A Design for Evidence-based Software Architecture
Research

WenQian Liu', Charles L. Chen, Vidya Lakshminarayanan, Dewayne E. Perry

TSoftware Engineering
Department of Computer Science
University of Toronto, Canada

wl@cs.toronto.edu

ABSTRACT

Active research is being done in how to go from requirements
to architecture. However, no studies have been attempted in
this area despite a long history of empirical research in soft-
ware engineering (SE). Our goal is to establish a framework
for the transformation from requirements to architecture on
the basis of a series of empirical studies. The first step is
to collect evidence about practice in industry before design-
ing relevant techniques, methods and tools. As part of this
step, we use an interview-based multiple-case study with a
carefully designed process of conducting the interviews and
of preparing the data collected for analysis while preserv-
ing its integrity. In this paper, we describe the design of
this multiple-case study, delineate the evidence trail, dis-
cuss validity issues, outline the data analysis focus, discuss
meta issues on evidence-based SE particularly on combining
and using evidence, describe triangulation approaches, and
present two methods for accumulating evidence.

1. INTRODUCTION

Requirements to architecture is the first and hardest step in
the process of engineering software systems. The research
fields in requirements and architecture have developed inde-
pendently for more than a decade [21, 8]. Recently, active
research is being pursued in understanding the relationships
between them and developing methods for the transforma-
tion from requirements to architecture [1, 2]. However, there
has been no attempt to study the transformation empiri-
cally and no evidence has been collected on how that has
been done in practice despite the long history of empirical
research in software engineering [27].

Our goal is to understand how to transform requirements
into architectures, and based on that, to provide practical
and effective techniques, methods, processes and tools. We

Empirical Software Engineering Lab
Electrical and Computer Engineering
The University of Texas at Austin

{clchen,vidya,perry}@ece.utexas.edu

take an empirically-based rather than a technology-based
approach (see the discussion in section 6.2) in our research.
As the first step of a series of studies, we use an interview-
based multiple-case study method [31] to find out what ar-
chitects do in practice.

Our study involves a series of semi-structured interviews on
requirements and architecture topics with multiple subjects.
The interviews are semi-structured because we use a pre-
designed questionnaire with open-ended questions and em-
ploy a conversation based style rather than a question and
answer form. We call it a multiple-case study because it
is collected from nine carefully selected practicing software
architects from industry.

There are a number of specific topics that we are interested
in this study: (i) how software architects manage require-
ments and make design decisions particularly concerning
non-functional requirements; (ii) what their view of soft-
ware architecture is in terms of the critical characteristics of
software architecture, the driving forces of its creation, and
the very meaning of it; (iii) what is their personal opinion on
the critical aspects and characteristics of a great or superb
software architect; and (iv) how they view the evolution of
the software from an architect’s point of view.

We have carefully designed the process of conducting the in-
terviews and preparing the data collected for analysis while
preserving its integrity. We wish to establish a framework for
the transformation from requirements to architecture based
on our analysis of the data and proceed to method design.
In this paper, we describe the design of the case study, de-
lineate our evidence trail, discuss validity issues, outline our
data analysis focus, discuss meta issues on evidence-based
software engineering particularly on combining and using
evidence, describe our approach towards data triangulation,
present two methods for accumulating evidence, and outline
our future work.

2. RELATED WORK

In recent years, there has been an active focus on bridg-
ing the gap between requirement engineering and architec-
tural design [1, 2]. In particular, a number of approaches
stemming from the goal-oriented requirement specification
techniques [37, 5, 35] have emerged. Mylopoulos and van

Lamsweerde both extended their goal-oriented frameworks
independently toward agent-oriented design paradigms [38,
20, 34]. Perry et al., on the other hand, worked toward ar-
chitecture prescriptions [4]. Jani et al. have compared and
evaluated these two approaches in a case study [16].

Dromey, in his GSE (Genetic Software Engineering) work
[6], provided a systematic approach in going from a set of
functional requirements to a system-level design by using
behavior trees for representation and integration. It focuses
on the functional (or behavioral) requirements and emergent
properties in design, but does not address quality attributes
or tracing rationales.

Leveson [17] introduced the concept of intent specification
based on research from the cognitive science community [36]
in support of tracing rationales behind design decisions. The
focus of that work is to provide convenient notations and
processes that match human cognitive capability at every
step of system design. It uses intent to link the adjacent
development phases such as the requirement phase — System
Purpose, and the design phase — System Design Principles.

Problem frames [15] capture generic patterns in problems
and provides a means to break down a large problem into
recognizable subproblems and reuse their descriptions. Re-
cently, Nuseibeh et al. have extended this work towards
architectural design [13, 29]. These extensions are mainly
geared toward a pattern-oriented heuristic. Other heuristics
are also introduced such as a rule-based framework [18] and
a classification based method [12].

As far as the (interview-based) empirical research goes, to
the best of our knowledge, no one has used it to establish
a connection between requirements and architecture in a
broad sense. The closest work to ours is the interview-based
research done by Graaf et al. on the state of practice of
requirements engineering and architectural design processes
in the embedded software domain [10]. However, a num-
ber of independent empirical studies have been done in re-
quirements and architecture separately. An interview-based
research of real world influence on software architecture by
Mustapic et al. investigated the significant influencing fac-
tors over systems and software architectures [19]. Smolan-
der et al. also conducted a case study on three software
organizations identifying what is included in a software ar-
chitecture from the architectural analysis, description and
tools perspectives [32]. Hickey and Davis summarized their
empirical studies of the selection of requirements elicitation
techniques through interviews with nine expert analysts [14].

Our work will be among the first in collecting evidence from
the practice in bridging the gap between requirements and
architecture, and establishing a frame of reference empiri-
cally for further research.

3. THE CASE STUDY DESIGN

In this section, we discuss the case study from its prepara-
tion, the evidence chain, to the evidence trail. The prepa-
ration is about the design of the questionnaire where we
consider both the depth and breadth coverage in the area of
our interests. The evidence chain is about finding subjects,
conducting the interviews, and collecting evidence. The ev-

idence trail is about preparing the data for analysis and
summary while maintaining its integrity.

3.1 Preparation

The major step in our preparation for this research is the
design of the questionnaire. The questions are structured
by topic and are arranged in sections. All the questions are
open-ended and designed to guide conversations rather than
to get short answers. The sections are:

— Problem Domain

— Overview of Software Architecture
Requirements and Architecture

— Relating to Evolution

— Professional Background

— Comments

HFEHOQ® >
|

The questionnaire was initially prepared by one author, then
reviewed by all authors and revised. Reviews were also car-
ried out after each interview session and revisions were ap-
plied whenever necessary to bring clarity to, or fill in the
gaps between, the questions.

Here are some examples from the questionnaire where ques-
tion B belongs to section B, and C3 and C4 belong to
section C.

e (B1) What do you consider to be the critical charac-
teristics of software architecture?
— What is the essence of software architecture?
— How many levels of architecture are there?

How detailed should it be?

Should it be prescriptive or descriptive?

— What would the architectural representation in-
clude?

— How do you communicate an architecture to the

stakeholders?

e (C3) How do you transform the functional require-
ments into an architecture?

— Do non-functional requirements play a role in this
transformation?
— Any examples?

e (C4) How do you handle the non-functional require-
ments?

— Do you integrate these with the functional ones
initially or after you have considered the func-
tional ones and built a skeleton architecture?

— How do the functional and non-functional aspects
interplay in the design of an architecture?

— Is there an ordering or a set of priorities for non-
functional requirements?

— Are there some non-functional requirements more
implementation issues than architectural?

3.2 Evidence Chain

The initiation and conduct of interviews, and collection of
data make up our evidence chain. Our subjects have been
identified either through direct contact with the authors or
references from other contacts in the cities of Toronto and
Austin. Our goals include interviewing architects from di-
verse domains, different organizations, and specialized areas.
We plan to include more cases as needed for one of two rea-
sons: to increase the domain and industry coverage; and to
deepen our knowledge of specialized areas in practice.

We use the questionnaire as the basis of the interviews.
During the interview, we employ a conversation based style
which means we start from a question in the questionnaire
and carry on with the flow of the current topic and content,
rather than interrupt it with the next question. We have
the subject describe the details with the help of examples
in answering each question. Each interview session is be-
tween one and three hours. Each subject may have one or
more interview sessions. We also follow up should further
clarification be needed.

All conversations are recorded with the permission from the
interviewees. We have taken a strict security measure by
only allowing members of the project to access the data.
In the future, we will make our questionnaire available on
the web, and with permissions from our interviewees, we
plan to extract away any identity related information and
make the remaining data available on the web so that other
researchers and interest groups can have access to it.

3.3 Evidence Trall

The focus of the evidence trail is to prepare the data for
analysis and summary. There are four steps: (i) transcribe
the interview; (ii) annotate the interview according to a set
of rules; (iii) partition the interview into specific questions
using a processing program; and (iv) select quotations man-
ually. Note that the versions resulting from each step are
kept and that nothing in the evidence trail is discarded.
Thus, we can move up and down in the evidence trail as
needed. We discuss each in depth with some examples.

Transcription The interviews are manually transcribed by
two of the authors. For each minute of recorded interview
audio, we estimate that three minutes were spent in tran-
scribing and proof reading!. The interview audio runs for a
total of 1050 minutes (~ 18 hrs) and the total transcription
time is estimated to be around 3150 minutes (~ 53 hrs).

Annotation The transcriptions are annotated to relate
the data to each question. The annotations used are self-
explanatory and shown below. For ease of processing, we
divided each interview session into several parts.

|Il<interviewee name>| |/Il<interviewee name> |
IP|<interview part number>| |/P|<interview part number>|
|R|<interviewer name>| | /R|<interviewer name> |
|Ql<question number> | |/Ql<question number>|
ID|<Date :mm-dd-yyyy> | | /DI<Date:mm-dd-yyyy>|
|T|<Time:mm-ss> |

'Each of the two authors transcribes a different part of the
interview. The transcriptions are then exchanged between
the two authors and thoroughly reviewed.

Here is a fragment of an actual interview with annotations.

|Ilname U| |P|2] [D|8-3 & 5-2004| [QIC3]|

ITI4:16] |QID5| I think the things that emerge first are
the things you are familiar with. You’re probably going to
spend more time on the things that require new... I think
it’s like a cluster. Things will sort of immediately seem
like there’s bright spots that you sort of know how to
deal with based on things you’ve built before, and then
there’ll be murkier areas that will require more effort
and thought and probably iteration to develop.

ITI5:02] Yeah, I think you probably would be... I mean
this is what I think is behind the patterns work, sort of
recognizing and hopefully actually reusing things other
people have done, not just from your own experience. Cause
that is the challenge right now, I think most of that work
is based on your own individual experience, it’s hard to
harvest from other people’s experience.

ITI5:25] |R|IW| Right. So when that reuse is exhausted,
then you will try to think how are you going to design new
elements in order to...|/RIW]|

ITI5:38] And even then, you’ll probably try to break them
down into things that seem familiar or try to attack it
using approaches you’ve used in the past.|/QIC3|...|/QID5]
|/D18-3 & 5-2004| |/P|2| |/Ilname Ul

Annotations may be nested and overlapping without any
specific order. The same section could be annotated multi-
ple times if it is relevant to multiple questions. If there is any
doubt on the relevance of a response to a specific question,
the general guideline is to err on the side of having more
and annotating it as relevant. At this point, the annotation
process was performed by the two authors who did the tran-
scription and a short-term student project member?. Each
one had gone through the entire body of the interview data
and had annotated the data independently. Comparisons
and discussions followed among themselves after completing
each interview and the final annotated version was created
collectively. Again, where there is disagreement, we err on
the side of having more rather than less.

Partition The final annotated versions were run through
AWK and Shell scripts. The scripts parsed all of the an-
notated transcriptions and gathered all the sections that
are relevant to each question into a single file. Information
about the source of each section is inserted at the beginning.

Here is an example from a portion of the generated file per-
taining to question B (see section 3.1 for details). W in
the text refers to an interviewer.

<name U> 4, 8-3 & 5-2004 25:34

I think at some point you have to start looking at the
lines between systems and how they work together. And you
would see if something was very cluttered and messy in
terms of messaging and communication and that, then it’s
probably a poor design, a poor architecture. I think
simplicity is actually the goal.

<name V> 5, 8-6-2004 0:50
My simple definition, essence of software architecture,
is the organization or interaction of components.

2The student did not participate in annotating the last in-
terview as the student completed her work term.

<name X> 7, 7-15-2004 39:18

Does it enable everyone with a vested interested to do
what they need to do? That’s really the bottom line. So
from a user’s point of view, do they get something they
want to use? For one thing, product. Do they get
something they want to use, yes. So the architecture
enables the company to deliver that. Do the developers
hit their times and schedules without working more than
40 hour weeks? Do the professional services guys have a
certain level of confidence that they can go in with the
customer and implement stuff they say and sign the deals?
Are the sales guys confident in what they’re demo-ing
that they’re actually going to fulfill a need? Do the
board of directors see a sustainable business?

<name Y> 2, 8-12-2004 0:01

Sometimes people say architecture is simply the hard
parts of the system or the hard to change parts of the
system. And while there is some truth in this, its not
fundamental, it is more kind of accidental.

<name Z> 1, 7-8-2004 13:24
So I think the less constrained the better, from an
architect’s perspective.

<name Z> 1, 7-8-2004 13:33
You want to describe the things that are important and
just leave the other stuff up to the developers.

<name Z> 1, 7-8-2004 15:36

[W: "What is the downside of over-constraining?"]

Well it virtually closes some implementation options, some
things that a developer might be able to do if it were
less constrained and have a more optimal solution at the
implementation level but you’ve done something at the
architecture that precludes that.

<name Z> 1, 7-8-2004 16:13

For a good abstraction, you have to make sure you capture
and constrain and express the things that are really
important at that level and just leave everything else,
defer it till later, let somebody else worry about it.

Hand Selection The partitions gathered by the scripts
will be thoroughly reviewed and processed so that only the
most relevant answers to the questions are kept for analysis.

4. VALIDITY

Three issues are critical in empirical studies [31]: construct
[24], internal, and external validity. The discussions of each
are provided below.

4.1 Construct Validity

There are two perspectives that contribute to the construct
validity in this case study. One is on the coverage of the
questionnaire, and the other is on the abstractions employed.

The goal in designing the questionnaire is to be both thor-
ough and broad. The questionnaire was initially drafted by
one author based on brainstorming and underwent a number
of reviews by each author. Reviews were carried out among
the authors after each interview session where revisions were
applied whenever necessary to either clarify the questions or
fill in the gaps between the questions.

We used two basic abstractions in this work: requirements
and architecture. We asked each interviewee what he/she
considers to be the meaning of each one. There were no is-

sues understanding the construct of requirements, but there
were with architecture. We were careful and sensitive about
that. One interesting thing that came out of the interview is
that the descriptive vs prescriptive notions are understood
inversely in practice. Practitioners considered prescriptive
to mean complete detail and descriptive to mean sketchy
and incomplete. We used descriptive to mean the complete
details of the architecture and what is not included is not
allowed, and prescriptive to mean the critical parts and con-
straints that must be present and leaves the rest open. Once
discussed, the interviewees agreed with us that prescriptive
approaches (based on our definition) should be used with
the exception of one who believes that designs should be as
complete and descriptive as possible.

4.2 Internal Validity

Semi-structured interviews may suffer from the problem of
“leading”. This may make the data collected less objec-
tive than it should be. The problem arises because we have
young researchers involved who are learning how to do em-
pirical research. On the other hand, we know where this
occurs and can mitigate that problem by being careful in
using the results in these contexts. In addition, this is an
educational research project whose secondary objective is to
teach graduate students and it is inevitable that some mis-
takes will be made due to their lack of experience in research.
Moreover, we have all interviews transcribed, and when we
spot that there is too much “leading”, we will use other data
instead or note the context of the subjects’ comments.

Not all questions are answered in each interview due to time
limits. Moreover, during the interviews, we did not keep
track of which questions had been answered since we pre-
ferred to follow the flow of the discussion and stay as open-
ended as possible rather than obeying the strict order of the
questionnaire. This raises a consistency issue among inter-
views. However, this is a case study not a survey; we are
looking for collective agreement and disagreement. After
the initial analysis, we may follow up with the subjects to
supply missing data deemed critical.

4.3 External Validity

So far, we have a variety of domains represented (though
quite a few admittedly from the same international organi-
zation). We recognize that there may be some bias intro-
duced. However, this work is ongoing, and we will choose
more diverse subjects in the future.

5. ANALYSIS

Our analysis and summary of the data will be focused on
looking for the following information: (i) specific domain
related differences; (ii) agreement and disagreement on an-
swers; (iii) critical issues; and (iv) further questions to be
considered. Our general approach is oriented around three
perspectives: (a) question specific; (b) interviewee specific;
and (c) global account of both of the above.

6. ISSUES ABOUT EVIDENCE

One of our goals is to gain an understanding of what is done
in the practice to judge, form and evaluate our research.
To achieve this, we direct particular attention to combining,
weighing, judging and using evidence. In the following text,

we discuss our approach towards combining evidence and
briefly comment on weighing and judging evidence. We also
review a history of empirical research that we are involved in,
how evidence was used in this work, and the contributions
made to the research and practice communities.

6.1 Combining Evidence

The work described in this paper is a multiple-case study
in which we interviewed nine practicing architects. This
approach allows us to collect more evidence and acquire a
broader understanding of the practical meaning of various
topics of interest, than we would from a highly specialized
and focused view with a single subject. Further, it helps
in understanding and analyzing what the architect say they
do in practice. There are two dimensions to the units of
analysis. One is an individual architect (subject). The other
is the individual question from our questionnaire. Our data
analysis will follow both threads and provide both the overall
understanding of each question from every subject’s point
of view and that of each subject on all questions.

The interviews help us to understand what practicing archi-
tects think of topics on requirements and architecture, and
how they describe their practice. However, what they say
they do may not match what they actually do. To enhance
the strength of our evidence, we plan to use two approaches
to satisfy a systematic pluralism approach [31]. The first is
to use the “participant observation” technique observing and
recording daily activities and interactions over a period of
time. In this way, we collect firsthand information on what
they actually do. Field notes are the main tool for record-
ing. However, to minimize observer’s bias, audio recording
and transcriptions will also be used whenever appropriate.
These field records will provide evidence on what the archi-
tects actually do as opposed to what they have said they do.
Another approach we plan to take is to acquire their process
descriptions and documentation for requirements engineer-
ing and architectural design, and use content analysis [33]
to extract what architects are supposed to do.

With these three sets of data, we will have better coverage
and be able to identify inconsistencies among them. As in
the multiple case studies, we look for agreement in the ev-
idence first; the combined agreement provides very strong
evidence about practice. Where there are disagreements in
the data, we will weigh the observation results the high-
est followed by the interview data, and the documentation
records the lowest. We do this because people often ideal-
ize their processes when discussing them, and documented
processes are often not followed or may not reflect current
practice. Collectively, the three approaches described above
form a process-based method for accumulating and combin-
ing evidence. The strength of this method is that it combines
evidence about what they are supposed to with what they
say they do and what they actually do.

In the time studies [28, 3], we used various empirical ap-
proaches to gain a better understanding of the development
process structure to reduce the development interval. The
experiments were performed using different forms of data
collection to report on how the time is spent by the devel-
opers in the development process. The different levels of
granularity in time form a triangulation for the data.

The initial longitudinal study reported the activities of a
single developer over the entire development of more than
32 months at the granularity of one day. The primary result
of that study was that the developer was blocked 60% of
the time. To determine the relevance of that result, a cross-
sectional study was done where the developers reported their
daily progress in half-hour increments via self reports at the
end of the day. The 40% effectiveness result was confirmed
in the second study, but the 60% ineffectiveness was blurred
due to both blocking and context switching. To determine
the reliability of the self reports, a direct observation study
was done reporting the activities of the developers at the
minute level of granularity. The most interesting result at
these finest granularity was the 75 minutes per day on av-
erage of short (i.e. ~ 3 minutes) unplanned and informal
interactions not observable at the other levels of granular-
ity. Collectively, these three approaches form a time-based
method for accumulating and combing evidence.

In our search for further evidence about transforming re-
quirements to architecture, we will carry out experiments
on two topics and study what works and why: (i) non-
functional patterns and transformation; and (ii) methods
and tools for transformation (which could be either existing
or new). Finally, we plan to combine all of the evidence
described above, taking into account both the current prac-
tice and research, and construct a grounded theory [9] of
requirements and architecture.

6.2 Using Evidence

Collecting and using evidence is essential in driving or in-
forming four areas of software engineering: research, prac-
tice, empirical study design and software engineering the-
ory. We first look at one such study and how its evidence
informed research and practice, and then indicate how it
could effectively inform experimental design. We then show
how empirical evidence informed the creation and deploy-
ment of a code inspection tool. Finally, we illustrate how
evidence from practice can be used to create models for soft-
ware development processes and organizations.

Perry and Evangelist studied interface faults [25] which un-
covered 16 categories of faults in the prima facie set of in-
terface error reports. This is the first reported work that
treated interface faults as a separate class of software er-
rors. The study provided insight to the requirements and
further studies of techniques and methods that may reduce
interface faults. It sets the foundation for both Perry’s sem-
inal work on researching and developing the Inscape En-
vironment [23] and Rosenblum’s most influential paper on
annotations aimed directly at affecting practice [30].

In the Inscape work [23], Perry prototyped an integrated
software development environment (SDE) intended to ad-
dress two fundamental problems in building software sys-
tems: evolution and scale. The goal was to provide a prac-
tical application of formal methods in building large, evolu-
tionary software systems with large groups of people through
the use of formal interface specifications. The research and
development of this SDE was driven by the data collected
n [25]. For example, Inscape has structured exception han-
dling in response to the evidence which showed that 20% of
the faults were errors with exception handling; in addition,

because the evidence also showed problems with obligations
accounted for 10% of the faults, the formal interface speci-
fications used explicitly contain the idea of an obligation.

Rosenblum, in his annotation work [30], investigated the
issue of why programming with assertions as a development
technique and tool had little widespread use in practice. He
described an assertion tool developed by himself. Based on
his experience of using that tool, he classified the kinds of
assertions that were most effective in uncovering the kinds
of faults described in [25]. The examples used in his paper
were taken from the evidence gathered in [25].

Experiments in various forms of code evaluation such as in-
spections (e.g. [7]) and testing often use lab settings where
the examples of code are “seeded” with faults. The heart of
the design then is to use various methods, techniques and
tools to find these errors while various measures are collected
to help compare and evaluate among different approaches.
One of the threats to internal validity in all these designs is
the lack of justification for the kinds and distributions of the
faults seeded. Fault studies such as the ones mentioned here
can be used to strengthen the internal validity, and hence
also the external validity of these designs, i.e. to justify the
faults seeded in much the same way that Rosenblum [30]
justified the annotations used.

A typical technological-based approach to designing a dis-
tributed code inspection tool would include a CSCW (Com-
puter Supported Cooperative Work) component and mech-
anisms for describing structures and techniques to provide
a general purpose tool “for all seasons”. The resulting tool
would likely be complex and hard to use. The goal of Perry
et al. was instead to use an empirically-based approach to
design the simplest possible tool to support distributed code
inspections, reduce inspection effort, and not compromise
inspection effectiveness. They did this by collecting evi-
dence on inspections with or without meetings [22]. This
resulted in a successful implementation and deployment of
a tool called HyperCode that was then used in at least twelve
projects in six countries [26].

Grinter et al. [11] recorded how organizations coordinate
distributed Research and Development (R&D) work among
geographically separated sites. Based on the data, they iden-
tified four models of distributing R&D work across multiple
sites, described the benefits, difficulties and the coordina-
tion mechanisms associated with each model. These results
are used as a basic framework in understanding how to solve
coordination problems in distributed R&D work across mul-
tiple geographically separated sites and how to deploy effec-
tive tools into such a context.

Collectively, the above research has shown the invaluable
utility of empirical evidence for driving both research and
practice. In this work, we expect to achieve similar results
to those in [11].

7. CONCLUSIONS

In this paper, we presented the design of our interview-based
multiple-case study as our first step in deepening our under-
standing of the transformation from requirements to archi-
tecture. We described our process from the preparation to

the evidence chain and evidence trail, and provided actual
data as examples. We discussed validity issues from three
perspectives (construct, internal and external) and outlined
our analysis focus. Finally, we addressed meta issues on
combining and using evidence in software engineering, dis-
cussed data triangulation, and presented two methods for
accumulating evidence.

Our next step is to analyze all the data thoroughly, construct
a framework for the transformation from requirements to
architecture, and use the framework to help us identify and
build practical techniques, methods, processes, and tools.
Other future work includes carrying out experiments on pat-
terns, methods and tools, and constructing a grounded the-
ory [9] for requirements and architecture.

Acknowledgements

We thank all of our interviewees for their participation and
contribution: Bob Blakley, Dale Churchette, Ric Holt, Charles
Krueger, Sharon Lymer, Joe Mclntyre, Sridhar Muppidi,
Dave Stokes, and Stuart Thompson. We gratefully acknowl-
edge our reviewers for their feedback and suggestions on
strengthening the paper. This research was supported in
part by IBM CAS Fellowship and NSF CISE Grant CCR-
0306613.

8. REFERENCES
[1] In J. Castro and J. Kramer, editors, “The First
International Workshop on From Software
Requirements to Architectures (STRAW’01)”. At
ICSE’01.

[2] In D. M. Berry, R. Kazman, and R. Wieringa, editors,
“The Second International Software Requirements to
Architectures Workshop (STRAW’08)”. At ICSE’03.

[3] M. Bradac, D. Perry, and L. Votta. “Prototyping A
Process Monitoring Experiment”. IEEE Transactions
on Software Engineering, 20(10):774-784, Oct 1994.

[4] M. Brandozzi and D. E. Perry. “From Goal-Oriented
Requirements to Architectural Prescriptions: The
Preskriptor Process”. pages 107-113. 2003. In [2].

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas.
“Goal-Directed Requirements Acquisition”. Science of
Computer Programming, 20:3—50, 1993.

[6] R. Dromey. “Architecture as an Emergent Property of
Requirements Integration”. pages 77-84. In [2].

[7] A. Dunsmore, M. Roper, and M. Wood. Systematic
object-oriented inspection an empirical study. In
Proceedings of ICSE ’01, pages 135-144, 2001.

[8] D. Garlan. “Software Architecture: a Roadmap”. In
ICSE - Future of SE Track, pages 371-380, 2000.

[9] B. G. Glaser and A. L. Strauss. “The Discovery of
Grounded Theory: Strategies for Qualitative
Research”. New York: Aldine, 1999.

[10] B. Graaf, M. Lormans, and H. Toetenel. “Embedded
Software Engineering: The State of the Practice”.
IEEE Software, 20(6):61-69, 2003.

[11]

[12]

[13]

[17]

[18]

[19]

R. Grinter, J. Herbsleb, and D. Perry. “The
Geography of Coordination: Dealing with Distance in
R&D Work”. In Proc. Int’l ACM SIGGROUP Conf.
Supporting Group Work, pages 306-315, 1999.

P. Grnbacher, A. Egyed, and N. Medvidovic.
Reconciling software requirements and architectures:
The cbsp approach. In Proceedings of RE’01, pages
202-211, 2001.

J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and
L. Rapanotti. “Relating Software Requirements and
Architectures using Problem Frames”. In Proceedings
of RE’02, 2002.

A. Hickey and A. Davis. “Elicitation Technique
Selection: How Do the Experts Do It?”. In
Proceedings of RE’03, 2003.

M. Jackson. “Problem Frames: Analysing and
Structuring Software Development Problems”.
Addison-Wesley, 2001.

D. Jani, D. Vanderveken, and D. E. Perry.
“Experience Report: Deriving Architectural
Specification from KAOS Specification”. Available at
http://www.ece.utexas.edu/ perry/work/papers/
R2A-ER.pdf, Dec. 2003.

N. Leveson. “Intent Specifications: An Approach to
Building Human-Centered Specifications”. IEEE
Transactions on Software Engineering, 26(1), 2000.

W. Liu and S. Easterbrook. “Eliciting Architectural
Decisions from Requirements using a Rule-based
Framework”. pages 94-99. In [2].

G. Mustapic, A. Wall, C. Norstrm, I. Crnkovic,
K. Sandstrm, J. Frberg, and J. Andersson. “Real
World Influences on Software Architecture -

Interviews with Industrial Experts”. In Proceedings of
WICSA 04, 2004.

J. Mylopoulos et al. “Tropos - Requirements-Driven
Development for Agent Software”.
http://wuw.troposproject.org/, 2004.

B. Nuseibeh and S. Easterbrook. “Requirements
engineering: a roadmap”. In ICSE - Future of SE
Track, pages 3546, 2000.

J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta,
and M. W. Wade. “Anywhere, Anytime Code
Inspections: Using the Web to Remove Inspection
Bottlenecks in Large-Scale Software Development”. In
Proceedings of ICSE’97, 1997.

D. E. Perry. “The Inscape Environment”. In
Proceedings of ICSE’89, 1989.

D. E. Perry. “An Empirical Approach to Design
Metrics and Judgements”. In New Vision for Software
Design and Production Workshop. Vandebilt
University, Dec 2001.

D. E. Perry and M. Evangelist. “An Empirical Study
of Software Interface Faults—An Update”. In
Proceedings of 12th HICSS, volume 11, pages 113-126,
January 1987.

[26]

29]

(30]

(31]

35]

(38]

D. E. Perry, A. Porter, M. W. Wade, L. G. Votta, and
J. Perpich. “Reducing inspection interval in large-scale
software development”. IEEE Transactions on
Software Engineering, 28(7):695-705, July 2002.

D. E. Perry, A. A. Porter, and L. G. Votta. “Empirical
studies of software engineering: a roadmap”. In ICSE
- Future of SE Track, pages 345-355, 2000.

D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
“Understanding Software Development Processes,
Organizations and Technologies”. IEEE Software, July
1994.

L. Rapanotti, J. G. Hall, M. Jackson, and

B. Nuseibeh. “Architecture-driven Problem
Decomposition”. In Proceedings of RE’04, pages
73-82, 2004.

D. S. Rosenblum. “Towards a Method of
Programming with Assertions”. In Proceedings of
ICSE’92, volume 12, pages 92-104, 1992.

R. Rosenthal and R. L. Rosnow. “Essentials of
Behavioral Research: Methods and Data Analysis”.
McGraw Hill (Series in Psychology), second edition,
1991.

K. Smolander, K. Hoikka, J. Isokallio, M. Kataikko,
and T. Mkel. “What is Included in Software
Architecture? A Case Study in Three Software
Organizations”. In Proceedings of IEEE Inter. Conf.

on the Engineering of Computer-Based Systems
(ECBS), 2002.

S. Stemler. “An Overview of Content Analysis”.
Practical Assessment, Research & Evaluation, T(17),
2001.

A. van Lamsweerde. “From System Goals to Software
Architecture”. In M. Bernardo and P. Inverardi,
editors, Formal Methods for Software Architectures,
pages 25-43, 2003.

A. van Lamsweerde, R. Darimont, and E. Letier.
“Managing Conflicts in Goal-Driven Requirements
Engineering”. IEEFE Transactions on Software
Engineering, 24(11):908-926, 1998.

K. J. Vicente. Cognitive Work Analysis. LEA, 1999.

E. Yu. “Modelling Strategic Relationships for Process
Reengineering (Agents, Goals)”. PhD thesis,
University of Toronto (Canada), Department of
Computer Science, 1995.

E. Yu et al. “Goal-oriented Requirement Language
(GRL)”. http://www.cs.toronto.edu/km/GRL/, 2004.

