as
capable or as dedicated as the rest of the team. A few students had
extenuating personal situations that prevented them from
participating fully on the project. What we found was that the
students who received poor ratings by their teammates
corresponded to situations of which we were previously aware.

In the end, the participation grade, which made up 10% of the
final course grade, was assigned by the instructor, and was used
primarily as a means of justifying special consideration for
students who had been especially helpful or hard working on the
project.

4.5 Course Grades
The final projects were mostly satisfactory, and the grading
reflected the generally high quality of the students’ work. Final
course grades were commiserate with expectations for highly
motivated graduate students (average: 92.5; median: 92.9; std.
dev.: 4.50, where 90-100 is an A.)

We were concerned that the uncertainty in the project would
overwhelm our busy students, and lead to frustration and
resistance. Instead, the project grades were generally higher than
the overall course grades. (average: 94.7; median: 95.2; std. dev.:
4.67) We found that overall, the students coped with the
complexity and uncertainty and delivered generally satisfactory,
and occasionally exceptional, projects.

The exam scores were generally lower than the overall class
grades. (average: 87.0; median: 89.0; std. dev.: 9.00, which
includes a 3 point positive curve) These numbers suggests that
the project component actually improved the overall class grade.
For dedicated team members on dysfunctional teams that
produced somewhat unsatisfactory projects, excellent exam,
homework, and individual participation scores could be sufficient
to merit a higher grade.

5. DISCUSSION
5.1 Requirements Uncertainty
The distinguishing characteristic of our project is the complex and
uncertain nature of the requirements the students were dealing
with. The project was sufficiently complex that there was no
single correct solution to the problem. Moreover, it was clear
early in the semester that a full implementation of the system was
impossible within a single semester.

We intentionally allowed requirements to remain vague and
uncertain for as long as the students left them. Some of the
students recognized that it was their responsibility to clarify and
resolve requirements uncertainty. The final version of the
requirements, including conflict resolution and implementation
scope, was not given to the students until approximately 3 weeks
before the project demonstrations. At this point, the students were
expected to have designed their relational database and possibly
be implementing it.

There were a few requirements that were never adequately
represented to the students, no matter how the students and
customer communicated about them. For instance, there was a
requirement that the system be able to generate marketing
effectiveness reports, that is, which marketing methods were most
cost effective. In order to generate this report the system must
gather information from the user about how the user found out
about a registered event and CLEE in general. The system must
also gather information about how much money was spent on
various marketing options over a certain period of time. The
customer provided example reports and sample operational data.
The marketing reports requirement was discussed at every
customer interview.

Despite repeated attempts to clarify and model the requirement,
eight of ten groups failed to deliver a satisfactory implementation
of the report as defined by the SRS. Because the impact of the
single unsatisfied requirement on final project grade was
negligible, we found that exposure to the difficult requirement
was an appropriate example for teaching the need for detailed
requirements engineering.

Although our project domain was realistically complex and large,
our approach was never intended to be a controlled failure
environment, like the Live-Through Case Histories approach [2].
In a live-through case history, students are presented with a
simulated project and given opportunities to solve problems. At
various points in the project, real-world type failure events occur,
giving students an opportunity to apply sound software
engineering principles to correct the failure and prevent failure in
the future. In this way, good software engineering practices are
motivated to the students in a controlled environment (i.e., the
classroom.)

Our approach was more of a controlled chaos environment. We
did not inject failure or confusion into our process, but allowed
the situations to develop naturally, the way that they do in real
projects. Our students determined quickly that risk factors, like
having geographically dislocated teams, uncertain requirements,
lack of coordination tools and version control, and fluctuating
problem scope, would eventually undermine their project. We
encouraged our students to develop their own best practices and
discuss them with the teaching staff and with each other.

This approach required the teaching staff to constantly monitor
the project and possibly adjust the scope and requirements to
bring the final project expectations to an appropriate level of
effort. At several points during the semester, we had to reassure
the students that the final project scope would be manageable by
their project teams, assuming that they had stayed current with the
incremental homework deliverables. We had to be willing, even at
the last minute, to scale down the project if we perceived that we
had misjudged the level of effort or skills of our students.

It is exactly for this reason that we think that this type of project
can be used in other types of classes. Even though our students
were mature, highly motivated, and often had years of technical
experience, we found that the infrequent class schedule made
incremental delivery and immediate feedback difficult. With a
traditional graduate class, the instructor and students interact two
or three times per week, instead of twice per month.

5.2 Student Teams
Originally, we planned to assign students to the project teams, but
after some resistance from the students, we allowed the teams to
self-form. The basis of the students’ concerns were that many of
the students had worked together on teams in the past, and they
already knew how to overcome the differences in geography,
work schedule, etc. Since many of our students were from out of
town, it seemed to make sense to allow them to form teams that
would minimize team coordination difficulties. Prior work
suggests that successful teams need time and face-to-face
collaboration to build trust and agree on team goals [1].

In practice, it worked extremely well for some teams but was
maximally inconvenient for other groups. One group could be
formed of four database technologists who work in the same
group for the same company in the same city, while another group
made up of the people who didn’t naturally join with another
group could wind up with teammates who live and work in
entirely different states.

In addition to the geographic issue, we also did not consider the
technical expertise of the groups. We should have tried to make
teams fair with respect to the level of programming, database, and
web development experience the team members had. In addition,
we feel that the argument that prior experience with team
members is not a compelling reason to form a team. Forming
teams with new people offers an educational opportunity to share
ideas and experiences with students from other backgrounds.

In the Option III environment, we think that the geographic
distribution would encourage students to employ good software
engineering principles to coordinate and overcome their lack of
collocation.

In a more traditional graduate student environment, the geography
issue is not a factor, as all students will be relatively available to
meet and work with other students. In an undergraduate class, you
may assume that the students have more or less the same level of
experience. There are many methods that can be used to build fair
teams in the classroom [3], though we should be sensitive as to
how we explain the team assignments, especially if they are based
on experience of past-performance.

5.3 Technologies
We selected the use of Apache/MySQL/PHP4 for a number of
reasons. The primary reason was that we wanted all teams to be
using the same tools in the interest of fairness. We specifically
wanted to disallow one team from using an expensive, proprietary
commercial solution with many shortcuts, that another team
would not be able to access. We liked that the
Apache/MySQL/PHP4 solution was both open-source and freely
available for our uses. Considering that our customer preferred
their solution to use the same commercially available web
application system that the university’s information technology
group uses, we admit that our decision was somewhat arbitrary.

We asked the students to provide a technology evaluation as a
part of their project notebook submission. The student responses
varied from simple admission that the technologies used in the
class were sufficient for the project, to extensive comparisons
with other technology options.

Students used additional technologies for implementing and
managing their project, such as version management,
programming editors, and code libraries. We encouraged our
students to provide technical evaluation for all of these tools. For
many of our students, even those with a background in databases,
we found that the course project provided them with a useful
experience in technology evaluation.

5.4 Student Concerns
In typical fashion, students were concerned about the project
itself, especially with regard to the requirements, scope, effort,
and grading, all of which was left purposefully vague until late in
the semester. However, there was a very common concern we
heard from our students that we were surprised by.

Since we were building a system to satisfy real-world
requirements, our students were very concerned that we would
take their projects and deploy them without properly
compensating them for their work. In other words, they
recognized that the class (that they were paying for) was very
similar to their own real-world jobs (for which they got paid.)

One student expressed concerns that he would have to return to
his job the following week and deal with very similar types of
situations in his office. We viewed his comments as an indication
that we were providing a good environment for applying the
theory and disciplines we were teaching.

In general, though, we believe that although the requirements are
real, the class project implementations should not necessarily be
deployable. The myriad performance, security, reliability, and
even licensing issues are well beyond the scope of a one-semester
class designed to teach specific concepts. In addition, universities
have different regulations regarding the ownership of intellectual
property of student works. We suggest that students be told that
their class projects will not be used in deployed applications
without their expressed permission.

5.5 Good Software Engineering Practices
We end this section with comments that our students provided for
us about their projects. We feel that these statements illustrate
how the project motivated the adoption of good software
engineering practice.

The data model is extremely flexible and this made
building a usable interface for the customer very difficult.
So there is a cost to flexibility – implementation cost (of
time and money) and complexity cost.

Consistency in naming would have helped us quite a bit.
We did not agree on a common attribute and entity naming
scheme. This caused confusion while writing queries where
we were using each other’s tables.

It would have been helpful to have a list of good tools with
common IDE features such as syntax highlighting, auto
completion, online help and debugging. This would have
allowed the focus on the database and not learning new
languages.

Until we know more about the scope of the project I
wouldn’t go too far down any path…. I hope the customer
is going to tell us more next time.

Our team members interpreted various requirements in
different ways. This lead to discussion of the root cause of
the requirement and conflict resolution regarding what
direction the team would follow.

We had inadequate time to properly design and prototype
our application due to constant changes being made to the
requirements much like a real time project.

One suggestion that I would make to someone planning a
project like this would be to add the Eclipse development
platform to this combination. The current version includes
a PHP plug-in that is excellent. We also made extensive use
of the CVS plug-in to manage our code base. It helped
tremendously.

I feel the flexibility outweighs the breakage of our model,
but it also indicates that our model could benefit from
further analysis.

One of the major challenges our team encountered centered
around the failure to lock down requirements until a
relatively late stage in the project timeline…. To cope with
this situation, the team took the approach to move ahead
with a complete database design, making assumptions
where necessary despite incomplete and fluctuating
requirements. As requirements came in and questions were
answered, modifications were made to the data model as
necessary…. To maintain the integrity of the data model, a
master copy was maintained by one team member. As the
requirements, and therefore the data model itself, evolved,
proposed changes were discussed at team meetings and the
design was incorporated into the documentation. By
keeping the documentation up to date and making changes
incrementally, the task of arriving at the final database
design was distributed well over time.

6. CONCLUSIONS
During the teaching of this course, we discovered that our
students were able to experience the challenge of working with a
large, complex project with uncertain requirements in a relatively
low-risk environment. The project provided enough exposure to
very typical real-world software engineering problems and
motivated the need for good software engineering process
management and the disciplined application of data and
requirements engineering.

The course structure tied the lecture material directly to both
illustrative sample problems and complex data modeling
applications. Homework assignments were created around project
deliverables, which facilitated ongoing feedback to the students,

and ensured that the level of effort was more evenly distributed
throughout the semester. The final determination of
implementation scope can be deferred until late in the semester
and based on the approximate level of effort the students are
capable of delivering.

The project domain was complex enough, that even though the
students converged on a single view of the requirements, each
team’s data model was unique. The use of a single project domain
for the entire class is appropriate because it enables a single
customer representative to serve for the whole class, and because
it enables the entire class to discuss, debate, and resolve
requirements uncertainty.

In summary, it was clear to us that exposure to real-world
software engineering issues in the relatively safe environment of
the classroom motivates the appreciation and adoption of good
software engineering practices. To our surprise, student
performance on these real-world projects was typical for team-
based projects in general. Although the projects presented special
challenges, they did not adversely affect overall class
performance. Not only did the project not adversely affect their
grades, many students actually demonstrated better understanding
of the material on the project than on the examination.

7. ACKNOWLEDGMENTS
Our thanks to Nicole Evans, Graduate Coordinator for CLEE, for
being an excellent customer representative; to Jaime Puryear,
Senior Marketing Manager of CLEE, for providing operational
registration and marketing data; and to Chris Chimera, for
providing technical information about the current state of the
CLEE information system.

Of course, none of this would have been possible without the
students from the Fall, 2004, ECE 382V: Data Engineering class.
Thanks for being willing to learn and work hard, and for generally
having a good sense of humor about it all.

8. REFERENCES
[1] Gil, Gurgit S., Dewayne E. Perry and Lawrence G. Votta. A

Case Study of Successful Geographically Separated
Teamwork. In Proceedings of Software Process
Improvement ’98 (SPI98), (Monte Carlo, December 1-4,
1998).

[2] Klappholz, David. and Larry Bernstein. Overcoming
Aversion to Software Process through Controlled Failure.
Presentation. DoD Software Technology Conference 2002
(STC 2002), (Salt Lake City, UT, May 2, 2002).

[3] Michaelsen, Larry, Arletta Bauman Knight and L. Dee Fink.
Team-Based Learning. Stylus, Sterling, VA, 2004.

	INTRODUCTION
	COURSE ORGANIZATION
	THE PROJECT DOMAIN
	PROJECT EVALUATION
	Homework
	Project Notebook
	Project Demonstrations
	Teammate Evaluation and Participation
	Course Grades

	DISCUSSION
	Requirements Uncertainty
	Student Teams
	Technologies
	Student Concerns
	Good Software Engineering Practices

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

