
Managing Security Requirements in Practice: A Case Study
-- Extended Abstract --

Vidya Lakshminarayanan, WenQian Liu , Charles L Chen, Dewayne E Perry

Empirical Software Engineering Lab (ESEL)

Electrical and Computer Engineering
The University of Texas at Austin, Austin TX
{vidya,clchen,perry}@ece.utexas.edu

Software Engineering
Department of Computer Science

University of Toronto, Canada
wl@cs.toronto.edu

ABSTRACT
While security has long been a significant issue in
military systems, the spread of the internet has stimulated
a growing interest in, and increasing demand for, secure
systems. As with any domain, there are specific issues in
the security domain that must be understood to success-
fully engineer the needed secure software systems. We
present data collected as part of a study of requirements
and architecture that is relevant to managing security
requirements. Our findings show that security require-
ments are significantly different from other requirements
such as performance and reliability; that highly secure
systems need to be well-engineered software systems; and
that software engineering must look deeper into the
security domain to build reliable secure systems.

Categories and Subject Descriptors
D.2 [Software Engineering]: Requirements, Architecture

General Terms
Security

Keywords
Security, security requirements, managing requirements,
security architects, security architecture, case studies

1 INTRODUCTION
Security has long been a major issue in military and
defense systems. Making sure that only the right people
get access to information, that plans do not land in the
wrong hands, and that communication channels are not

compromised are among the top priorities for national
defense. More recently, the internet boom has
exacerbated the problem. By connecting everyone with
everyone else, the internet has greatly enhanced our
ability to exchange information, but it has also opened
more doors for attackers. With the growing concern over
malicious attacks compromising data integrity and
privacy, security in software systems has become an
increasingly important topic and led to increased software
engineering research [1,4,5,6].
In our empirical research on the topic of how to go from
requirements to architecture [2,3], we conducted a series
of interviews with practicing architects. Our case study
involves a series of carefully designed semi-structured
interviews. The data collected from the interviews helped
us analyze how software architects (i) manage require-
ments and in particular handle non-functional require-
ments, (ii) view software architecture, (iii) transform the
requirements into architecture, and (iv) view software
evolution. In our companion paper, we give a detailed
description of the design of our case study [7].
Among the architects interviewed, three are primarily
involved in building secure systems and managing
security requirements. We have analyzed these security
related interviews in depth, distilling critical comments
and perceptions about how security requirements are
managed in practice. In section 2, we discuss our case
study in three parts: (i) delineating key aspects in security,
(ii) characterizing security architects, and (iii) discussing
the critical issues in managing security requirements. In
section 3, we summarize our findings, draw our
conclusions, relate our conclusions to current work, and
indicate areas of future research.

2 CASE STUDY
In this section, we provide our insights into security
issues based on the data collected from three interviews
with software architects who are involved in security. We
present selected interview data that reflect how these
architects view security and manage such requirements in

practice. Two of our subjects consider themselves secu-
rity architects and one manages security requirements. To
preserve the anonymity of our subjects, we will use A, B
and C instead of their real names in all the quotes.
We present the data and our analysis in three parts. First,
we describe the key aspects in security. Next, we
illustrate some of the critical characteristics of security
architects, particularly the skills required for managing
security requirements effectively in addressing these key
issues. Last, we present how our subjects manage issues
in security requirements in practice.
Attributions are provided in the form of quotations or
summaries whenever the subject has a remark on the
topic. The lack of such indicates that no relevant
discussion was found in the interview data.
2.1 Key Aspects in Security
We present the following key issues with respect to
security: what the problem domain is; how mature or
stable it is; what difficulties and obstacles are imposed on
the domain.

Problem Domain

Subject A suggested that security issues have typically
surfaced in three areas of software engineering:
communication, operating system, and cryptography.
Furthermore, he distinguished three types of security
problems. The first type is authentication and protection
of discrete resources. He suggested that solutions to these
problems are well-established.
“[A] fairly large collection of security problems, including
authenticating principles and protecting discrete resources
against unauthorized access and protecting content of
communications at least for some time interval, [has] well-
established solutions that are often fairly easy to apply and
work reasonably well.” [Subject A]
The second type is the protection of confidentiality in the
presence of inference. He believes that finding solutions
for these problems is difficult.
“The canonical example of a difficult security problem is
protecting confidentiality of information in a relational
database. … The reason that relational database security is
hard is because a relational database is basically an engine for
developing lots and lots of aliases for the same information.
When you get a new reference that you have not seen before, it
is difficult to tell whether that reference applies to information
that you have already protected in some way, therefore, it is
difficult to apply the correct policy. … Inference is known to be
a hard problem, [so is] preventing unauthorized inference from
a string of queries to a database.” [Subject A]
The third type is intellectual property related issues for
which he believes the solutions are impossible.
“There is a third set of problems for which we keep trying to
solve, but for which solutions are actually probably impossible.

I include Digital Rights Management among this set of
problems. Not everyone agrees with me.” [Subject A]
Subject B also mentioned that encryption algorithms have
well-established and easy-to-apply solutions, which is in
support of the first type that A mentioned. In addition, he
pointed out that privacy in transit (i.e. protecting content
away from the source) is a difficult issue.
“[An] FBI personnel going to CIA … should be able to read a
document, but the moment [he] leaves CIA, [he] should not
read the document. [This] idea ... is privacy in transit. Because
usually … we enforce privacy close to the source, but once [this
is taken] away from you, you can’t really enforce it [anymore].
We do spend a lot of time thinking about [such] problem[s].”
[Subject B]

Maturity and Stability

According to subject A, the security domain as a whole is
immature and unstable.
“You read the newspaper. There is no possibility I am going to
be out of job anytime soon. By my definition, it means that it’s
not a mature domain.”[Subject A]
“It is an unstable domain specifically because the architectural
artifacts that we have designed for security were designed with
a set of assumptions in mind which are no longer true of real
computer systems; so the architecture is not well matched to the
real world.”[Subject A]
While subject B did not remark on the domain in general,
he indicated that many aspects within security are
immature. On the other hand, he also pointed out there
are some mature aspects within security that have well-
established solutions.
“Security is a huge topic, and there [are] a lot of things which
are immature in security. Like Federation [Identity
Management] is very, very immature.” [Subject B]
“There’s both maturity and immaturity within the space. …
Things like the encryption algorithm, pretty mature; you know
how to do it. [For] user name protection, figure out what level
of protection you need, [and] what are you protecting against,
you have …different protocols [to solve them and] each one has
pros and cons.”[Subject B]

Some Difficult Problems in Security Engineering

Composition is particularly difficult in engineering secure
systems because emergent properties can cause serious
problems when putting two or more components together.
“It is unfortunate that lots of security problems do not compose
in a mathematical sense, i.e. if X has security property 1, and if
Y has security property 1 then X+Y does not [necessarily] have
security property 1.”[Subject A]
Subject A suggested that a framework approach does not
work well for this problem since it is often underspecified
which is undesirable in building secure systems. He
indicated that it is theoretically possible to have a
precisely defined set of frameworks that are specific

enough for security but abstract enough for general
applications; however, practically it does not exist.
Awareness and understanding of security issues is low
among people in general. According to subject A, this
leads to difficulties in getting people to appreciate the
feasibility (as in the case of Digital Rights Management)
and justification of a various levels of security.
“Cost justifying security has always been a nightmare…so you
can come up with a perfectly good architecture and everybody
says, ‘Ok, let’s build one tenth of it.’ ” [Subject A]
“There’s large number of products on the market with
unsuccessful security.” [Subject A]
However, some signs show that people are starting to pay
more attention to security.
“[It can] make or break the deal.” [Subject C]
“It’s getting easier to justify it now…on the basis of reputation
damage… [It’s] easier to get security projects justified after
your website has been defaced.” [Subject A]
In order to address these key issues, we are interested in
finding out what skills are required of software architects,
especially those who deal with security issues. In the next
section, we will present our subjects’ opinions on the
critical characteristics of architects.
2.2 Characteristics of Architects
During the interviews, our subjects discussed at length the
characteristics required of architects in designing
software systems, especially highly secure systems. We
will begin with the general characteristics of architects
and narrow it down to discussions of the particular skills
required of security architects.
Bridging the gap between business and technology is the
key in architecting software systems.
“I think bridging the gap is the key. If you talk to the business
folks they always want to talk business talk, they never want to
talk technology.... It is how you take [the] requirement and
translate it to something that you can see, identify, and bring
out some level of commonality. … That to me is the key thing for
architects.” [Subject B]
“The flip side… [is] applying [this] to a set of technologies.
That comes through education. So I think an architect should be
well versed in technologies which are available.”[Subject B]
Breadth is another required characteristic.
“Breadth is very important, not [being] just focused only on
security, but being able to know the other aspects of software
engineering, whether it is performance, hardware, application
[or] whatever it is.” [Subject B]
“Generally, security people are generalists rather than
specialists. They have [to] understand a lot about different parts
of the system and how they work, [and] enough about each
[part] of the system so that they can figure out [where]
vulnerabilities [can surface].” [Subject A]
Architects should generally be involved in collecting
requirements.

“I think that we do [collect requirements] often. I am not saying
… that should be done all the time or not be done [at] all, but I
think it’s good. I strongly feel about architects going and talking
to customers.” [Subject B]
“It’s good to conceptualize what people want. …That’s why it is
important to go see customers. If you don’t see customers, you
don’t get that and I can’t tell you enough to get [the]
experience.” [Subject B]
Architects need to have strong technical, people,
leadership, and communication skills. They should be
able to wear different hats at different times.
“Good technical background is the key. Good people, good
leadership skills are very, very important. Because you are
leading a team, … a set of people to believe what you think is
right, … you got to be able to convince. … If you are a dictator,
that’s bad. You got to be a team player, … have some level of
leadership skills and be able to listen. If you don’t listen, then
you will be going to your tunnel vision and do what you think is
right, as opposed to what is required for the job.” [Subject B]
“You work with developers who talk only [in] development
language; you talk with customers … [in] their own language;
you talk with the marketing people [in] their own language; you
talk to the [executives] who [use] a different language … so you
got to be able to balance out all of those in a good fashion.”
[Subject B]
“[An architect needs to be a] politician, diplomat, nursery
attendant, business liaison. You have to be ... not a believer...
[but a] benevolent dictator. [You] have to be technically savvy,
but more so, sound. I don't think you need to know the latest
version of the latest spec … [but] good sound design principles
and … learn [quickly].” [Subject C]
To the question on whether security architects are born or
trained, subject A replied, “Generally, … majority of the
security people are born, but then after that they have to be
trained.” However, subject B suggested they can be
trained and need not to be born with such skills.
“I think anybody can do anything in life if you work hard.
That’s my fundamental belief. Having said that…Yes, some
people just don’t get it. … Developers tend to be very focused.
… [One] characteristic of an architect is breadth. … Typically
when we try to grow somebody, the biggest problem we face is
they are very focused in what they know, and they are not easy
to learn the rest of the concepts.” [Subject B]
To be effective in managing security requirements
architects must be able to adopt the mentality of the
attackers.
”The most important qualification to be a security architect is
[being] able to think like the bad guys. … If you do not have an
element of ... malice, [or] least an appreciation of the beauty of
malice … you are just going to fail.” [Subject A]
Subject A described three attitudes people may have in
response to a new attack. Only one is appropriate for a
security architect.
“[The first says] ‘that is really annoying, I can’t get my job
done’. They are fine they are probably not dangerous, you could
use them to test things or something.”

“[The next says] ‘oh that is really neat! I wonder how he did
that’. Those will likely be good security people.”
“[The last says] ‘Well you know, nobody should be allowed to
do that’. They have to be kept far away from security. They
totally have the wrong attitude, they don’t get the problem,
[and] they will never be able to think that way.” [Subject A]

2.3 Issues in Managing Security Requirements
So far, we have discussed key aspects in security and
presented critical characteristics of architects. We now
present our data on managing security requirements from
three perspectives: establishing security requirements,
prioritizing security requirements and architecting
security requirements.

Establishing Security Requirements

Security has a fundamental difference from all the other
requirements, such as reliability, safety and performance.
In the latter, we usually expect to have random
component failures and accidents. In the former however,
failures are often caused intentionally by capable and
motivated adversaries. Therefore, it is important to
capture the malicious intentions, motivations, and
capabilities of attackers in the security domain. Threat
models are used for these considerations.
“In security the primary problem is the existence of a capable
and motivated adversary who wants the system to fail. This
property makes security architecture different from other
disciplines.” [Subject A]
“Security architecture is fundamentally based on the idea of
threat models. You have to start off with the model of the threats
you are trying to defend against; if the threat model
incorporates the possibility of physical attacks, then you have to
pay attention to physical attack. … In fact, threat analyses do
include an element of characterizing adversaries in terms of
capability, motivation, and desired outcomes.” [Subject A]
However, subject A commented that security problems
cannot be solved by an ontology-based approach. He
suggested that a way to approach it is through
generalization over past attacks and experiences.
“As soon as [one] puts together the ontology, by definition it
defines everything that is there and therefore everything else is
unthinkable. Unthinkable stuff [is] really bad.” [Subject A]
“The way security people learn to think about things… is by
studying past failures. … You look at the collection of successful
attacks on past systems [and] make sure that none of those work
on the current system. … Then if you really hit a dead end and
want to break the system, you take somebody who doesn’t have
any assumptions. … [They will be] able to enter into the whole
thing because [they will not try to think like the designers]. …
Sometimes it is very important to be able to do that when you
are designing security systems.” [Subject A]
Sometimes the requirements and the problems are not
presented in the right form. In such cases, it is necessary
to discover the shape of the problem and identify the form
of the requirements in order to proceed.

“If … we already know what the problem was and the customer
is putting a twist to it we try to shift the customer or the
requirements to the right direction by saying ‘maybe you should
think this way’ or ‘maybe you can do the same thing by an
alternate way’. Because customers are set in their ways and
they don’t want to change, so they want what they have been
doing. … Education helps [at] certain times. … People seem to
have a narrow focus and sometimes you have to broaden them.”
[Subject B]
“What [is the] business problem [that] you are trying to solve?
Don’t come to me with ‘we have to upload this spreadsheet’.
[Tell me] what are you trying to solve; what are you trying to
do. And when [we] don’t do that [we] just end up in a rat hole.”
[Subject C]
There can be situations where it is not possible to
accommodate all the requirements at the same time. In
such cases, we do the best we can by assessing the pros
and cons.
“When a requirement is outright impossible, we say that’s
impossible. … And sometimes we are told to do it anyway.
Digital Rights Management is a perfect example. I believe it is
demonstrably the case that you cannot do Digital Rights
Management to meet a set of requirements that people in the
entertainment industry want. I just don’t think it is feasible.
Nevertheless, we enable our systems for DRM and build DRM
mechanisms anyway. Because people say they want them. … It
filters out a number of dumb attackers. The smart attackers get
in and copy things anyway.” [Subject A]
“There is not a luxury to do everything that we want to do or
everything that is ideal. You have to go with the requirements,
go with the political nature, the business requirements, the
funding aspect. … So you do pros and cons and decide what is
the best...” [Subject B]
On top of the intellectual aspects, the physical aspects of
security also play an important role.
“[We] really cannot afford not to pay attention to physical
aspects of things. It’s sort of like designing the pressure vessel
of a submarine; it only has to leak in one place for you to have
trouble. And if that is in the physical infrastructure then that’s
just as bad a problem as if you have screwed up some
conceptual thing. So [we] have to pay attention to every aspect
of how you might attack a system.” [Subject A]
“There are physical [aspects we need to pay attention to]. How
is our data safe? … What happens if a tornado hits? How secure
is that data in any kind of disaster? ... That’s at the macro level.
Then you get into the application, and they are very sensitive
about different parts of the [application]. … You could define
security a contributor that cuts across every type of object in the
system.” [Subject C]

Prioritizing Security Requirements

Having established a set of requirements, two situations
often arise: (i) there are conflicting requirements, and (ii)
the cost of building a system that satisfies all the
requirements is too high. Hence, there is a need to
prioritize the requirements to establish which are key and
which are subordinate. Deciding on how to prioritize

requirements is usually done through negotiations. For
functional requirements, choice can be made through
prioritization of feature sets. For non-functional
requirements, it is often possible to achieve a balance
without seriously compromising any of them.
“You get a good feel for the weight of the requirement.…You
can generally tell, by the discussion, what's important to them
especially if you push back on something. [If] it's really
important to them, you'll start getting the messages, the body
language, [that they are] not comfortable with that.”[Subject
C]
However, security levels are defined with respect to
specific goals; they are either achieved or not. Thus,
security requirements have to take precedence without
giving any concessions. Aside from setting the level of
security that is acceptable, there is not much about
security requirements that can be adjusted.
“The attack succeeds or it fails. So [security] is a difficult
property to subject to engineering tradeoffs. … [But] you can
decide in advance that the system has to impose some specified
work factor on the adversary and have that as a design goal.”
[Subject A]
“You can’t ... really continuously tune your level of security.
And this of course pisses off all the other designers in the
organization because they are all sitting around saying, 'Well,
you know we can tradeoff a few clock cycles here for a better
user interface here or something like that' and the security guy
is just sitting in the room and everybody else says, 'So what do
you have to offer?' And the security guy says, ‘Nothing, you
have to do it my way.' ” [Subject A]
However, sometimes other factors can trump security as
in the case of legal issues.
“We had a certain product and it failed because of the legal
implications with that product. … There is a legal ramification
of issuing a certificate. That means if I am issuing a certificate
to [you] then I am accountable for it if [you do] any fraud with
that certificate. … There is a liability [issue] associated with
that. So we spend tons of money on the product, and it was
failed.” [Subject B]

Architecting Security Requirements

All our subjects commonly expressed the opinion that it is
important to consider other requirements in support of
security requirements while building secure systems.
We observed that there is a slight disagreement on how
the subjects categorize these supporting requirements1.
For example, some of them categorize performance to be
functional while others categorize it to be non-functional.
Whether functional or non-functional, it is agreed that a
set of supporting requirements is needed in building
successful secure systems. These include performance,

1 We believe that the disagreement is due to the necessary
reification from non-functional requirements to functional
structures.

scalability, interoperability, availability, manageability,
and maintainability.
“Typically in security the functional requirements mostly have
to do with interoperability mechanism and with manageability.
So it’s a functional requirement that my VPN client has to be
able to talk this bizarre protocol that is spoken by my mutant
VPN server.” [Subject A]
“A system administrator [needs] to [be able to] update the
access of everybody in department X by running a script over
night. [This implies] there’s got to be an API level interface for
the security management system and it’s got to have certain
kinds of authentication and authorization functions so that we
can run it safely.” [Subject A]
“Performance is frequently a functional requirement; you are
not allowed to slow down.” [Subject A]
“Kevin Mitnik should not be able to talk to the operator into
giving up the password. This … is a genuine requirement. The
Russian mafia should not be able to break the cryptography, but
it is okay if the Russian government can.” [Subject A]
In building secure systems, both functional and non-
functional requirements play a critical role in all phases.
“The functional aspects are something like the core aspects of
the product … Non-functional are performance and scalability...
we try to give functional requirements more importance because
that’s what is seen […and] marketed. But non-functional
requirements are worked in with that because what’s the point
in releasing a product if it doesn’t scale beyond 100 users, or …
doesn’t perform. So it goes down [to] all phases. Whether it is
architecture [or] design, you combine those two things at all
points of time and work towards a cohesive architecture.”
[Subject B]
“I do not feel there is that big a difference between non-
functional and functional. It is just a requirement and somehow
you have got to accommodate it.” [Subject C]
Security requirements are defined relative to specific
goals capturing known vulnerabilities. These goals must
be accounted for in designing the system structure. Given
that security is embedded in the system structure, it
cannot be altered easily.
“You can decide in advance that the system has to impose some
specified work factor on the adversary and have that as a design
goal. [Once] you have that as a design goal, you have to hit
that mark or do better. You can’t really continuously tune your
level of security.” [Subject A]
“We have a great deal of flexibility to adjust and replace
mechanisms. [For example] we can add stronger cryptography
on the wire protocols. What it’s much less easy to do is to
change the basic structure of the system in a way that has an
impact on security. Sometimes we end up having to do that, and
it’s a lot of work.” [Subject A]
Security goals must be designed with a farseeing vision;
the lack of that will lead to failures.
“A specific example of this … there was a cellular phone
protocol that was in the process of being standardized …. This
protocol depends for its security on the assumption that bad
guys can’t put up a tower … that’s [definitely] not a good

assumption …. That protocol does not exist in that form
anymore as it turns out it’s not that hard to put up something
that looks to a cell phone handset as if it were a tower.”
[Subject A]
Even though security is an integral part of the system, we
must be able to address the issues of modularity and
externalizability. Security needs to be configurable (to
achieve different security levels) and its implementation
must be replaceable depending on the context without
breaking the system.
“[It is ideal that] in the production environment with full
security, various layers of security can be turned off. If you turn
pieces off, the system still functions. [Also,] you can layer more
and more security if you want.” [Subject C]
“The example I can give is J2EE architecture … the first release
of J2EE did not cover much of security. It was totally enclosed
within the architecture, meaning it was not open … so [every
vendor] did security in their own way because it was not
specified by the standard … we realized it was no good. So
rather than implementing something ad hoc for the moment, we
said … it would be nice to externalize the security so that
anybody can plug into it.” [Subject B]
Subject B pointed out that the aforementioned decision
helped their company in two ways: (i) they were able to
integrate with several other products and (ii) when the
standards came out they only had to replace their API
with the standard API, unlike the other vendors who were
struggling to dissociate security from their application
server.
“If you design with some pretty standard rules up front, it makes
things a lot easier moving on.” [Subject C]
Security requirements often restrict the choices of other
requirements. There is an obvious tradeoff between
security and performance because extra operations are
required in more secure systems.
“Generally speaking, the more security you need, the more
isolation you need to have. As the system, gets more and more
secure, the interface narrows …, and there are fewer ways to
talk to it. … [It] tends to be the case that security trades off
against performance. … As you harden the interfaces of the
components and isolate it more and more, you make it more
difficult to cross the boundary between the non-secure portion
of the system and the part of the system that enforces security.”
[Subject A]
In short, we have seen how architects establish, prioritize
and architect security requirements in practice.

3 DISCUSSION
We first summarize our findings, give our conclusions,
relate them to current work, and finally suggest issues for
further research.
Here is a summary of the key findings of our case study.
• Key aspects

− immature and unstable in general
− well-known solutions available for some aspects

− composition is difficult
• Characteristics of architects

− ability to bridge the gap between business and
technology

− breadth in knowledge
− possession of soft skills
− attacker’s mentality and appreciation of

challenges
• Establishing security requirements

− threat models are effective for discovering and
eliciting security requirements

− ontology-based approaches are not appropriate
− discovering the shape of the problem is critical
− difficulty in assessing the criticality and

feasibility of security requirements can lead to
poorly managed expectations of security

− security goals must be defined with respect to
known vulnerabilities

− the physical and intellectual aspects of security
both play a critical role in designing a highly
secure system

• Prioritizing security requirements
− once the level of security is determined, it takes

precedence over other requirements
− non-technical issues can trump security

• Architecting security requirements
− other requirements are critical in building secure

systems
− system goals must incorporate the intended level

of security and the structure must account for
these goals

− security is an integral part of the system and is
not easily alterable

− farseeing vision is required for anticipating
potential attacks

− modularity and externalizability help to achieve
high configurability in security

From the data collected, we observe that security is a
critical domain that requires highly specialized treatment.
Building secure systems and managing security
requirements effectively depends on established software
engineering principles and practices. Well-engineered
systems provide the foundation for achieving security
goals. Security is no different from many other domain
specific areas, such as telephony or performance tuning,
which exhibit unique characteristics yet still rely heavily
on software engineering techniques, methods and
principles.
Software systems today are expected to provide a high
level of security. To achieve this, security must be
included in the design goals right from the beginning. It is
an integral part of the system and is not tunable or

imposable after the fact. Software engineers must be
aware of the unique aspects of the requirements in this
domain and use appropriate methods. The evidence in our
case study supports this position.
The literature also has supporting evidence for our
position. In his keynote speech, Wolf pointed out that
“Security engineering is a technical field dependant upon
methods, tools, and models for requirement analysis,
design analysis and implementation analysis” and
concluded that security engineering really is just good
software engineering [4]. The software engineering
research community is starting to take notice of the
security domain and its unique domain properties. As a
result, new techniques, methods and technologies are
emerging. One noticeable contribution is the anti-goal
models introduced by van Lamsweerde et al. in capturing
malicious obstacles: “In the context of security
engineering, standard obstacle analysis appears too
limited for handling malicious obstacles” [5,6].
Nevertheless, as Wolf pointed out that, “Software threat
analysis is a young art” and existing models do not
adequately support the analysis needed by security
specialists [4]. There is much work to be done in the
security domain.
In conclusion, the authors believe that the convergence
between the security domain and software engineering is
inevitable. Having said that, we think security specialists
should employ established software engineering
principles and practices to their advantage, and software
engineers must recognize the unique aspects of the
security domain and continue to provide and to apply
appropriate methods to attain a higher level of software
security. Thus, we claim that current software engineering
literature is congruent with the findings of our study of
managing security requirements in practice.
Several issues have surfaced in our case study which
require further research.
• How should architects be involved in requirements

elicitation and negotiation systematically?
• How can we identify frequently occurring problem

shapes and requirement forms that are adequate for
secure systems?

• What are the specific modeling tools/methods needed
for capturing security requirements?

• What are the evaluation techniques required to assess
security levels in architecture?

• Are there any conflicts within security requirements
and how are they resolved?

In addition to our general study of requirements and
architecture, we will continue our research on these
threads. In the cases where more evidence is required, we
will either follow up with the current subjects or conduct
new interviews.

ACKNOWLEDGEMENTS

We thank all of our anonymous interviewees for their
participation and contribution. This research was
supported in part by NSF CISE Grant CCR-0306613 and
IBM CAS Fellowship.

4 REFERENCES
[1] R. Anderson. “Security Engineering -- A Guide to

Building Dependable Distributed Systems”. John
Wiley & Sons, Inc. 2001.

[2] M. Brandozzi and D.E. Perry. “Transforming Goal
Oriented Requirements Specifications into
Architectural Prescriptions”. In Proc. of workshop on
Software Requirements to Architectures (STRAW '01),
ICSE 2001.

[3] M. Brandozzi and D.E. Perry. “From Goal-Oriented
Requirements to Architectural Prescriptions: The
Preskiptor Process”. In Proc. of workshop on Software
Requirements to Architectures (STRAW '03), ICSE
2003.

[4] A. L. Wolf. “Is Security Engineering Really Just
Good Software Engineering?” In Proc. of the
Foundations of Software Engineering, Keynote
speech. 2004.

[5] A. van Lamsweerde. “Elaborating Security
Requirements by Construction of Intentional Anti-
Models”. In Proc. ICSE’04: 26th International
Conference on Software Engineering, 2004.

[6] A. van Lamsweerde, A., Brohez, S., De Landtsheer,
R., & Janssens, D. “From System Goals to Intruder
Anti-Goals: Attack Generation and Resolution for
Security Requirements Engineering”. In Proc.
Requirements for High Assurance Systems Workshop
(RHAS'03), 2003.

[7] W. Liu, C. L. Chen, V.Lakshminarayanan and D. E.
Perry. “A Design for Evidence-based Software
Architecture Research”. Submitted for publication,
2005.

