
A Case Study of Architecting Security Requirements in Practice: Initial Analysis

Vidya Lakshminarayanan, WenQian Liu , Charles L Chen, Dewayne E Perry
Empirical Software Engineering Lab (ESEL)

Electrical and Computer Engineering
The University of Texas at Austin, Austin TX

{vidya,clchen,perry}@ece.utexas.edu

Software Engineering
Department of Computer Science

University of Toronto, Canada
wl@cs.toronto.edu

Abstract

While security has long been a significant issue in
military systems, the spread of the internet has stimulated
a growing interest in, and increasing demand for, secure
systems. Understanding how architects manage security
requirements in practice is a necessary first step in
providing repeatable processes using effective
techniques, methods and architectural structures. We
present the following initial results of multiple cases of
practicing security architects: key aspects in security
requirements, essential characteristics of security
architects and critical issues in managing security
requirements. We conclude with a discussion of related
and future research.

1 Introduction
Security has long been a major issue in military and
defense systems. Making sure that only the right people
get access to information, that plans do not land in the
wrong hands, and that communication channels are not
compromised are among the top priorities for national
defense. More recently, the internet boom has
exacerbated the problem. By connecting everyone with
everyone else, the internet has greatly enhanced our
ability to exchange information, but it has also opened
more doors for attackers. With the growing concern over
malicious attacks compromising data integrity and
privacy, security in software systems has become an
increasingly important topic and has led to increased
software engineering research [1][4][5][6].
This preliminary research has shown that security is often
compromised by circumventing security mechanisms
within the architecture. These flaws in the design of
security critical systems may become visible only after
several years of use. Due to the rapidly increasing
severity of software security threats, it is imperative that
security concerns be addressed in the early stages of the
software development lifecycle. It is important to address

security issues within both requirements and architecture
with bounded investments in time and costs.
Our general research goal is to understand how architects
view, manage and architect requirements in practice. We
take an empirical based approach and use an interview
based case study methodology to carry out our
investigations. This study involves a series of carefully
designed semi-structured interviews. Understanding how
architects manage requirements gives us a solid
foundation on which to develop techniques, methods,
processes and tools to aid architects in managing
requirements and transforming them into architectures.
Four of the ten architects we have interviewed classified
themselves either as security architects or as architects
heavily involved with security problems. Thus, we have
analyzed these interviews in depth, distilling critical
comments and perceptions about how security
requirements are managed and architected in practice.
In this paper, we describe how practicing architects view
and architect security requirements. Further, we delineate
what characteristics and skills security architects should
have to successfully manage and implement security
requirements. We believe understanding practice is a
necessary step in providing the foundation for repeatable
processes using effective techniques, methods and
architectural structures to achieve security requirements.
The rest of the paper is organized as follows. In section 2,
we present the results of our study in three parts: (i)
delineating key aspects in security, (ii) presenting the
characteristics of security architects and (iii) discussing
the critical issues in managing security requirements. In
addition, we briefly discuss validity issues in our case
study. In section 3, we summarize our findings, draw our
conclusions, relate our conclusions to current work and
indicate areas of future research.

2 Case Study
In this section, we provide our insights into security
issues based on the data collected from the semi-

structured interviews with security architects. We present
selected interview data that reflect how these architects
view security and how they architect such requirements in
practice. To preserve the anonymity of our subjects, we
will use A, B, C and D instead of their real names in all
the quotes. Subject A is a security architect who has been
working in computer security and data privacy for the last
15 years. Subject B has been a security architect for the
last 10 years and his job entails both product architecture
and solutions architecture. Subject C has been primarily
involved for the last three years in building security
models in software for the auto industry. Subject D has
been a systems architect for the last 15 years and has
worked on systems where security was the primary
concern.
We present our data and analysis in three parts. First, we
describe the key aspects in security. Next, we illustrate
some of the critical characteristics of security architects,
particularly the skills required for managing security
requirements effectively in addressing these key issues.
Last, we present how our subjects architect security
requirements in practice.
Attributions are provided in the form of quotations or
summaries whenever the subject has a remark on the
topic. The lack of such indicates that no relevant
discussion was found in the interview data. Further, our
editorial additions to the quotations for both grammar and
clarification are enclosed in square brackets.
2.1 Key Aspects in Security
We summarize our interview data with respect to the
following aspects of the security domain: problem
characteristics, maturity and stability, and sources of
difficulties and obstacles.

Problem Characteristics

Subject A suggested that security issues have typically
surfaced in three areas of software engineering:
communication, operating system and cryptography. The
specific security requirements of a particular installation
can only be determined after careful consideration of the
business context and user preferences. These definitions
vary from ‘a guard at every physical door’ to
comprehensive data confidentiality, integrity and
availability requirements.
Furthermore, he distinguished three types of security
problems. The first type is authentication and protection
of discrete resources, for which solutions are well
established.
“[A] fairly large collection of security problems, including
authenticating principles and protecting discrete resources
against unauthorized access and protecting content of
communications at least for some time interval, [have] well-

established solutions that are often fairly easy to apply and that
work reasonably well.” [Subject A]
The second type is the protection of confidentiality in the
presence of inference, for which solutions are difficult.
“[T]he canonical example of a difficult security problem is
protecting confidentiality of information in a relational
database… because a relational database is basically an engine
for developing lots and lots of aliases for the same information.
[W]hen you get a new reference that you haven’t seen before, it
is difficult to tell whether that reference applies to information
that you have already protected in some way… therefore, it is
difficult to apply the correct policy. So inference is known to be
a hard problem - preventing unauthorized inference from a
string of queries to a database.” [Subject A]
The third type is intellectual property related issues, for
which solutions are impossible.
“[T]here is a third set of problems for which we keep trying to
solve, but for which solutions are actually probably impossible.
I include Digital Rights Management among this set of
problems. Not everyone agrees with me.” [Subject A]
Subject B also agreed that encryption algorithms have
well-established and easy-to-apply solutions. In addition,
he pointed out that privacy in transit (i.e. protecting
content away from the source) is a difficult issue.
“[An] FBI personnel going to CIA… should be able to read a
document, but the moment [he] leaves CIA, [he] should not
read the document. [This] idea... is privacy in transit. Because
usually… we enforce privacy close to the source, but once [this
is taken] away from you, you can’t really enforce it [anymore].
[W]e do spend a lot of time thinking about [such] problem[s].”
[Subject B]

Maturity and Stability

According to subject A, the security domain as a whole is
immature and unstable.
“You read the newspaper. There is no possibility I am going to
be out of job anytime soon. By my definition, it means that it’s
not a mature domain.”[Subject A]
The reason for this instability may be because there are no
commonly accepted metrics and much of what is done is
based on intuition and experience.
“[I]t is an unstable domain specifically because the
architectural artifacts that we have designed for security were
designed with a set of assumptions in mind which are no longer
true of real computer systems. So the architecture is not well
matched to the real world.”[Subject A]
While subject B did not remark on the domain in general,
he indicated that many aspects within security are
immature. On the other hand, he also pointed out there
are some mature aspects within security that have well-
established solutions.
“Security is a huge topic, and there [are] a lot of things which
are immature in security. Like Federation [Identity
Management] is very, very immature.” [Subject B]

“[T]here’s both maturity and immaturity within the space. …
[T]hings like the encryption algorithm, pretty mature; you know
how to do it. [For] user name protection, figure out what level
of protection you need, [and] what are you protecting against,
you have… different protocols [to solve them and] each one has
pros and cons.”[Subject B]

Sources of Difficulties

Composition is particularly difficult in engineering secure
systems because emergent properties can cause serious
problems when putting two or more components together.
It is possible to have individual components that possess
certain security features but the combination of these
components may not provide the same desired level of
security.
“[I]t is unfortunately the case that lots of security problem[s]
do not compose in a mathematical sense. [I]f X has security
property 1, and Y has security [property] 1, [then] X+Y does
not [necessarily] have security property 1.”[Subject A]
“The problem is that if I got this -ility and I have got five things
I can do about it, if I pick one of these mechanisms either it is
going to be inconsistent with one of the mechanisms for this
other –ility... or it may open things up, for example if I am doing
testability here and I am adding test interface and things like
that to make it more observable and controllable, that’s exactly
what security doesn’t want. ... So how to pick the right
mechanism is not widely known in industry.” [Subject D]
Subject A suggested that a framework approach does not
work well for this problem since it is often underspecified
- an undesirable property when building secure systems.
He indicated that it is theoretically possible to have a
precisely defined set of frameworks that are specific
enough for security but abstract enough for general
applications; however, practically it does not exist.
Awareness and understanding of security issues is low
among people in general. According to subject A, this
leads to difficulties in getting people to appreciate the
feasibility (as in the case of Digital Rights Management)
and justification of various levels of security. We believe
that awareness promotion programs and user training can
help improve this situation.
“[C]ost justifying security has always been a nightmare… So
you can come up with a perfectly good architecture and
everybody says, ‘Ok, let’s build one tenth of it.’ ” [Subject A]
In fact, security is sometimes so poorly understood that
ideas that are fundamentally bad can still succeed in the
marketplace.
“There’s large number of products on the market with
unsuccessful security architectures.” [Subject A]
For example, “things like electronic wallets make it easy for
the merchant, but they are fundamentally a bad idea because it
allows you to easily give private information to people you don’t
really know who don’t need that information… Although [it is]
very successful from the popular money making standpoint.”
[Subject D]

However, some signs show that people are starting to pay
more attention to security.
“[Security] could actually make or break the deal.”[Subject C]
“It’s getting easier to justify it now… on the basis of reputation
damage… [I]t’s way easier to get security projects justified
after your website has been defaced.” [Subject A]
In order to address these key issues, we are interested in
finding out what skills are required of software architects,
especially those who deal with security issues. In the next
section, we will present our subjects’ opinions on the
critical characteristics of architects.
2.2 Characteristics of Architects
During the interviews, our subjects discussed at length the
characteristics required of architects in designing
software systems, especially highly secure systems. We
will begin with the general characteristics of architects
and narrow it down to discussions of the particular skills
required of security architects.
Breadth is the most important characteristic. Architects
must be generalists so that they understand all the
different parts of the system and do not only focus on a
single aspect.
“Breadth is very important, to not be just focused only on
security, but being able to know the other aspects of software
engineering, whether it is performance, ... hardware, …
application [or] whatever it is.” [Subject B]
“Generally, security people are generalists rather than
specialists. They have [to] understand a lot about different parts
of the system and how they work, [and] enough about each of
those parts of the system so that they can figure out [where]
vulnerabilities [can surface].” [Subject A]
“The idea that you can be a software architect and know
nothing about hardware or the rest of the system I think is a
complete misnomer… Safety, Security, Reliability, Robustness,
Availability, all of those are system characteristics, not
software characteristics. [So an architect has] to look at the
hardware, the software, and the data components as well as
procedural components and… the human beings that are
involved.” [Subject D]
Some of the essential personality traits of an architect are
persistence and persuasiveness. If this is not enough to
convince the team, an architect needs to have the ability
to take on the role of a benevolent dictator as well. In
other words, an architect needs to possess strong
technical, people, leadership and communication skills.
“[G]ood technical background is the key. Good people, good
leadership skills are very important, because you are leading a
team, … a set of people to believ[e] what you think is right, You
got to be able to convince. … If you are a dictator, that’s bad.
You got to be a team player, … have some level of leadership
skills and be able to listen. Because if you don’t listen, then you
will be going to your tunnel vision and do what you think is
right, as opposed to what is required for the job.”[Subject B]

“[An architect needs to be a] politician, diplomat, nursery
attendant, business liaison. You have to be [a] benevolent
dictator. [You] have to be technically savvy, but more so, sound.
... I don't think you need to know the latest version of the latest
spec [but] good sound design principles and… learn [quickly].”
[Subject C]
There is some debate about whether good architects are
‘born’ or whether people can become good architects
through training and coaching. Subject A suggested that a
good architect can be mentored, but the person being
mentored has to have some amount of raw talent for being
an architect.
“Generally… majority of the security people are born, but then
after that they have to be trained. So it’s a select from a
population that have the right characteristics” [Subject A]
However, subject B suggested that they can be trained
and need not to be born with such skills.
“I think anybody can do anything in life if you work hard.
That’s my fundamental belief. Having said that… Yes, some
people just don’t get it. … [T]ypically when we try to grow
somebody, the biggest problem we face is they are very focused
in what they know, and they are not easy to learn the rest of the
concepts.” [Subject B]
To be effective in managing security requirements
architects must be able to adopt the mentality of the
attackers.
“The most important qualification to be a security architect is
[being] able to think like the bad guys. … If you do not have an
element of ... malice, [or] at least an appreciation of the beauty
of malice … you are just going to fail.” [Subject A]
Subject A described three attitudes people may have in
response to a new attack. However, only one is
appropriate for a security architect.
“[The first says] ‘that is really annoying, I can’t get my job
done’. They are fine, they are probably not dangerous; you
could use them to test things or something. [The next says] ‘oh
that is really neat! I wonder how he did that’. Those will likely
be good security people. [The last says] ‘Well you know,
nobody should be allowed to do that’. They have to be kept far
away from security. They have totally the wrong attitude, they
don’t get the problem, [and] they will never be able to think that
way.” [Subject A]

2.3 Critical Issues
So far, we have discussed key aspects in security and
presented critical characteristics of security architects. We
now present our data on managing security requirements
from three perspectives: establishing security
requirements, prioritizing security requirements and
architecting security requirements.

Establishing Security Requirements

Security has a fundamental difference from all the other
requirements, such as reliability, safety and performance.
In the latter, we usually expect to have random

component failures and accidents. In the former however,
failures are often caused intentionally by capable and
motivated adversaries. Therefore, it is important to
capture the malicious intentions, motivations and
capabilities of attackers in the security domain. Threat
models are used for these considerations. Threat modeling
is a security analysis methodology that can be used to
identify risks and guide subsequent design, coding, and
testing decisions. Overall, threat modeling involves
decomposing an application to identify its key assets and
then identifying and categorizing the threats to each asset
or component.
“In security the primary problem is the existence of a capable
and motivated adversary who wants the system to fail. This
[property] makes security architecture different from any other
discipline.” [Subject A]
“Security architecture is fundamentally based on the idea of
threat models. You have to start off with the model of the threats
you are trying to defend against, and if the threat model
incorporates the possibility of physical attacks, then you have to
pay attention to physical attacks… In fact, threat analysis do
include an element of characterizing adversaries in terms of
capability, motivation, and desired outcome.” [Subject A]
Subject D explained the importance of threat models by
pointing out the difficulties encountered when people try
to analyze security requirements with use case modeling.
“[U]se cases tend to be more functional than quality oriented
which drives you to only have the one kind of requirement but
not the other kind… But then the other thing is that they tend to
concentrate too much on ‘This is what the system shall do’ and
the actors are the normal people interacting with the system.
And they therefore ignore the single most important actor in
that kind of situation: the attacker…” [Subject D]
Subject A also commented that security problems cannot
be solved by ontology-based approaches since those are
generally very inadequate. He suggested that a way to
approach it is through generalization over past attacks and
experiences.
“Ontology is the enemy for security. Because as soon as [you]
put together the ontology, by definition that defines everything
there is and therefore everything else is unthinkable…
Unthinkable stuff [is] really bad.” [Subject A]
 “[T]he way security people learn how to think about things… is
by studying past failures. … You look at the collection of
successful attacks on past systems [and] make sure that none of
those work on the current system. [T]hen… try to identify
patterns… and abstract types of things... that are not
specifically the same… but have some of the same ideas. And
then you try all of those. [I]f you really hit a dead end and want
to break the system, you take somebody who doesn’t have any
assumptions. [They will be] able to enter into the whole thing
because [they will not try to think like the designers].
Sometimes it is very important to be able to do that when you
are designing security systems.” [Subject A]

Sometimes the requirements and the problems are not
presented in the right form. In such cases, it is necessary
to discover the shape of the problem and identify the
correct form of the requirements in order to proceed.
“If … the customer is putting a twist [on the problem] we try to
shift the customer or the requirements to the right direction,
saying, ‘maybe you should think this way or maybe you can do
the same thing by an alternate way’. Because customers are set
in their ways and they don’t want to change, so they want to do
what they have been doing. … Education helps [at] certain
times. … People seem to have [a] narrow focus sometimes
[and] sometimes you have to broaden them.” [Subject B]
“What [is the] business problem [that] you are trying to solve?
Don’t come to me with ‘we have to upload this spreadsheet’.
[Tell me] what are you trying to solve; what are[you] trying to
do. And when [we] don’t do that [we] just end up in a rat hole.”
[Subject C]
There can be situations where it is not possible to
accommodate all the requirements at the same time. In
such cases, architects do the best they can by assessing
the pros and cons.
“When a requirement is outright impossible, we say that’s
impossible. … And sometimes we’re told to do it anyway.
Digital Rights Management is the perfect example… it’s just
demonstrably the case that you can’t do Digital Rights
Management to meet a set of requirements that people in the
entertainment industry want. … Nevertheless, we enable our
systems for DRM and build DRM mechanisms anyway. Because
people say they want them. … It filters out a number of dumb
attackers. The smart attackers get in and copy things anyway.”
[Subject A]
“There's not a luxury to do everything that we want to do or
everything which is ideal. You have to go with the requirements,
go with the political nature, the business requirements, the
funding aspects. … So you do a pros and cons and decide what
is the best...” [Subject B]
On top of the intellectual aspects, the physical aspects of
security also play an important role. It is important for the
architect to look at the entire system and not just a
particular set of technologies.
“You really can’t afford not to pay attention to physical aspects
of things. It’s sort of like designing the pressure vessel of a
submarine; it only has to leak in one place for you to have
trouble. And if that is in the physical infrastructure then that’s
just as bad a problem as if you have screwed up some
conceptual thing. [You] have to pay attention to every aspect of
how you might attack a system.” [Subject A]
“Then there [are the] physical [aspects we need to pay
attention to]. How's our data safe? … What happens if a
tornado hits? How secure is that data in any kind of disaster? ...
That’s at the macro level. Then you get into the application, and
they're very sensitive about different [roles] – people that are
designing ad-drawings don’t need to be looking at the financial
information. … [S]ecurity … cuts across every type of object in
the system.” [Subject C]

 “[Y]ou have things that you do in hardware for security, … in
the software for security, … in the data for security, but you also
have to deal with physical security, you have to deal with the
security of your staff and the people who are interacting with
your systems. So the more you get into this, the more you realize
it’s a larger, more complex issue, and just looking at one tiny
little piece of the problem leads you to a false sense of security
that you’ve handled it when you haven’t.” [Subject D]
Security must extend beyond simply the software aspects
of the system. For example, “Kevin Mitnick should not be
able to talk the operator into giving up a password. [This] is a
genuine requirement.” [Subject A]

Prioritizing Security Requirements

Having established a set of requirements, two situations
often arise: (i) there are conflicting requirements, and (ii)
the cost of building a system that satisfies all the
requirements is too high. Hence, there is a need to
prioritize the requirements to establish which are key and
which are subordinate. Priorities could be based on the
likelihood of the risk will becoming reality, cost/benefit
analysis, areas of particular concern for the stakeholders
etc. This requires understanding the likely adversaries in
terms of their capabilities, resources, motivation, risk
tolerance and level of access. Only through this
understanding, it is possible to derive requirements that
provide the strongest defense and recovery mechanisms at
an affordable cost. Deciding on how to prioritize
requirements is usually done through negotiations. For
functional requirements, choices can be made through
prioritization of features.
“[Y]ou get a good feeling for the weight of the requirement…
You can generally tell, by the discussion, what's important to
them especially if you push back on something. [If] it's really
important to them, you'll start getting the messages, the body
language, [that they are] not comfortable…” [Subject C]
It is not practical, and usually impossible, to achieve
100% security. Not only is it too expensive, it is
unachievable because not all weaknesses and attacks can
be anticipated. Vulnerabilities can be found in even
carefully designed products, and new attacks are
continually being discovered. However, security levels
are defined with respect to specific goals; they are either
achieved or not. Thus, security requirements have to take
precedence without giving any concessions. Aside from
setting the level of security that is acceptable, there is not
much about security requirements that can be adjusted. In
other words acceptable risk mitigation is attainable even
though security is not achievable in the large.
“The attack succeeds or it fails. So [security] is a difficult
property to subject to engineering tradeoffs. But you can…
decide in advance that the system has to impose some specified
work factor on the adversary and have that as a design goal.”
[Subject A]

“You can’t... really continuously tune your level of security. And
this of course pisses off all the other designers in the
organization because they are all sitting around saying, 'Well,
you know we can tradeoff a few clock cycles here for a better
user interface here or something like that' and the security guy
is just sitting in the room and everybody else says, 'So what do
you have to offer?' And the security guy says, ‘Nothing, you
have to do it my way.' ” [Subject A]
However, sometimes other factors can trump security, as
in the case of legal issues.
“We had a certain product and it failed because of the… legal
ramification of issuing a certificate. … [I]f I am issuing a
certificate to [you] then I am accountable for it if [you do] any
fraud with that certificate. … There is a liability [issue]
associated with that. So we spend tons of money on the product,
and it was failed.” [Subject B]

Architecting Security Requirements

All our subjects expressed the opinion that it is important
to consider other requirements in support of security
requirements while building secure systems. We believe
this is because security requirements, unlike functional
requirements, must be considered at every iteration of the
development cycle.
We observed that there is a slight disagreement on how
the subjects categorize these supporting requirements1.
For example, some of them categorize performance to be
functional while others categorize it to be non-functional.
Whether functional or non-functional, it is agreed that a
set of supporting requirements is needed in building
successful secure systems. These include performance,
scalability, interoperability, availability, manageability
and maintainability.
“Typically in security the functional requirements mostly have
to do with interoperability mechanism and with manageability.
So it’s a functional requirement that my VPN client has to be
able to talk this bizarre protocol that is spoken by the mutant
VPN server.” [Subject A]
“[A] system administrator [needs] to [be able to] update the
access of everybody in department X by running a script
overnight. [This implies] there’s got to be an API level interface
for the security management system and it’s got to have certain
kinds of authentication and authorization functions so that we
can run it safely.” [Subject A]
“[P]erformance is frequently a functional requirement; you are
not allowed to slow down.” [Subject A]
In building secure systems, both functional and non-
functional requirements play a critical role in all phases.
“The functional aspects are something like the core aspects of
the product… Non-functional are performance and scalability...
[W]e try to give functional requirements more importance
because that’s what is seen [and] marketed. … But non-

1 We believe that the disagreement is due to the necessary reification
from non-functional requirements to functional structures.

functional requirements are worked in with that because what’s
the point in releasing a product if it doesn’t scale beyond 100
users, or… doesn’t perform. So it goes down [to] all phases.
Whether it is architecture [or] design, you combine those two
things at all points of time and work towards a cohesive
architecture.” [Subject B]
“I don't really feel there's that big a difference between non-
functional and functional. It is just a requirement and somehow
you've got to accommodate it.” [Subject C]
Security requirements are defined relative to specific
goals capturing known vulnerabilities. These goals must
be accounted for in designing the system structure. Given
that security is embedded in the system structure, it
cannot be altered easily.
“[Y]ou can decide in advance that the system has to impose
some specified work factor on the adversary and have that as a
design goal. [Then,] you basically have to hit that mark or do
better. You can’t… really continuously tune your level of
security.” [Subject A]
“We have a great deal of flexibility to adjust and replace
mechanisms. [For example] we can add stronger
cryptography… on the wire protocols... What it’s much less easy
to do is to change the basic structure of the system in a way that
has an impact on security. Sometimes we end up having to do
that, and it’s a lot of work.” [Subject A]
Unfortunately, security requirements are often done
separately from the system requirements. Typically,
system requirements are done first and security is added
as an afterthought. This often leads to significant changes
to the architecture.
“One of the number one problems that I often see, and
especially true in security and safety, is you have got a security
team over here and safety team over here [that] never talk to
the requirements people [and] rarely talk to the architectural
people, at least upfront. ... You have the requirements team
doing their requirements, they don’t understand these guys and
these guys haven’t fed their stuff into here. … And so the actual
real honest requirements end up in the requirements spec, which
drives the architecture. And then later on, what happens is these
guys come in here and say, ‘You forgot about us’. … And then
they try to slather it on the outside. Well you can’t add some of
these major things to a pre-existing architecture by just adding
it on. Now that doesn’t necessarily mean that it had to be there
from scratch. What it does mean is you have to have some
significant changes to the architecture. … Which is why it is so
critical to make sure that all of the -ilities are thought of up
front, and all of the quality requirements are fed into the
requirements spec.” [Subject D]
Security goals must be designed with a farseeing vision;
the lack of that will lead to failures.
“[T]here was a cellular phone protocol that [depended] for its
security on the assumption that bad guys can’t put up a tower …
[T]hat’s [definitely] not a good assumption… [T]hat protocol
does not exist in that form anymore as it turns out it’s not that
hard to put up something that looks to a cell phone handset as if
it were a tower.” [Subject A]

Even though security is an integral part of the system, we
must be able to address the issues of modularity and
externalizability. Security needs to be configurable for
different security levels, and it must be replaceable
depending on the context without breaking the system.
“[It is ideal that] in the production environment with full on
security, various layers of security can be turned off [and] the
system still functions. [Also,] you can layer more and more
security if you want.” [Subject C]
“[In] the first release of J2EE [security] was totally enclosed
within the architecture, meaning it was not open… So every
vendor did security in their own way because that was not
specified by the standard… we realized that this was no good.
So rather than implementing something ad hoc for the moment,
we said… it would be nice to externalize the security so that
anybody can plug into [it].” [Subject B]
Subject B pointed out that this decision helped their
company in two ways: (i) they were able to integrate with
several other products and (ii) when the standards came
out they only had to replace their API with the standard
API, unlike the other vendors who were struggling to
dissociate security from their application server.
“If you design with some pretty standard rules up front, it makes
things a lot easier moving on.” [Subject C]
Security requirements often restrict the choices of other
requirements. There is an obvious tradeoff between
security and performance because extra operations are
required in more secure systems.
“[It] tends to be the case that security trades off against
performance, … because as you harden the interfaces of the
components and isolate it more and more, you make it more
difficult to cross the boundary between the non-secure portion
of the system… and the part of the system that enforces
security.” [Subject A]
In short, we have seen how architects establish, prioritize
and architect security requirements in practice. In general,
we observe that at the requirements level, the architects
must consider security explicitly. Security requirements
should not be an “add on”; and one should take into
account emergent characteristics of security, including
explicit coverage of what should be protected, from
whom and for how long.
2.4 Validity Issues
Case studies are a specific empirical research method to
gain a deep understanding of a particular phenomenon in
its real life context. As such, it is characterized by
analytic generalization, not statistical generalization, i.e. it
is not understood in terms of samples, but in terms of
analysis and comparison of cases.
We address three validity issues in our case study that are
critical in empirical studies [3]: construct [2], internal and
external validity.

There are two perspectives that contribute to the construct
validity in this case study. One is on the coverage of the
questionnaire, and the other is on the abstractions
employed. The goal in designing the questionnaire is to
be both thorough and broad. The questionnaire was
initially drafted by one author based on brainstorming. It
then underwent a number of reviews by each author.
Reviews were carried out among the authors after each
interview session where revisions were applied whenever
necessary. While the questionnaire is not focused
specifically on security, all of the quotes that we have
used in this paper were taken from parts of the interviews
and are focused on security.
Semi-structured interviews may suffer from the problem
of leading our subjects. This may lead to internal validity
issues making the data collected less objective than it
should be. However, we know where this occurs and can
mitigate that problem by being careful in using the results
in these contexts. Moreover, we have all interviews
transcribed, and when we spot that there is leading, we
will use other data instead or note the context of the
subjects’ comments.
Two of our security architects are from the same
international organization. We recognize that there may
be some unintentional bias introduced by a shared
company culture that may lead to external validity issues.
However, these subjects are from different levels of the
corporate hierarchy. Moreover, this work is ongoing, and
we plan to choose subjects that are more diverse in the
future.

3 Discussion
From the data collected, we observe that building secure
systems and managing security requirements effectively
depends on established software engineering principles
and practices. Though it is not always achieved in
practice, we believe well-engineered systems should be
the foundation for achieving security goals.
Security is a critical domain that requires highly
specialized treatment. It relates to a system’s complexity
and connectivity, and thus, touches all aspects of
engineering. The pros and cons of various security
strategies must be weighed during system architecting
and planning activities. Good security begins with an
awareness of security requirements and implementation
of security features in the architecture of the system. To
achieve this, security must be included in the design goals
right from the beginning. It should be treated as a
required property that must be an integral part of the
system since it is neither tunable nor imposable later on.
Understanding security problems is an ongoing challenge.
Today’s security problems are different from yesterday’s,
and tomorrow’s problems will be different from today’s.

It is important that architects understand different threat
models and continually learn about new solutions to
prevent new attacks. It is also evident that there is no
universal definition for the term security architecture.
The first job of a security architect is to describe which
kinds of relationships are and are not secure. Security
architecture in general provides a framework and a
foundation to enable secure communication, protect
information resources and ensure that new methods for
delivering services are secure.
In general, the security architecture must (i) facilitate
proper and efficient security identification, authentication
and authorization in response to the access and use of
information resources; (ii) provide a modular approach to
authentication, authorization and accountability; (iii)
ensure security requirements and associated risks are
adequately evaluated when preparing to the support
different needs of an organization; and (iv) be flexible
enough to support integration of new technologies while
maintaining appropriate security protection. The evidence
in our case study supports this position.
The literature also has supporting evidence for our
position. In his keynote speech, Wolf pointed out that
“Security engineering is a technical field dependant upon
methods, tools, and models for requirement analysis,
design analysis and implementation analysis” and
concluded that security engineering really is just good
software engineering [4]. The software engineering
research community is starting to take notice of the
security domain and its unique domain properties. As a
result, new techniques, methods and technologies are
emerging. One noticeable contribution is the anti-goal
models introduced by van Lamsweerde et al. in capturing
malicious obstacles. “In the context of security
engineering, standard obstacle analysis appears too
limited for handling malicious obstacles” [5][6].
Nevertheless, as Wolf pointed out, “Software threat
analysis is a young art” and existing models do not
adequately support the analysis needed [4]. There is much
work to be done in the security domain.
Empirical studies are needed to determine which practices
are most effective. However, very little empirical proof
exists for many technical practices used today for
producing secure software. In [7], the authors present an
empirical view on security engineering practices. The
results are based on the observations made by three
information security practitioners. They describe that
different application domains have different security
needs which should be frequently updated because the
world is changing and the old security architectures
would no longer work in the new environments. It is
important to raise awareness not only among the users but
also among the administrative staff about the importance

of security and security architectures. They finally
conclude by stating, “security engineering is a systems
engineering skill”, and its most fundamental policy is that
it is based on common sense. From the above discussion,
it is evident that the current software engineering
literature is congruent with our findings.
In conclusion, we believe security specialists should
employ established software engineering principles and
practices to their advantage, and software engineers must
recognize the unique aspects of the security domain and
continue to provide and to apply appropriate methods to
attain a higher level of software security.
Several issues have surfaced in our case study, which
require further research: (i) how architects should be
involved in requirements elicitation and negotiation; (ii)
how frequently occurring problem shapes and
requirement forms can be identified; (iii) what specific
modeling tools/methods are needed for capturing security
requirements; (iv) what evaluation techniques are
required to assess security levels in architecture; and (v) if
there are conflicts between security requirements, how
they should be resolved. In cases where more evidence is
required, we will either follow up with the current
subjects or conduct new interviews.

Acknowledgements
We thank all of our anonymous interviewees for their
participation and contribution. This research was supported in
part by NSF CISE Grant CCR-0306613 and IBM CAS
Fellowship.

4 References
[1] R. Anderson. “Security Engineering - A Guide to Building

Dependable Distributed Systems”. John Wiley & Sons, Inc.
2001.

[2] D. E. Perry. “An Empirical Approach to Design Metrics and
Judgements”. In New Vision for Software Design and
Production Workshop. Vandebilt University, Dec 2001.

[3] R. Rosenthal and R. L. Rosnow. “Essentials of Behavioral
Research: Methods and Data Analysis”. McGraw Hill,
second edition, 1991.

[4] A. L. Wolf. “Is Security Engineering Really Just Good
Software Engineering?” In Proc. of the Foundations of
Software Engineering, Keynote speech. 2004.

[5] A. van Lamsweerde. “Elaborating Security Requirements by
Construction of Intentional Anti-Models”. In Proc.
ICSE’04: 26th International Conference on Software
Engineering, 2004.

[6] A. van Lamsweerde et al. “From System Goals to Intruder
Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering”. In Proc. Requirements for High
Assurance Systems Workshop (RHAS'03), 2003.

[7] R.B. Vaughn, R. Henning, K. Fox. “An Empirical Study of
Industrial Security-Engineering Practices”. In Proc. Journal
of Systems and Software, April 2002.

	Introduction
	Case Study
	Key Aspects in Security
	Problem Characteristics
	Maturity and Stability
	Sources of Difficulties

	Characteristics of Architects
	Critical Issues
	Establishing Security Requirements
	Prioritizing Security Requirements
	Architecting Security Requirements

	Validity Issues

	Discussion
	Acknowledgements
	References

