
Deriving Architecture Specifications from KAOS

Specifications: a Research Case Study �

Divya Jani1, Damien Vanderveken2, and Dewayne Perry1

1 Empirical Software Engineering Lab, ECE, University of Texas at Austin
divyaj@mail.utexas.edu

perry@ece.utexas.edu
2 Dept. d’ingenierie informatique,Universite catholique de Louvain

damien.vanderveken@swift.com

1 Introduction

The most difficult step in the design process of a system is clearly the transi-
tion from the requirements to the architecture. Requirements obtained from the
various stakeholders must be transformed into an architecture that can be un-
derstood by developers. The power plant system we use in this study was derived
from [1, 2]. We first created a goal-oriented requirements specification from the
information available using the KAOS requirement specification language [3–5].
Since the description was not complete we often had to make do with inadequate
data.

The first method used was developed by Axel van Lamsweerde (University
of Louvain - Belgium) and is described in [6]. The various steps are explained
in detail in Section 3.1 We describe some of the problems encountered during
the derivation process. The second method used was that of Dewayne Perry and
Manuel Brandozzi (University of Texas at Austin) [7–9]. The resulting architec-
ture and some of the derivation issues are described in Section 3.2.

After obtaining both architectures we compared them and suggested some
further work. In the case of the Perry/Brandozzi method we have made im-
provements to solve the problems we encountered and added the consideration
of styles and patterns for non functional properties.

This case study [10] was structured as follows. First the authors together cre-
ated the KAOS specification of the problem. Second Jani and Vanderveken then
used the two methods to transform this specification into architecture specifica-
tions with Perry acting as mentor, arbitor and oracle in recording process issues
and providing direction at critical points in the process. The authors together
evaluated and compared the results.

� The research was supported in part by NSF CISE Grant CCR–0306613 “Transform-
ing requirement specifications into architectural prescriptions”



2 Requirements derivation using KAOS

2.1 Goal Model

Given the fact that KAOS is a goal-oriented requirement specification method
we logically began by trying to extract the goals of the system. A definition of
the system was implicitly given in [1]. However the description of the powerplant
monitoring system provided was partial and lacked details. So, throughout the
requirement extraction process, we had to rely on experience and our common
sense to create requirements that are as realistic as possible.

The following steps were followed to build the goal model. First of all, the
informal definition of goals mentioned in [1] were carefully written down. From
that, a goal refinement tree was built and completed by a refinement/abstraction
process. The version we obtained at that point was still totally informal. Tem-
poral first-order logic [11] was then used to formalize the goals and to ensure
our refinement tree was correct, complete and coherent. The use of refinement
patterns as described in [3] served as guidance. The milestone-driven pattern in
particular was applied numerous times. It prescribes that some milestone states
are mandatory in order to reach a final one. This pattern is presented in fig 1.
The patterns were a great help to track and to correct incompleteness and inco-
herence. Furthermore they enabled us to save a huge amount of time by freeing
us to do the tedious proof work.

Fig. 1. Milestone refinement pattern

Because of the iterative nature of the requirements gathering process, the goal
model underwent subsequent changes. The reasons for that varied: coherence
between the different models forming the KAOS specifications, enhancements,
simplifications,etc.

The goal refinement tree is globally structured in two parts. This shape re-
flects the two main goals the system has to ensure to monitor the powerplant.
The occuring faults have to be detected and the alarms resulting from those
faults have to be managed. The roots of the two resulting subtrees are respec-
tively FaultDetected and AlarmCorrectlyManaged. They are subsequently refined
using the various patterns until the leaf goals are assignable to a single agent
from the environment or part of the software.



As an illustration of the use of the milestone refinement pattern let’s consider
the goal AlarmRaisedIfFaultDetected with its formal definition

(∀f : Fault, ∃!l : Location,∃!a : Alarm
)(

Detected(f, l) ⇒ ♦Raise(f, a)
)

(1)

This goal is refined using the milestone refinement pattern by instantiating
the parameters as follows:

A :
(∀f : Fault, ∃!l : Location

)(
Detected(f, l)

)
(2)

M :
(∃fi : FaultInformation

)(
f ≡ fi ∧

Transmitted(fi, PRECON, ALARM)
)

(3)

T :
(∀fi : FaultInformation, ∃!a : Alarm

)(
Raised(fi, a)

)
(4)

The application of that pattern in particular results here from the fact that
the information concerning the detected faults has to be transmitted to the
ALARM to enable it to raise the proper alarm. This intermediate state is a
necessary step to reach the final state, i.e., raising the alarm.

To have a system as robust as possible various goals were added to the goal
diagram. Among these added goals, one class takes care of the correct work-
ing of all the sensors and ensures the data provided is consistent and coher-
ent. The goals SanityCheckPerformed and ConsistencyCheckPerformed belong
to this class. Another class – represented by the goal DataCorrectlyUpdated –
makes sure the updates are well performed by the database. The purpose of
some goals is to maintain the powerplant in a consistent state (e.g., FaultSta-
tusUpdated, AlarmStatusUpdated). Communication has also been constrained in
order to prevent any transmission problems and results in the refinement of the
goal DataTransmittedToDB where refinement is shown in Fig. 2.

DataTransmittedToDB

  NoDataIntroduced    NoDataLost    SequencePreserved    DataTransmittedInTime  

Fig. 2. Communication refinement subtree

The three first subgoals ensure the correctness of the transmission while the
last one sets a time limit. This constraint varies througout the system depending
on the importance of the communication channel. The FaultInformation has
to be transmitted from PRECON to ALARM within 1 second while answer a
request can take a little longer – 5 seconds. The three first subgoals have been



formally refined as followed 3:

NoDataIntroduced :
(∀x : Data

)(
Transmitted(X, , ) ∧ x ∈ Transmitted( ) ⇒ x ∈ X

)
(5)

NoDataLost :
(∀x : Data

)(
x ∈ X ∧ Transmitted(X, , ) ⇒ x ∈ Transmitted( )

)
(6)

SequencePreserved :
(∀x, y : Data, ∃u, v : Data

)(
x, y ∈ X ∧ Transmitted(X, , )

∧Before(x, y, X) ⇒ u, v ∈ Transmitted(X) ∧
Before(u, v, T ransmitted(X)) ∧ x = u ∧ y = v

)
(7)

They prescribe that no alteration has occured on the data transmitted i.e.,
no data has been introduced or lost and the sequential order has been preserved.

The formal definition of the last subgoal depends on the time constraint. If
we consider for example the transmission of a FaultInformation – which has the
strongest time constraint – the formalization is:

DataTransmittedWithinT imeConstraint :
¬Transmitted(fi, PRECON, ALARM) ⇒ ♦≤1s

Transmitted(fi, PRECON, ALARM) (8)

-

2.2 Object Model

Entities present in the objects were first derived from the informal definition of
the goals. All the concepts of importance were modelled either under the form
of an object or of a relationship. Attributes were then added to the different
entities to characterize them. Some of the attributes were extracted from the
problem definition but most of them proceed necessarily from the underlying
domain from two main reasons.

First, certain goal definitions need the presence of specific attributes. For
example the attribute WorkCorrectly of Sensor was needed by the goal Sanity-
CheckPerformed.

Second, the definition of the properties of the various entities – expressed by
invariants – requires specific attributes. As an illustration consider the following
invariant of the object Alarm which expresses that all the alarms still active
cannot have a deactivation time:

Activated = true ⇒ DeactivationT ime = null (9)

The purpose of certain attributes is to prepare for change. The reconfigu-
ration function was not taken into account in the elaboration of the different
3 X stands for SensorInformation, FaultInformation, AlarmInformation, FaultDiagno-

sis and AlarmDiagnosis



models due to lack of time. However we believe that basically the only effect
will be to modify the allowed range of temperature and pressure. Attributes
representing the minimum, the maximum and desired value of both pressure
and temperature were consequently added to the objects SteamCondenser and
CoolingCircuit.

Last, a few attributes were added to build a more complete model. The
justification was common sense. Among these are the attributes Type and Power
of the object PowerPlant.

The last step in the elaboration of the goal model was the formalization of the
domain invariants characterizing the differents entities. The model was refined
many times due to the iterative nature of the requirement extraction process.

The main characteristic of the model is that two different levels of repre-
sentations are used for the concepts Sensor, Fault and Alarm. The first level
refers to the object itself while the second one refers to its representation in the
software. This distinction was introduced for robustness reasons. In fact it en-
ables us to manage the case where the representation of the object is not correct
which would be unfortunate but can happen. The two levels are constrained by
an invariant prescribing that all the attributes have to be identical.

The representation of the three main objects – Sensor, Fault and Alarm –
are linked together by a diagnosis relationship. The information provided by the
sensor permits the detection of the faults and the description of a fault is the
rationale for the raising of an alarm. Consequently the relationship FaultDiagno-
sis links SensorInformation and FaultInformation while AlarmDiagnosis links
FaultInformation and AlarmInformation. Those two relationships are one-one.
It is a modelling choice. We chose that a fault is the result of one and only one
error detected by one sensor and that each fault raises one and only one alarm.
The resulting simplicity and the ease of traceability is the reason for that.

2.3 Agent Model

The definition of the agents was extracted mostly from [1, 2]. We drew inspiration
from the existing agents as well. Each leaf goal from the Goal Model was assigned
to an agent. We made sure that every agent had the capacity to assume the
responsibility for that goal. By capacity we mean that every agent could monitor
or control, every single variable appearing in the formal definition of a goal the
agent has to ensure. For further details refer to [5].

However a new agent was introduced : MANAGEMENT UNIT. Its purpose is to
ensure that all the sensors are working properly. It was added for robustness.

Finally the operations needed to operationalize the differents goals were as-
signed to their responsible agents. This step will be explained later in the Op-
eration Model section.

The agents PRECON, ALARM, COMM, DB and Sensor come from [1] though their
names are different from there. PRECON is in charge of the detection of all the
faults that might occur either in the cooling circuit or in the steam condenser.
ALARM takes care of the alarm management. COMM ensures the reliability and the
performance of all the communcication throughout the system. DB stores all the



data persistently and answers all the requests concerning current values of the
sensors, faults and alarms. The Sensor agent acquires the data from the field.
The additional agent – MANAGEMENT UNIT – checks the sensors to see if they work
properly.

The agents belong to one of two different categories: they are part of the
software-to-be or part of the environment. For example, PRECON belongs to the
former while Sensor belongs to the latter. This distinction in agents results
also in goal differentiation. In fact the goals assigned to environment agents are
expectations while the others are requirements. This led us to the introduction of
the MANAGEMENT UNIT agent. Sensor is an environment agent and so all the goals
assigned to it are expectations. But obviously we canot assume that the goals
SanityCheckPerformed and ConsistencyCheckPerformed will be true without
the intervention of reliable software devices. Moreover these kinds of tests should
not be the responsibitlity of the Sensor from a conceptual point of view.

2.4 Operation Model

The operation model was the the last one to be constructed because it relies on
a precise formal definition of the goals. The operations contained in the model
were derived in such a way that they operationalize some goal present in the goal
model. A complete operationalization of a goal is a set of operations (described
by their pre-, trigger- and postconditions) that guarantee the satisfaction of
that goal if the operations are applied. That is where all the difficulty lies:
finding complete operationalizations. We extensively used the operationalization
patterns described in [4] to derive complete operation specifications. It enabled us
to save a lot of time on proofs. We found the application of the operationalization
pattern very systematic.

Two patterns were particularly useful and we used them numerous times.
The first one is the bounded achieve pattern described in Fig. 3. Its applicabilty
condition (i.e., C ⇒ ♦≤dT ) is pervasive. In fact most of our system’s goals have
that form. The operation specification prescribes that ¬T becomes T as soon as
C ∧ ¬T holds for d − 1 time units. It is then straightforward to see that such a
specification operationalizes the goal C ⇒ ♦≤dT .

The second most useful pattern was the immediate achieve pattern described
in Fig. 4. Its applicability condition prescribes here that the final state T has to
be reached as soon as C becomes true. In this case it is a bit more difficult to
see why the satisfaction of the two operations guarantee the satisfaction of the
goal (the interested reader can find a complete proof in [4]). The first operation
prescribes that as soon C becomes true the operation must be applied if ¬T
holds in order to reach the final state T . The second operation may be applied
when C does not hold if the precondition T is true, making the postcondition
¬T true.

Once all the operations were derived the were assigned to the agent respon-
sible for the goal operationalized by those operations.



Fig. 3. Bounded achieve operationalization pattern

Fig. 4. Immediate achieve operationalization pattern

3 Architecture derivations

3.1 Method 1: Axel van Lamsweerde

This method [6] prescribes the use of three different steps: abstract a dataflow
architecture from the KAOS specifications; derive and refine the dataflow using
styles to meet architecturals constraints; refine the resulting architecture using
design patterns to achieve non-functional requirements.

Step 1: Abstract a dataflow architecture The initial architecture is obtained from
data dependencies between the different agents. The agents become software
components while the data dependencies are modelled via dataflow connectors.
The procedure followed is divided into two sub-steps.

1. Each agent that assumes the responsibility of a goal assigned to the software-
to-be becomes a software component together with its operations.

2. For each pair of components C1 and C2, create a dataflow connector between
C1 and C2 if

DataF low(d, C1, C2) ⇔ Controls(C1, d) ∧ Monitors(C2, d) (10)

One can note certain features. Due to the fact that the COMM agent does not
control any variables no arrow comes from it. In fact COMM carries all the data



among the different components but does not do any modifications. Moreover
there is a dataflow connector between PRECON and ALARM while the real dataflow
goes through COMM. This situation also happen between Sensor and Precon. The
real dataflow passes through DB but there is no dataflow derived.

We believe that the underlying cause is the presence of low-level agents –
DB and COMM – performing low-level functionalities – storage and transmission of
data respectively – in the requirements. They were however needed to achieve
certain goals. It resulted in a rather strange architecture.

Step 2: Style-based architectural refinement to meet architectural constraints In
this step, the architectural draft obtained from step 1 is refined by imposing a
“suitable” style, that is, a style whose underlying goals matched the architectural
constraints. The main architectural constraint of our system [1, 2] is that all the
components should be distributed. In fact, in the real system, only PRECON had
to be built and integrated in to a pre-existing architecture characterized by
centralized communications and by distributed components.

The only transformation rule mentionned in [6] did not match our architec-
tectural constraints so we had to design a new one on the basis of what was
needed. The resulting transformation rule is shown in Fig. 5.

     Transmitted(d,C1,C2)     

C1 C2

C

d

d

hasTheResponsabitlyOf

C1 C C2
d d

CentralizedCommunicationVia(C)

Distributed(C1,C2)

Fig. 5. Centralized communication architectural style



Once applied to the architecture every single communication is achieved in
a centralized way through the communication module. The architectural con-
straints are now met.

Step 3: Pattern-based architecture refinement to achieve non-functional require-
ments The purpose of this last step is to refine further the architecture to achieve
the non-functionnal requirements. These non-functional requirements (NFGs)
can belong to two different categories: they are either quality-of-service or devel-
opment goals. Quality-of-service goals include, among others, security, accuracy
and usability. Development goals encompass desirable qualities of software such
as MinimumCoupling, MaximumCohesion and reusabilty.

This step refines the architecture in a more local way than the previous one.
Patterns are used instead of styles. The procedure is divided further into two
intermediary steps.

1. For each NFG G, identify all the connectors and components G may con-
strain and, if necessary, instantiate G to those connectors and constraints.

2. Apply the refinement pattern matching the NFG to the constrained com-
ponents. If more than one is applicable, select one using some qualitative
technique (e.g., NFG prioritization).

Two refinement patterns were used on our system. The first is presented
in Fig. 6. We wanted to have fault-tolerant communication between PRECON
and ALARM because it is the core of the system. The most critical functions
(i.e., the fault detection and the alarm management) are performed in these
two component. That’s why we wanted to make these modules as resistant as
possible to any kinds of failure. One could note that the pattern was not applied
exactly like it is defined in Fig. 6. The presence of the component COMM between
PRECON and ALARM was however ignored because we believed it had no influence
on the capacity of the pattern to achieve its goal.

Fig. 6. Fault-tolerant refinement pattern

The second refinement pattern is shown in Fig. 7. It was introduced be-
cause both Sensor and Management Unit access and modify the same data –
SensorInformation. We wanted to make sure that all the modifications made
from both sides are consistent.



Fig. 7. Consistency maintainer refinement pattern

3.2 Method 2: Perry and Brandozzi

This method converts the goal oriented requirement specifications of KAOS into
architectural prescriptions [7–9].

The components in an architecture prescription can be of three different
types - process, data or connector. Processing components perform transforma-
tions on the data components. Data components contain necessary information
for processing. The connector components, which can be implemented by data
and/or processing components, provide mechanisms for component interactions.
All components are characterized by goals that they are responsible for. The
interactions and restrictions of these components characterize the system. The
following is a sample component -

Component PRECON
Type Processing
Constraints FaultDetected

RemedyActionSuggested
PeriodicalChecksPerformed&ReportWritten

Composed of FaultDetectionEngine
FaultInformation
FaultDiagnosis
SensorInformation
SensorConnect

Uses /

This example shows a component called PRECON. Type denotes that the
component is a processing component. The constraints are the various goals
realized by PRECON. Composed of defines the subcomponents that implement
PRECON in the next refinement layer. The last attribute Uses, indicates the
components interacted with and the connectors used for their interactions.

There are well defined steps to go from KAOS entities to APL entities. The
following table illustrates possible derivations.



KAOS entities APL entities

Agent Process component / Connector component
Event -
Entity Data component
Relationship Data component
Goal Constraint on the system / on a subset

One or more additional processing, data
or connector components.

In this method we create a component refinement tree for the architecture
prescription from the goal refinement tree of KAOS. This is a three step process
and may be iterated.

Step 1 In the first step we derive the basic prescription from the root goal of
the system and the knowledge of the other systems that it has to interact with.
In this case the software system is responsible for monitoring the power plant.
Thus the root goal is assigned to the processing component ”PowerPlantMoni-
toringSystem”.

This goal is then refined into PRECON, ALARM, DataBase and Communi-
cation components. These refinements are obtained by selecting a specific level
of the goal refinement tree. If we only take the root of the goal refinement tree,
the prescription would end up being too vague. On the other hand if we pick the
leaves, we may end up with a prescription that is too constrained. Therefore we
pick a certain level of the tree which we feel allows us to create a very well de-
fined prescription while avoiding a specification that overly constrains the lower
level designs.

Step 2 Once the basic architecture is in place, we obtain potential sub compo-
nents of the basic architecture. These are obtained from the objects in KAOS
specification. We derive data, processing and connector components that can
implement PRECON, ALARM, DataBase and Communication components. If
in the third step we don’t assign any constraints to these components, they are
removed from the system’s prescription.

The following are Preskriptor specifications of some candidate objects from
the requirement specifications.

Component Fault
Type Data
Constraints . . .
Composed of . . .

Component FaultInformation
Type Data
Constraints . . .
Composed of . . .

Component SensorConnect



Type Connector
Constraints . . .
Composed of . . .

Component QueryManager
Type Processing
Constraints . . .
Composed of . . .

Since all the components derived from the KAOS’ specification are data, we
need to define various processing and connector components at this stage. At
the next step we decide which of these components would be a part of the final
prescription.

Step 3 In this step we determine which of the sub goals are achieved by the
system and assign them to the previously defined components. With the goal
refinement tree as our reference, we decide which of the potential components
of step two would take responsibilities for the various goals. Note that this is a
design decision made by the architect based on the way he chooses to realize the
system. The components with no constraints are discarded, and we end up with
the first complete prescription of the system.

Components like Fault were discarded from the prescription because they
were not necessary to achieve the sub goals of the system. Instead of the Fault
component we chose to keep FaultInformation. Different architects may make
different decisions.

It is interesting to note that in our first iteration of the prescription Com-
munication was a leaf connector with no subcomponents. It was responsible for
realizing the necessary communication of the system. However the power plant
communication was not uniform throughout the system. Different goals had dif-
ferent time, connection and security constraints for communication. In our first
iteration we assumed that Communication component could handle these vary-
ing types of requirements on it. However then we realized that replacing the
Communication component by more narrowly focused components was a step
that helped illustrate these differences. Therefore we created the components
UpdateDBConnect, FaultDetectionEngineAlarmManagerConnect and QueryD-
BConnect. As the names suggest, each of these were responsible for the commu-
nication in different parts of the system. Therefore it was easier to illustrate the
different time and security constraints needed for each of these.

The following are the prescriptions for the sub components

Component UpdateDBConnect
Type Connector
Constraints Secure

TimeConstraint = 2 s
Composed of /
Uses /



Component QueryDBConnect
Type Connector
Constraints TimeConstraint = 5 s
Composed of /
Uses /

Component FaultDetectionEngineAlarmManagerConnect
Type Connector
Constraints Fault Tolerant

Secure
TimeConstraint = 1 s

Composed of /
Uses /

Step 4: Achieving non-functional requirements An additional fourth step in the
prescription design process focuses on the non-functional requirements. Goals
like reusability, reliability etc can be achieved by refining the prescription. This
step is iterated till all the non-domain goals are achieved.

For this system we introduced additional constraints on the Database and
the connector between Alarm and Precon (FaultDetectionEngineAlarmManager-
Connect). In the case of Database an additional copy of the Database was in-
troduced to ensure fault tolerance. With the introduction of a copy additional
issues arose. For example, we needed to ensure that if the main database recov-
ers from a failure, all the changes made on the second database since the failure
should now be made on the main database. Once that’s done the control should
be shifted to the main database. This and several other additional constraints
were thus defined.

As a second step, we also defined two copies of Alarm and Precon. This again
created additional constraints. For example, each time one copy of Precon fails,
the other one should take over without affecting the functioning of Alarm.

Other constraints to be considered include no data lost, sequence preserved,
data transmitted in x time, mediation, transformation, coordination, hardware
interaction, software interaction, human interaction, interoperability, security,
fault tolerance, consistency, recovery, post recovery, retrieval of information, up-
date of information etc.

Step 5: Box diagram Once the architecture was created we added a box diagram
illustrating the various components and connectors. The component tree created
as a result of the three steps did not show how the various components are linked
through the connectors. The box diagram helps in visualizing this and thus gives
a more complete view of the architecture.

4 Problems and Issues

There were some issues common to both architectures. First neither architec-
ture has means of addressing fault tolerance, reliability etc as architectural con-
straints. The architectures are derived only from the goal oriented requirements,



and there is a possibility that for some cases fault tolerance etc may be intro-
duced for architectural reasons. Neither method has a well defined way of dealing
with this. Secondly, we often had to work with inadequate information on the
functioning of the power plant. We were unable to find any information on cer-
tain requirements like performance. Therefore performance was not included.
However in a real world power plant system performance is an extremely critical
issue.

4.1 Architecture 1

Step 1 proceeded well in generating a useful data flow architecture. However,
in Step 2 where architectural styles are applied, there were only a few sample
styles to look at. The power plant architecture was relatively small and we were
unable to apply many of these styles to the architecture.

The third step requires the use of patterns to achieve non-functional require-
ments. There were various sample patterns given, however the small size of the
power plant architecture limited the choice of patterns to apply. In some cases
the patterns were not well documented so it was difficult to understand their
application. On the other hand there were cases where it was required to apply
two or more patterns to the same components. It was difficult to decide how to
combine the patterns to realize this.

Another issue with the architecture was the creation of new components
during the course of the derivation that had no operations. We also had to
create some new connectors that did not have a complete definition.

Fig 8 and fig 6 show how to apply patterns to achieve interoperability and
fault tolerance between components. However it is difficult to see how the pat-
terns would be applied if components C1 and C2 needed to achieve both in-
teroperability and fault tolerance. Another consideration is the order in which
we apply these patterns to achieve a combination matters. There were no clear
guidelines.

Fig. 8. Interoperability refinement pattern

We were unable to find suitable patterns for some other non functional re-
quirements. For example, the power plant architecture required certain time
constraints on different functions, but there were not suitable patterns to incor-
porate these time constraints with the architecture.



To achieve fault tolerance some components were replicated as illustrated
in the pattern. It was difficult to determine which and how many components
should be replicated. There wasn’t enough information available on the func-
tioning of the power plant to assign higher priority to some components and
lower to others. The final decision was made based on the limited information
provided.

An additional problem was illustrating the need to ensure consistency be-
tween the two replicated components. The communication between the compo-
nents would change with the introduction of replicated components; however, it
was difficult to explain how.

The alarm component was replicated since it was critical to ensure smooth
functioning of the power plant. However we could not define the method of
communication between the two copies of alarm, nor the method used to ensure
consistency. It was also difficult to determine how the communication between
Alarm-Operator and Alarm-Communication would change with the presence of
an additional component and how this would change the current connector.

We could not determine the need for interoperability due to the lack of de-
tailed system information.

The final architecture we obtained used a communication component to fa-
cilitate all communication for the system. However the communication between
components often had different features and constraints. There were hardware
connections, software connections, redundant components, different time con-
straints and different reliability constraints. It was not possible to incorporate
these differences in communication in the architecture. One possibility discussed
was to define communication as a connector instead of a component.

4.2 Architecture 2

Our first hurdle was the very first step. The architect is given a large degree of
freedom in choosing an initial overall structure. While this may be appropriate
for an experienced architect, it was difficult for us to determine how to start
and how much to try to do in the first step. It was also difficult to realize how
much leeway was allowed for each of the steps. We were unable to find sufficient
guidance on the various steps in the process. There were no examples where
we could find both the complete goal tree and the complete component tree.
This would have allowed us to compare the trees and understand better the
progression required to create the architecture. Some of the questions were

– What decisions regarding the architecture are made at step 1. Do we simply
assign a root goal or do we need to anticipate the next steps and have a basic
structure thought out?

– Is it possible to have refinement where the tree had more than three levels?
– If all the sub goals (of a root goal) are realized by a component, does the

root goal (for those sub goals) still need to be assigned to a component?
– Ideally in the second step KAOS objects are used to create sub components.

Was it possible to use agents in this step also? Sensor Management Unit was



an agent that we thought could be made a sub-component. However finally
we used SensorInformation (which was an object) instead.

– Is it possible for a goal (and thus constraints) to be shared between sub
components

Once the architecture was created we also added a box diagram illustrating
the various components and connectors. The component tree created as a result
of the three steps did not show how the various components are linked through
the connectors. The box diagram helped in visualizing this and thus gave a more
complete view of the architecture.

Once we obtained the component tree and the box diagram it provided us
with different views. The tree seemed to indicate a hierarchy whereas the actual
structure is quite different. The box diagram helped us realize the architecture
as a network. Therefore there were different views of the system and structure
based on the way we chose to look at it.

Additionally there were some components in the architecture that had no
connectors. For example the AlarmInformation component under Alarm is a data
component with various constraints on it, however it did not have a connector.

In the component tree and the resulting architecture there is no way to tell the
data that is being passed through a connector. This made the architecture more
difficult to understand. This information is particularly critical to describing
the connectors. An alternative discussed for this problem was the possibility of
having data as a constraint for a connector.

We also considered ways to explore the richness of connectors. Connectors
can have different responsibilities like mediation, transformation and coordina-
tion. This richness would lead to a better design if we could portray this in the
architecture prescription.

5 Comparison between the two methods

The most significant difference is that the first architecture is more low level.
The components are described together with the operations that they have to
perform creating a more rigid design. The second method uses an architecture
prescription language which tends to be more high level. This allows the designer
to pick a better solution at a low level. However at the same time it provides
less guidance in getting to the solution.

The first method provides a more ’network type’ view showing the various
relationships and interactions between the components. The second method re-
sulted in a component tree which was more hierarchical in nature. We needed an
additional box diagram to better explain the component interaction. However
both views though different were useful.

The first method was more systematic in the beginning. There was a clearly
laid out approach for going from requirements to an architecture. The initial
steps were simple enough to consider the possibility of automation in the future.
However in the second method one of our biggest hurdles was getting past the



first step. It was difficult to determine the basic composition with which to start.
This was probably due to the high level nature of this method.

As we continued with the architecture derivation the first method got a little
more confusing. We had problems choosing the appropriate patterns, and ap-
plying combinations of patterns. There was inadequate documentation on them
to help in the process. On the other hand the second method became more
manageable once we decided on an initial structure.

An interesting difference was that in the first method there were no con-
straints on the various connectors. Instead the focus was on the data that is
passed through those connectors. In the second method we were able to specify
various constraints for each of the connector, but there was no way of specifying
the data that is passed through. In both cases we were unable to specify the
differences possible in the nature of various types of connectors. For example,
connectors for fault tolerant components may provide mediation. There was no
way to specify this in either case.

With respect to non-functional requirements, in the first method we applied
them by choosing the appropriate pattern. However in the second method we
created additional constraints on the components to realize the non-functional
requirements.

The second method takes as input the requirement specifications in KAOS
and provides as output an architecture prescription. Obtaining a architecture
prescription was a challenging process. There were several points where we were
unclear on how to proceed. Therefore some suggestions are proposed in this
section to make the various derivation steps easier to follow. The biggest problem
encountered was with the very first step. It was difficult to determine how much
of the architecture needs to be in place when deciding the first step. We did not
know how to pick the components to determine the root and the second level of
the component tree.

One way of approaching this is that the root goal of the component tree is
simply the name of the system that is being implemented. In order to determine
the second level of this tree we look at the second level of the goal tree. This
gives a good idea of some of the high level goals of the system. We also look at
some of the main subsystems that the given system would need to interact with
in order to realize these goals.

The next step is to determine how detailed we want the second level of the
component tree to be. We can choose to keep the second step simple which
would typically include basic manager type components and a main connector
component. These components are further spilt into detailed subsystems later.

In the Power plant problem, the subsystems that the main system interacts
with are used to determine the second level components. This makes the second
level of the tree more detailed. In this case - Precon, Alarm and Databases are
the major subsystems that the power plant interacts with so these form the
second level of the component tree. A communication component is also present
to ensure proper communication between these various subsystems. The agents



in the goal model are a way to start looking for the various subsystems involved.
In both cases we looked at agents that are subsystems not agents that are people.

It is important to note that in both processes there is always a connector
element present at the second level

Once the basic tree is in place the remaining steps are easy to follow.
The next problem faced was that the architecture specifies the various con-

nectors in the subsystem. We can specify the constraints on these connectors.
However there is no way to specify the data being passed through them. Various
components do specify the connectors they use however information regarding
the data being passed is absent under the connector description. A data flow
model for this method would be useful in this. Another possibility is specify-
ing data as a constraint for various connectors. Data along with the constraints
would form a complete connector description

Once the component tree was in place it was felt that there was still a missing
element to understand the architecture completely. The component tree gave us
a hierarchical type view of the system; but that was not adequate so we added a
box diagram to give us a network type view. This is essential in understanding
how the system worked. This diagram also helped in understanding the con-
nectors of the system because it told us the way these connectors linked to
components. This thereby helped in getting an understanding of the data that
would be passed through these connectors. Understanding of the data passed is
essential to getting a complete description of the connectors.

6 Conclusions

In this research we took a real world example of a power plant system and
systematically obtained goal-oriented requirement specifications. We then cre-
ated two architectures that satisfy the requirements. We analyzed and compared
the results. Both architectures provided us with different but nonetheless use-
ful views of the system. We used our example to create further well defined
derivation methods making this critical step of the system design process easier.

Subsequently, this case study became the foundation for two masters theses:
Jani explored how styles and patterns provide some non-functional constraints
such as reliability and fault tolerance in the Perry/Brandozzi approach [12]; and
Vanderveken investigated adding a behavioral view to van Lamsweerde’s KAOS
methods and precisely describing and applying transformation patterns. [13].

A good start, but much further work still needs to be done.

References

1. Coen-Porisini, A., Mandrioli, D.: Using trio for designing a corba-based application.
Concurrency: Practical and Experience 12 (2000) 981–1015

2. Coen-Porisini, A., Pradella, M., Rossi, M., Mandrioli, D.: A formal approach for
designing corba based applications. In: ICSE 2000 - 22nd International Conference
on on Software Engineering, Limerick, ACM Press (2000) 188–197



3. Massonet, Ph., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. In: FSE-4 - 4th ACM Symposium on the Foundations
of Sofware Engineering, San Fransisco, ACM Press (1996) 179–190

4. Letier, E., van Lamsweerde, A.: Deriving operational software specifications from
system goals. In: FSE-10 - 10th ACM Symposium on the Foundations of Sofware
Engineering, Charleston, ACM Press (2002) 119–128

5. Letier, E., van Lamsweerde, A.: Agent-based tactics for goal-oriented requirements
elaboration. In: ICSE 2002 - 24th International Conference of Sofware Engineering,
Orlando, ACM Press (2002) 83–93

6. van Lamsweerde, A.: From system goals to software architecture. In Bernardo,
M., Inverardi, P., eds.: Formal Methods for Software Architectures. Volume 2804
of Lecture Notes in Computer Science. Springer-Verlag (2003) 25–43

7. Brandozzi, M., Perry, D.E.: Transforming goal oriented requirement specifications
into architectural prescriptions. In Castro, Kramer, eds.: STRAW 2001 - From
Software Requirements to Architectures. (2001) 54–60

8. Brandozzi, M., Perry, D.E.: Architectural prescriptions for dependable systems.
In: ICSE 2002 - International Workshop on Architecting Dependable Systems,
Orlando (2002)

9. Brandozzi, M.: From goal oriented requirements specifications to architectural
prescriptions. Master’s thesis, The University of Texas at Austin (2001)

10. Jani, D., Vanderveken, D., Perry, D.: Experience report deriving architectural
specification from kaos specification. Technical report (2004) Also avaiable at
http://www.ece.utexas.edu/∼perry/papers/R2A-ER.pdf.

11. Manna, Z., Pnueli, A.: 3. In: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag (1992)

12. Jani, D.: Deriving architecture specifications from goal oriented requirement spec-
ifications. Master’s thesis, The University of Texas at Austin (2004)

13. Vanderveken, D.: Deriving architecture descriptions from goal oriented require-
ments. Master’s thesis, University of Louvain, Belgium (2004)


