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ABSTRACT
The problem of building an architecture that satisfies the software
requirements is obviously central to software engineering. By and
large such building is an ad hoc, largely informal, and
unsystematic process to date. One strand of research to address
this challenge is based on architecture derivation from goal-
oriented requirements models.
This paper builds on previous efforts in this direction and
proposes a more formal approach to architectural derivation. The
structural and behavioral parts of a formal dataflow architecture
are derived first by use of transformation rules applied to the
requirements model. The dataflow architecture is then refined by
use of formal refinement patterns applied to components and
connectors. Each refinement pattern is associated with a specific
class of non-functional goal whose instances are found in the
requirements model. The source and target languages are the
KAOS requirements language and Wright architecture description
language, respectively. A power plant supervision system is used
as a case study to illustrate the main steps of the derivation.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages, Patterns; D.2.1
[Requirements/Specifications]: Methodologies.

Keywords
Architecture derivation, goal orientation, requirements
engineering, refinement patterns, non-functional requirements,
architecture description languages.

1. INTRODUCTION
Requirements engineering is concerned with the elicitation of the
goals the system-to-be should satisfy, the operationalization of
such goals into specifications of services and constraints, and the
assignment of responsibilities for the resulting requirements to
system agents such as humans, devices, and software.
Architectural design is concerned with the overall organization of
the software part of this system into components and interactions
between them.

Requirements engineering and architectural design are highly
intertwined. On the one hand, the architecture has to meet the
requirements on the product’s functionality and the non-
functional requirements on the product’s quality. On the other
hand, the requirements are produced by an elaboration process
faced with many alternative options that result in alternative
designs. Moreover, requirements elaboration needs to take into
account environment constraints that may induce specific
architectural styles –such as, e.g., the physical distribution of
agents, interoperability with legacy software, or installation
constraints.
Some effort has been devoted recently towards better
understanding of the interplay between requirements and
architecture [2][6]. For example, an intermediate model can be
introduced to bridge the gap between requirements-related
concepts and architecture-related ones [16]. The architecture can
be viewed as an emergent property of requirements integration;
functional requirements could then be mapped to some high-level
design using genetic transformation techniques [12].
Requirements-architecture links can also be studied in the
problem frame setting; architectural constraints are then elements
of the problem domain that may drive problem decomposition and
recomposition [17][35].
Once the relationship between requirements and architecture is
better understood, a key research challenge is to find systematic
techniques for constructing a software architecture that meets the
elaborated requirements. Bosch and Molin suggest an informal,
iterative process for architecture elaboration based on successive
evaluations and transformations of architectural drafts to meet
non-functional concerns [3]. On a more formal side, correctness-
preserving transformations have been proposed to refine abstract
architectures into concrete ones [30].
Goal orientation appears to be a promising paradigm for defining
two-way links between requirements and architectures and for
exploring derivation processes. It offers a unified framework in
which both functional and non-functional concerns can be
integrated; refinement/abstractions links are defined precisely and
provide the basis for various forms of qualitative, quantitative, or
formal reasoning [23].  For example, Gross and Yu show how
non-functional goals can be used to document design patterns;
qualitative reasoning schemes can then be applied to select goal-
matching patterns during the architectural design process [15]. In
the Preskriptor process, a component refinement tree is built from
requirements so that each goal is ensured by a component [4][5].
In the context of the KAOS project, we have also developed a 3-
step derivation process whereby (a) components and dataflow
connectors are derived first from functional requirements in a
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goal-oriented model, (b) the abstract dataflow architecture is
refined to accommodate some architectural style that meets
architectural constraints, and (c) the styled architecture is refined
so as to meet the non-functional goals from the goal model [24].
The third step is based on architectural refinement patterns
associated with specific non-functional goal categories.
To gain a deeper insight into the goal-directed strands of
architecture derivation, Jani et al. deployed the Prescriptor and
KAOS approaches on a complex system [19][20], the
maintenance system of an Italian power plant [8]. The evaluation
part of this work revealed some limitations of both approaches,
notably, the lack of precision in the specification of the derived
artefacts and the lack of coverage of architectural behavior.
This paper presents an approach to address those limitations. Our
goal-oriented approach to architecture derivation is refined and
extended as follows:
• the derived architecture is specified in an architecture

description language (ADL),
• the derivation covers architectural behaviors,
• the refinement steps and patterns are expressed as

transformation rules towards the target ADL.
ADLs provide support for explicitly modeling software
components, connectors, their configurations, and constraints on
the components, connectors and configurations. Beyond the level
of precision gained, a formal description of the architecture is
amenable to architecture-level analysis to examine whether
properties of interest are satisfied [11][18].
Note, however, that an architectural model needs to be “coded” in
the ADL for such analysis to be possible. Such model building
and coding is far from being trivial, and is error-prone. Our
approach is also aimed at supporting architects in this process.
Many ADLs have been proposed, e.g., [1][27][29]. Our choice of
Wright among several other candidates was motivated by the fact
that the same language can be used to capture architectural
structures, behaviors, and styles.
The paper is structured as followed. Section 2 provides some
background on the source and target of our derivation process,
namely, goal-oriented requirements models in KAOS and
architectural descriptions in Wright. The ENEL power plant
supervision system is also introduced there as our running case
study. Section 3 overviews our derivation process. Section 4
shows how a Wright dataflow architecture is derived. Rules for
mapping functional requirements of KAOS operations onto
Wright behavioral descriptions are discussed in Section 5. Section
6 then presents our pattern-based refinement process by focussing
on two important categories of non-functional goals, namely,
accuracy goals and fault tolerance goals.

2. BACKGROUND
This section briefly reviews what the input to and output from our
architecture derivation process look like.

2.1 The source:  goal-oriented requirements
models in KAOS

We start from a multi-facet requirements model that integrates a
goal model, an object model, an agent model, and an operation

model. A systematic method is available for building such
models, see [23].

2.1.1 The Goal Model
A goal is a prescriptive statement of intent about the system-to-be
whose satisfaction requires the cooperation of agents from that
system. Agents are active components playing some role towards
goal satisfaction. They can be humans, devices, legacy software,
or software-to-be components. Some agents form the software
whereas others form the software environment. Functional goals
refer to services to be provided whereas non-functional goals refer
to quality of service. Unlike goals, domain properties are
descriptive statements about the environment. They may refer to
physical laws, organizational policies, and the like.
Goals are organized in AND/OR refinement-abstraction
hierarchies. Higher-level goals are in general strategic, coarse-
grained and involve multiple agents; lower-level goals are in
general technical, fine-grained and involve fewer agents [9][10].
In such structures, AND-refinement links relate a goal to a set of
subgoals (called refinement) possibly conjoined with domain
properties; this means that satisfying all subgoals in the
refinement is a sufficient condition in the domain for satisfying
the goal. OR-refinement links relate a goal to a set of alternative
refinement options.
Goal refinement ends when every subgoal is realizable by some
individual agent assigned to it; the goal must be formulated in
terms of conditions that are monitorable or controllable by the
agent [25]. A requirement is a terminal goal under responsibility
of an agent in the software-to-be; an expectation is a terminal goal
under responsibility of an agent in the environment.
Goals prescribe intended behaviors; they are optionally
formalized in a real-time linear temporal logic. Keywords such as
Achieve, Avoid, Maintain are used to name goals according to the
temporal behavior pattern they prescribe.
Figure 1 shows a goal model fragment for our running case study,
the ENEL power plant supervision system [8]. The leaf goal
AlarmRaisedWhenFaultDetected may be annotated with the
following temporal logic assertion stating that a single alarm
should be issued within T time units when a fault is detected:

∀ f: Fault : f.detected  ⇒ ◊≤T (∃! al: Alarm: Reporting (al, f)

Power Plant
Supervised

Power Plant
Monitored

  Data Acquired
and Transmitted

   Alarm Raised
When Fault
Detected

Power Plant
Fault Handled

    Alarm Cleared
When Fault
Addressed

Acquisition
Unit

resp

Interaction
Manager

respFault
Handler

Alarm
Handler

resp
resp

resp

Incoming
Alarm

Processed

Alarm
Handler

resp

Action To
Address Alarm

Suggested

  Suggested
Action

Performed

Power Plant
Supervisor

Sensor
Data

Stored

DB

resp

Figure 1 - ENEL supervision: functional goals

Non-functional goals are additional constraints on the way the
system should achieve its functional goals. They guide the goal
refinement process and, in particular, the selection of “best”
options among possible alternatives. In Figure 2, the goal
HistoricalDataAvailable is seen to be assigned to a database agent
which might call for a repository-based design for detecting faults



from the data collected (rather than an event-based design). This
goal may however conflict with real-time requirements [22].
Some goals may be linked to well-identified agents – such as the
Instrument Monitoring System (IMS) or the Communication
Manager. Other assignments are deferred to the architectural
design phase. As seen later in the paper, non-functional goals will
drive the architectural refinement process.
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Figure 2 - ENEL supervision:  non-functional goals

2.1.2 The Object Model
Objects are incrementally derived from goal specifications to
produce a structural model of the system (represented by UML
class diagrams), see Figure 3. Objects have states defined by the
values of their attributes and associations to other objects. They
are passive (entities, associations, events) or active (agents).
Agents are related together via their interface made of the object
attributes and associations they monitor and control, respectively
[25]. In the above formalization of the goal
AlarmRaisedWhenFaultDetected, the attribute detected is attached
to the Fault entity. Reporting is an association between the Alarm
and Fault entities.
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Figure 3 - ENEL supervision: object model

2.1.3 The Agent Model
The agent model defines the various agents forming the system
together with their responsibility links to the goal model and
monitoring/control links to the obect model. For example, the
above goal AlarmRaisedWhenFaultDetected turns to be a
requirement assigned to the AlarmHandler agent. The latter must
be able to monitor the detected attribute on Fault and control the
Reporting relationship.
A useful artefact generated from the agent model is the agent
interface view, see Fig. 4. This view shows the flow of
monitored/controlled information among the agents. Our
architecture derivation process will rely on this view to build a
first architectural sketch.
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Figure 4 - Interface view of the agent model

2.1.4 The Operation Model
Goals are operationalized into specifications of operations to
achieve them [9][26]. An operation is an input-output relation
over objects. Operation applications define state transitions along
the behaviors prescribed by the goal model.
When specifying an operation, a distinction is made between
domain pre/postconditions and additional pre-, post- and trigger
conditions required for achieving some underlying goal. A pair
(domain precondition, domain postcondition) captures the
elementary state transitions defined by operation applications in
the domain. A required precondition for some goal captures a
permission to perform the operation when the condition is true. A
required trigger condition for some goal captures an obligation to
perform the operation when the condition becomes true provided
the domain precondition is true. A required postcondition defines
some additional condition that any application of the operation
must establish to achieve the corresponding goal.
For example, the following operations operationalize the goals
AlarmRaisedWhenFaultDetected and AlarmClearedWhenFault-
Handled in Figure 1, respectively.

Operation RaiseAlarm
Input: f:Fault; Output:  al:Alarm, Reporting
DomPre ¬ Reporting(al,f)
DomPost Reporting(al,f) ∧ al.active
ReqTrig for AlarmRaisedWhenFaultDetected: @f.detected

Operation ClearAlarm
Input: f:Fault, Reporting; Output: al:Alarm
DomPre: al.active
DomPost: ¬ al.active
ReqTrig for AlarmCleardWhenFaultHandled:

@f.corrected ∧ Reporting(al,f)

2.2 The target: architecture descriptions in
Wright

The Wright language allows architects to formalize architectural
structures, behaviors, and styles. An architecture is described in
terms of components, connectors, and configurations [1].
A component is characterized by an interface and a computation.
An interface consists of a number of ports. Each port captures an
interaction in which the component may participate; it describes a
behavior at that particular point of interaction. A computation
describes the component behavior. It carries out the interactions
described by the ports and specifies how they compose together.
A connector is characterized by a set of roles and a glue. Each
role specifies the behavior of a single participant in the



interaction. The glue specifies how the activities of the different
roles are coordinated. Similarly to the computation of a
component, the glue of a connector carries out the interactions
described by the roles and specifies how they compose together
To form an architecture, the components and connectors must be
combined into a configuration. A configuration is a collection of
component instances combined through connectors. It defines
instances and attachments. Instances are needed as multiple
components or connectors can be of the same type. Attachments
describe the software topology by linking components instances
via connector instances. Hierarchical descriptions are supported.
The overall behavior of an architectural configuration is defined
by the composition of the individual behaviors of its components,
according to the ordering and data transfer prescribed by the glue
of the connectors to which they are attached.
The formal notation used to describe behaviors is a subset of CSP,
containing the following elements.
Processes and Events. A process describes an entity that can
engage in communication events. Events may be primitive or
have associated data (as in e?x and e!x, representing data input
and output, respectively). The simplest process, STOP, is the one
that engages in no events. The symbol § is used to denote the
successful termination of a process. An event initiated by a
process is written with an overbar while an event observed by a
process is written without overbar.
Prefixing. A process that engages in event e and then becomes
process P is denoted e → P.
Deterministic choice. P[]Q denotes a process that can behave like
P or Q depending of its environment (the environment relates to
the other processes interacting with the process).
Non-deterministic choice. P  Q denotes a process that can
behave like P or Q, the choice being made (non-deterministically)
by the process itself.
Parallel composition. P || Q denotes the parallel execution of
processes P and Q.
Conditions. Different process behaviors can be expressed by use
of the when operator:

⎩
⎨
⎧

=
otherwise

 when
   

 )(    
R

vAQ
Pv

denotes a process over variable v that behaves like Q or R
depending on the truth value of A(v).
Named processes. Process names can be used in a process
expression through the where operator.
Tools are available for analyzing Wright architectures. Classic
checks include the detection of deadlocks, starvation, and race
conditions. Another important facility is that of checking whether
attached ports and roles are behaviorally compatible. As Wright
uses a subset of CSP, the FDR model checker can be used [13].

3. OVERVIEW OF THE ARCHITECTURE
DERIVATION PROCESS

Our approach integrates previously separate efforts to derive
architectural structures in a goal-oriented way [24][20], and
extends them to the derivation of formal ADL descriptions. The
main steps are outlined here before being detailed in the next
sections.

1. Deriving the structural part of an abstract architecture: The
interface view of the KAOS agent model is mapped on
dataflow components/connectors. The process is based on
monitoring/control links among agents from the
requirements model.

2. Deriving architecture behaviors: The operationalization
view from the requirements model is used to obtain the
behavioral part of the architecture description. The process is
based on a set of heuristic derivation rules.

3. Refining the architecture: Non-functional goals are
incrementally taken into account to refine architectural
components/connectors. The process is based on refinement
patterns associated with specific non-functional goal
categories.

The architecture is described semi-formally with box-and-arrow
diagrams but also formally in Wright, starting from the first step
and through all refinements. The derivation rules are made precise
on those formal notations.
It is important to note that some global design decisions may
already have been made at the requirements engineering stage
[24]. This is due to the space of alternative options in which the
requirements engineer has to make choices.
• A goal is often refinable into alternative AND-combinations

of subgoals [10].
• A risk is often reducible through alternative countermeasures

[23].
• A conflict is often manageable through alternative resolutions

[22].
• A “terminal” goal in the goal refinement process is often

assignable to alternative agents [25].
• There may be alternative choices on the granularity of such

agents – from coarser-grained agents, assigned to coarser-
grained goals, to finer-grained agents assigned to finer-grained
subgoals of the coarser-grained goals. In fact, it is often
convenient to structure agents in aggregation hierarchies that
reflect the structure of the environment [9], as experienced in
[5].

For each type of alternative option, decisions need to be made at
requirements engineering time based on higher contribution to
non-functional requirements, reduction of risks, and resolution of
conflicts [23]. Such decisions often have a global impact on the
architecture as different choices result in different designs [32]. In
this paper we are at the stage where such decisions have been
made. In particular, a preliminary granularity has been decided
for the agents to be mapped on architectural components.

4. DERIVING AN ABSTRACT DATAFLOW
ARCHITECTURE

Our starting point is the KAOS agent interface view that describes
the data dependency links among agents.
As introduced before, an agent depends on another for some
attribute/association from the object model if it monitors that
attribute/association and the other controls it. Each such
dependency defines a data flow.
The following rules describe our mapping on a structural Wright
description.



Rule 1. Each software agent in the KAOS agent model with n
data flows from monitor/control links is mapped to a Wright
component with n ports:

component CW
port p1
...
port pn

Rule 2. Each data flow from monitor/control links in the KAOS
agent model is mapped to a Wright connector type Dataflow with
two roles:

connector Dataflow
role Producer
role Consumer

Rule 3. Let AG be an agent in the KAOS agent model and let CW
be its corresponding Wright component. Each instance variable
ag of type AG in KAOS assertions is mapped to a corresponding
instance of type CW in Wright specifications.

Rule 4. For each data flow instance in the KAOS model an
instance of the Dataflow connector type is defined in Wright
specifications.

Rule 5. Let AG1, AG2 be two agents in the KAOS model linked by
a data flow. Let CW1, CW2 be the corresponding Wright
components. Let Output and Input be the ports used by each one
to interact with the other. Let DFW be the corresponding Wright
dataflow connector with its two Producer and Consumer roles.
The corresponding instances cw1, cw2 and dfw are attached as
follows:

attachments cw1.Output as dfw.Producer
cw2.Input as dfw.Consumer

The above rules yield the following architectural configuration
from the agents FaultHandler and AlarmHandler in Fig.4:
configuration FaultHandler-AlarmHandler

component FaultHandler
port AlarmHandlerOutput

component AlarmHandler
port FaultHandlerInput

connector Dataflow
role Producer
role Consumer

instances fh: FaultHandler
al: AlarmHandler
FaultHandlerToAlarmHandler: Dataflow

attachments
fh.AlarmHandlerOutput as

FaultHandlerToAlarmHandler.Producer
al.FaultHandlerInput as

FaultHandlerToAlarmHandler.Consumer

5. DERIVING BEHAVIORS
We now address the derivation of the behavioral part of Wright
components/connectors from the behaviors prescribed in the
KAOS operation model. A set of heuristic derivation rules is
presented for guiding the elaboration of the Wright specification.
These heuristics emerged from multiple examples in the ENEL
case study. Each heuristic will be introduced intuitively, described
precisely, and illustrated.

We first consider the behavior of connectors. The behavior of a
component will then be derived from the specification of the
operations assigned to it.

5.1 Connectors
Dataflow connectors capture the interaction between a Producer
component providing some data and a Consumer component
needing these data. Two alternative behaviors can be considered.
In the push behavior, the producer initiates an event with data
attached to it each time new data are produced. In the pull
behavior, the producer notifies the consumer each time new data
are produced; the consumer has to retrieve the data by sending a
request to the producer. This leads to the two following
specifications for dataflow connectors.

connector Push-Dataflow
role Producer = x!provide → Producer  §
role Consumer =  retrieve?x → Consumer [] §
glue = Producer.provide!x → etrieve?xConsumer.r

→ glue [] §

connector Pull-Dataflow
role Producer =  dataReady → Producer
   [] request?x → xsend! → Producer  §
role Consumer = dataReady → xrequest!  → receive?x

   → Consumer [] §
glue = Producer.dataReady → ataReadyConsumer.d

→ Consumer.request!x → equest?xProducer.r
→ Producer.send!x → eceive?xConsumer.r → glue [] §

The choice between the “push” and “pull” alternatives is a design
decision that may be linked non-functional goals such as the
following:
• Reactiveness: a push connector is more appropriate for meeting

hard real-time requirements.
• Load: if the consumer is subject to overload, it would be better

to “pull” when it is ready. If the producer cannot keep the
produced data for lack of resources, a “push” approach may be
more appropriate.

5.2 Components
The Wright specification of the behavior of a component is
derived from the specification of the operations the corresponding
agent has to perform in the KAOS operation model. We first
discuss how such operations are individually mapped to the
component. The inference of the control flow among operations
within the component is briefly discussed next.

5.2.1 Mapping individual KAOS operations

Pre/post and trigger conditions
Two constructs can be used in Wright to represent pre-, post-, and
trigger conditions: events and logical conditions preceded by the
when operator. This operator prescribes different behaviors
dependent on the truth value of some condition; it can therefore
be used to translate pre- and trigger conditions only.
Postconditions must therefore be translated into Wright events. If
a precondition also appears as postcondition of another operation
within the same component, the precondition will be translated
into an event as well. If this is not the case, two possibilities
remain.



• A precondition is a postcondition of an operation performed
by another component. This requires some transmission from
that other component to notify satisfaction of the condition. If
the transmission is an event coming from one of the ports, the
precondition will be represented as an event.

• A precondition is only a precondition of that particular
operation. In this case the when operator will be used. The
precondition then typically characterizes the state of an
internal variable or some property of the environment.

The above discussion leads to the following heuristic rules.

Rule 6. Let C be a component with operations Op1,…,Opn. The
postconditions of Op1,…,Opn are expressed in Wright by events.

Rule 7. Let C be a component with operations Op1,…,Opn. The
pre- and trigger conditions of Op1,…,Opn can be expressed either
by events or by conditions preceded by the when operator.
Conditions preceded by when are used when the pre- or trigger
conditions refer to the state of an internal variable or to some
property of the environment. Events are used otherwise.

Let us illustrate this on the AlarmHandler in our ENEL case
study. This component is responsible for the operations
RaiseAlarm and ClearAlarm described in Section 2.1. The
precondition of ClearAlarm will be expressed as an event
Corrected?f and its postcondition as Inactive!al. As the
precondition refers to an internal constraint binding the output
alarm al to the input fault f, it will be expressed as when
condition Reporting(al,f).

Inputs and Outputs
Wright has CSP-like constructs for data transmission that can be
used to express incoming and outgoing parameters. Data can be
associated with events though ?d for reception and !d for
transmission. The dataflow connector presented in Section 5.1
will ensure that the value is “pushed” or “pulled” between the
components. A simple heuristic rule is therefore the following.

Rule 8. Let C1, C2 be two components linked by a dataflow
connector via ports p1 and p2. Let d be the transmitted data from
C1 to C2. An event e1 of form p1.e1!d must be found in the
specification of C1 and an event e2 of form p2..e2?d must be found
in the specification of C2.

For example, in AlarmHandler, events Detected?f and
Corrected?f should appear for the incoming fault from the
FaultHandler fault detector.

Forming a Wright process for a KAOS operation
The Wright process is composed by linking the operation’s
trigger-, pre-, and post-conditions translated according to the
previous heuristics. As pre- and trigger conditions “precede” post-
conditions, there should be a sequential order between them.
When expressed as events they are therefore linked to the
corresponding postconditions using the Wright → construct. The
pre- and trigger conditions expressed by a condition are added
through the when operator. Three distinct cases can be identified
and are detailed in the following heuristic rule.

Rule 9. Let Op be an operation. Let pre be the event expressing
pre- and trigger conditions (if introduced). Let cond be the
condition expressing preconditions (if introduced). Let post be the

event expressing postconditions. The Wright specification of the
process representing Op is as follows:
1. if pre is expressed by events:  pre → post,
2. if pre is expressed by conditions:  post when cond,
3. if pre mixes events and conditions:  pre → post when cond.

By convention, the same names will be used for the KAOS
operation and the Wright process.
The above heuristic rules yield the following Wright specification
for the AlarmHandler component:
component AlarmHandler
  port FaultHandler-in =  Detected?f []Corrected?f → FaultHandler-in
  computation: (RaiseAlarm [] ClearAlarm) → computation

where
RaiseAlarm= FaultHandler-in.Detected?f → Reporting!(al,f)
ClearAlarm = FaultHandler-in.Corrected?f → aInactive!

when Reporting(al,f)

5.2.2 Infering the intra-component control flow among
operations

In the above example, the computation was expressed as a
deterministic choice between all component operations. This
relies on the assumption that at most one operation will be
enabled at a given time. This happens to be true in the example as
a fault cannot be detected and corrected at the same time.
In general, some additional control flow is needed to compose
operations within a computation. Inferring it requires more
complex rules as the KAOS specification does not constrain the
ordering of operations explicitly; it does so implicitly through pre,
trigger-, and postconditions.
The general idea is to let one operation Op1 precede another
operation Op2 when Op2 is logically dependent on Op1, for
example, when the postcondition of Op1 logically implies the
precondition of Op2, with direct sequencing through the Wright
→ operator when the postcondition of Op1 logically implies the
trigger condition of Op2the trigger condition of the other has
some corresponding form. (The principle is similar to the one
used in AI planning.) Parallel composition of Op1 and Op2 is
introduced through the Wright || operator when there is no such
logical dependency and no overlap between the lists of output
variables declared in their respective KAOS Ouput clause – in
other words,  the operations do not interfere. For operations that
are not composed sequentially or in parallel, Op1 is composed
with Op2 through the Wright [] operator when at least one of their
preconditions refers to the environment; otherwise the  operator
is used.
Lack of space prevents us from detailing the derivation rules
making the above general idea more precise. Details can be found
in [37].

6. PATTERN-BASED REFINEMENT OF
THE ARCHITECTURE

It has long been recognized that architectural design has a major
impact on non-functional goals [33]. Many such goals impose
constraints on interactions between components. For example,
• security goals restrict interactions so as to limit information

flows along communication channels,



• accuracy goals require interactions to maintain a consistent
state between related objects,

• usability requirements put static and dynamic constraints on
interactions with environment components.

The key principle underpinning architectural refinement is to
“inject” non-functional goals from the goal model within
component interactions (connector refinement) or within single
components (component refinement). The general procedure is
made more precise as follows [24].

• For each non-functional leaf goal NFG in the goal model:
- identify all connectors and components that are

specifically concerned by NFG;
- instantiate NFG’s spec to those connectors and

components.
• For each such connector or component:

refine it to meet the instantiated NFG spec by instantiation
of an architectural refinement pattern associated with
NFG’s goal category.

A number of such patterns were suggested in [24] for categories
of nun-functional goals such as accuracy goals, availability goals,
fault tolerance goals, interoperability goals, information hiding
goals, cohesion goals, etc. Those patterns were just sketched there
quite informally.
Here we show how they can be made much more precise through
formalization in Wright, and illustrate their use in the ENEL case
study. For obvious space reasons we limit ourselves to two (non-
trivial) refinement patterns. Each pattern is described by a rewrite
rule taking the form:

( driving non-functional goal,
  constrained components/connectors )

→  resulting architectural fragment

6.1 Maintaining accurate interaction through
observer-based refinement

Fig. 5 shows a graphical rewrite rule for a refinement pattern to
achieve data accuracy among interacting components.

Obser ver-Subject
C1 C2 C3data data

C1 C2 C3

Consistency
Maintainer

Maintain [Accurate
Data(C1..C3 )]

Figure 5 – Observer-based refinement for data accuracy

Driving non-functional goal: Maintain the consistency between
multiple representations of some common master concept.
Constrained components/connectors: Components C1, C2, ...,
Cn are linked through dataflow connectors; every component may
own a specific representation for the data.
Resulting architectural fragment: The data flow is redirected
through a new component whose role is to maintain data
consistency. The components are no longer interconnected
together (see Fig. 5). They play an Observer role whereas the
Consistency Maintainer (CM) plays a Subject role [14].
• CM’s interface provides a method to enable components to

obtain its state and update their state.

• Whenever a component modifies its data it updates CM’s state.
Whenever it receives a notification from CM it gets the new
state.

In the Wright formalization that follows, components playing the
Observer role have the ability to trigger a change through
SetState; CM will  update itself and issue notifications to the other
observing components which then update themselves accordingly.
This behavior is captured in the glue specification of the
connector.

component ConsistencyMaintainer
port Obs1,2Link =

SetState?x → Notify → Obs1,2Link
  [] GetState?x → ySendState! → Obs1,2Link
computation =  SetState → Notify  [] GetState  where

SetState = (Obs1.SetState?x [] Obs2.SetState?x)
Notify = ( yObs1.Notif || yObs2.Notif ) → computation
GetState =

(Obs1.GetState?x → ytate!Obs1.SendS  → computation)
  [] (Obs2.GetState?x → ytate!Obs2.SendS → computation)

component Component
port SbjLink =

SetState!x → SbjLink
  [] Notify → GetState!x → SendState?y → SbjLink
computation = compute [] Update   where

compute = … ToOtherObs.receive?x…→ Modify(x)
    → SbjLink.SetState!x → ToOtherObs.Send!x…

Update = SbjLink.Notify → SbjLink.GetState!x
→ SbjLink.SendState?y→ SyncValue→

computation

connector Observer-Subject Link
role Observer = xSetState! → Observer

[] Notify → xGetState! → SendState?y→ Observer
role Subject =  SetState?x → Notify → Subject

[] GetState?x → ySendState! → Subject
glue = (Observer.SetState!x → tState?x Subject.Se → glue)

[] (Subject.Notify → otifyObserver.N
→ Observer.GetState!x → tState?xSubject.Ge
→ Subject.SendState!y → endState?yObserver.S
→ glue)

The above refinement pattern was applied to the ENEL case study
to manage the consistency between the AcquisitionUnit and IMS
components, as shown at the bottom of Fig. 7. The formalisation
can be found in [19][37].

6.2 Achieving fault-tolerance through
redundancy-based refinement

Fig. 6 shows a graphical rewrite rule for a refinement pattern to
achieve fault-tolerant communication among interacting
components.
Driving non-functional goal: Maintain a fault-tolerant
communication scheme in a transparent way.
Constrained components/connectors: Components C1, C2 are
linked through some connector; each of them is subject to faults.



C1 C2

C1 C2

C1'

 Maintain[FaultTolerant
Communication (C1,C2)]

Copy

C2'

Copy

Figure 6 – Refinement pattern for fault-tolerant
communication

Resulting architectural fragment: In the spirit of [7],
transparent fault tolerance is achieved by first ensuring fault
tolerance and then masking it. The refined architectural fragment
is based on a two-phase organization.
Detection phase
1. Introduction of a fault detection mechanism to detect process

crashes or component misbehavior.
2. Maintenance of a pair of copies. There is no no master/slave

relationship among copies. At any given time, only one copy
is active while the other is ready to take over in case of
failure (transiently it may be busy recovering from its own
failure). The two copies behave exactly the same way; they
have the same Wright specification.

Correction phase:
1. Introduction of a reset procedure to restart any component

that may have crashed.
2. Switch in case of failure. When a component goes down, its

copy has to take on. The change of operating component
may not result in any processing error or loss of information.
The crashed component must also be reset.

3. Transparency of switching. The switch in operating
component has to be done in a completely transparent way to
other interacting components. The latter should not notice
that a switch has occurred. Interacting components should
also not be aware of duplicate component copies.

The core of the refined architecture is the Copy connector and, in
particular, how and when this connector is activated. The
following Wright excerpt shows the reconfiguration logic in this
connector (the synchronization logic is not shown here for lack of
space). The glue specification shows that when the “heart beat” is
lost from the active copy, it is reset and replaced by the mirror
copy which becomes the main copy while the reset one becomes
the new mirror ready to take over.

  connector Copy
role Copy1,2
glue = Copy1

   Copyi = .isAliveCopyi →

⎩
⎨
⎧

¬ s) T(within  .ImAliveCopy when FailureCopy
s) T(within              .ImAliveCopy when Copy

ii
ii

   Copyi.Failure = .resetCopyi → .wakeUpCopymirror(i)
    → .sleepCopyi → Copymirror(i)

The above pattern was applied to FaultHandler and
AlarmHandler in the ENEL case study to achieve the final
architecture shown in Fig. 7. The full formalisation and additional
design details to achieve transparent fault-tolerant interaction
(here between FaultHandler and AlarmHandler) can be found in
[19][37]. Also note that a broker is introduced in Fig. 7 for

managing communication. It was obained by use of another
pattern not discussed in this paper.

DB

COMM

Acquisition
Unit IMS

Consistency
Manager

Obser ver Obser ver

Sensor
Data

Sensor
Info

Sensor
Fault
AlarmFaultHandler

Copy
Fault

AlarmHandler

CopyAlarm

FaultSensor
Data and StatusFaultHandler AlarmHandler

Figure 7 – Final architecture of the ENEL power plant
supervision system after pattern-based refinement

7. CONCLUSION
In spite of increasing interest in bridging the gap between
requirements and architecture, very little support is available for
guiding architects in the elaboration of an architecture guaranteed
to meet the functional and non-functional requirements elaborated
by requirements engineers. Techniques are now available for
eliciting, specifying, and analyzing requirements. Techniques are
also available for specifying and analyzing architectures on
formal grounds. But how do we get from such requirements to
such architectures in a systematic way? At best architects can
reuse architectural styles and patterns whose underlying
requirements are in general formulated in vague terms compared
with the level of precision found in the requirements
specification.
Our approach addresses this challenge. The requirements model
integrates multiple models that are built in a systematic,
incremental way. The goal model is used to derive the object,
agent, and operation models [23]. The agent model is used to
derive the structural part of a dataflow architecture. The operation
model is used to derive the behavioral part of that architecture.
The non-functional goals from the goal model are then used to
drive the refinement of components and connectors. The refined
architecture is described in an ADL; it can therefore be analyzed
formally against requirements from the goal model. In case of
problem one may then backtrack to the architecture or to the
requirements model and repeat the process. As requirements may
have evolved in the meantime a new cycle may be needed
anyway.
A continuum of model elaboration is thereby made possible in the
perspective of requirements-architecture co-design. Alternative
options are explored and assessed from the beginning. A
continuum of analysis tools can be used accordingly to support
the process from goal-oriented requirements analyzers1, animators
and refinement checkers [34], to CSP tools such as PROBE and
FDR [13].

                                                                
1 http://www.objectiver.com



Full traceability is ensured from the high-level system goals to the
architectural components and connectors. In particular, the
architectural refinement of connectors/components is explicitly
linked to the non-functional goals the refinement aims to achieve.
As a consequence, architectural views can be associated with
specific non-functional features, e.g., security views or fault
tolerance views of he architecture. Such views might be easily
extracted through query facilities such as the one provided by the
Objectiver tool.
Our approach has been validated on a non-trivial system, the
power plant supervisory system of an Italian electricity company
for which sufficient documentation was available to carry out the
derivation at a fine-grained level of detail.
Our work represents a first step towards the formal derivation of
software architectures. There are many aspects that need be
further worked out.
Our mapping rules have not yet been formally proved to be
semantics-preserving, in the sense that the set of architectural
behaviors is a subset of the set of behaviors prescribed by the goal
model. Some deep examination of the formal semantics of the
source and target languages would be necessary which falls
outside the scope of this paper. At this stage we rely on
correctness arguments. We can also run verification tools [13] on
the Wright specification to check for consistency with properties
from the goal model. One specific problem with Wright is its lack
of support of timing constraints. Some level of expressiveness
may thus be lost when translating KAOS temporal logic
conditions that refer to the past (such as trigger conditions). One
can be more restrictive than necessary, e.g., by transforming
conditions on some bounded-future states into conditions on the
next state. In this case the operationalization loses its minimality
property but keeps its completeness and consistency ones [26].
As experienced in the work on requirements and design patterns
[21][14], pattern combination remains an open issue. Do patterns
keep their effectiveness with respect to their associated non-
functional requirements when they are combined? If not, how
does on decide which one to choose? Does the order of
application matter? Many such questions arise when using
patterns.
Our current approach is purely refinement-based. This may not be
sufficient in a number of situations where architectural features
need to be propagated bottom-up, e.g., from middleware
requirements. A complementary, dual approach based on
abstraction patterns should be integrated to address this problem.
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