
Software Architects in Practice
Vidya Lakshminarayanan, WenQian Liu , Charles L Chen, Steve Easterbrook , Dewayne E Perry

Empirical Software Engineering Lab (ESEL)
Electrical and Computer Engineering

The University of Texas at Austin, Austin TX
{vidya,clchen,perry}@ece.utexas.edu

Software Engineering
Department of Computer Science

University of Toronto, Canada
{wl,sme}@cs.toronto.edu

ABSTRACT
We present the results of a multiple case study of how architects
view and address the issues in transforming requirements into
architectures in practice. Specifically we report how they view
and address issues of requirements, architecture, and the
transformation of requirements into architecture. We then
summarize the important lessons learned from these practicing
architects about this critically important step in creating and
evolving software systems.

Categories and Subject Descriptors
D.2 [Software Engineering]: D.2.1 Requirements/Specifications,
D.2.11 Software Architectures

General Terms
Software Requirements, Software Architecture, Multiple Case
Studies, Architecture in Practice

Keywords
Transforming Requirements into Architectures, Architects in
Practice, Multiple Case Studies, Experience Report, Managing
Requirements, Creating and Evolving Architectures

1. INTRODUCTION
Research in the areas of requirements engineering and software
architecture have developed independently for more than a decade
[7,8]. However, in the last few years, a number of researchers
have begun to investigate the relationships between requirements
and architecture, and how to bridge the gap from one to the other
[9,10]. In particular, techniques have been proposed for
generating software architectures from the requirements
[11,12,13,14]. However, there have been no studies to date on
how architects currently perform this transformation in practice.
In this paper, we report the results of a multiple case study of
experienced software architects. We believe that if we are to

provide methods, techniques, and tools to help transform
requirements into architectures then we need a detailed
understanding of what architects do in practice. All too often,
software engineering research pays little attention to what
software engineers actually do when they build and evolve
software systems.
We take an empirically based approach and use an interview-
based case study methodology to carry out our investigations.
Case studies are a specific empirical research method used to gain
a deep understanding of a particular phenomenon in its real life
context. As such, they are characterized by analytical
generalizations, rather than statistical generalizations, i.e. they are
not to be understood in terms of samples, but in terms of analysis
and comparison of cases [4].
Our study involves a series of semi-structured interviews on
requirements and architecture topics with multiple subjects. In [6]
we describe our process of defining our case study from its
preparation to its evidence chain and evidence trail.
So far, we have interviewed fourteen different architects from
different domains (such as security, usability, product lines, etc.)
in different organizations (ranging from relatively small to
extremely large, from specific product focuses to general system
and solution providers, etc).
The architects in this study were chosen from software intensive
organizations in two general areas: in and near Toronto, and
Texas (Austin, Houston and Dallas). Where the subject architects
are from the same companies, they either represent different
divisions (which are often the size of medium sized companies) or
represent different kinds of architects. For example, in one
company, we chose a usability architect and a domain specific
architect; in another company, the different divisions represent
significantly different domains. With a few exceptions, our
subject architects have significant experience both in their roles as
architects (anywhere from 4 to 15 years) and as software
developers; where the subjects have only a few years experience
as architects, they do have significant experience as developers
(five or more years). For the architects working at large, software
intensive organizations, there tend to be mature and well-defined
processes to fall back on. For the architects in smaller
organizations or where software provides support for non-
software intensive domains, experience and domain expertise are
the bases for architectural guidance.

This study investigated a number of issues in software
architecting: (i) how do software architects manage requirements
and make design decisions, particularly those concerning non-

functional requirements; (ii) what do practicing architects
understand by the term software architecture, including the
critical characteristics of a good architecture and the driving
forces of its creation; (iii) how do experienced architects generate
an architecture from the requirements and manage the evolution
of an existing architecture. In sections 2-4 we provide a
distillation of how our subject architects view and address these
issues.
In section 2, we summarize how architects view, discover,
anticipate, and manage requirements in practice. In section 3, we
summarize how architects view software architecture, it’s
meaning, characteristics, driving forces, manifestation,
evaluation, and tool support. In section 4, we summarize how
architects view the transformation from requirements to
architecture, shaping the architecture, and the effects of the shape
of the problem on the shape of the architecture. Finally, we
conclude with lessons learned in our multiple case study of
architects in practice.

2. REQUIREMENTS
Our first set of results focus on how the architects perceive the
requirements. There was a clear consensus on what requirements
are - things that are wanted, needed, asked for, or demanded.
However, there was less consensus on how they are handled. In
this section, we describe how practicing architects view functional
and non-functional requirements, discover real requirements, deal
with requirements variance, and handle complex and costly
requirements.

2.1 On Functional vs. Non-functional
In the literature, a distinction is drawn between functional and
non-functional requirements. A typical definition is that
functional requirements specify the functions that a system or
software component must be capable of performing, while non-
functional requirements describe general qualities that the system
must possess, or constraints on the acceptable solutions, such as
performance requirements, software design constraints, software
quality attributes, etc.
Our subjects do not have a uniform opinion about functional and
non-functional requirements. Some of them tend to distinguish
between functional and non-functional requirements. On the other
hand, a few architects suggested that they see no real difference
between functional and non-functional requirements and each
requirement (if committed) must be accommodated in the design.
For example, one subject indicated that security is neither
functional nor non-functional; it is simply a serious business and
technical requirement that can “make or break the deal”.
One subject considers that every requirement has both functional
and non-functional aspects; depending on one’s perspective and
the problem context, one aspect may dominate the other. This
view is echoed by another subject while discussing security and
performance requirements. In security, there are standard
functional requirements dealing with interoperability and
manageability issues. For example, a VPN client has to
implement a chosen protocol in order to communicate with the
server; a system administrator needs to be able to safely update
the access information using scripts overnight. As for
performance, specific requirements are set to prevent performance
degradation. For example, one cannot impose more than 1/10 of a

second latency on the startup of a connection; or one cannot
impose more than 3% throughput overhead due to cryptography.
Although there seems to be some disagreement, the differences
between them are more cosmetic than fundamental. The
underlying themes of our subjects’ opinions are as follows:

• Non-functional requirements are frequently used for
convenience to refer to high-level properties and abstract
phenomena that are desirable.

• To actually deliver non-functional properties, they must be
(re)formulated in terms of functions.

2.2 Discovering the Real Requirements
Requirements set the goals and expectations for a system that is to
be developed. When the requirements are not specified correctly,
producing the right system becomes a challenge. Our subjects
expressed that eliciting the requirements for any kind of product
is complex because many stakeholders are involved. All of these
people have their own views of what is important, along with
their own experiences, prejudices, and perspectives of the world.
Usually, the requirements are expressed in technical terms based
on the current technology, rather than the problems that
stakeholders actually need to accomplish. This is because the
stakeholder is most likely to communicate a requirement that he is
aware of based on his particular view of the world.
The most common technique for discovering the real
requirements is for the architects to involve themselves in the
requirements gathering task so that they understand what the
stakeholders actually need. The architects with their experiences
and knowledge will be able educate the stakeholders to broaden
their focus and steer them in the right direction. Most, but not all,
of our subjects agreed with this view. According to one of our
subjects who disagreed with this, architects should communicate
with the requirements engineers rather than bypass them and go
straight to the customers. According to him, requirements should
be left to the requirements engineers who are specially trained to
handle them. Also, if the architects are directly involved with the
customers there is a possibility that the architecture and
requirements may become desynchronized.
Not all the requirements collected are consistent. According to
our subjects, interacting with the stakeholders and educating them
will help to resolve inconsistencies. One technique mentioned in
our interviews for resolving the inconsistencies is brainstorming.
The purpose of brainstorming is to use the group effect to
generate good ideas and solve problems. The technique focuses
on generating as many ideas as possible. The resulting ideas are
evaluated, and the one best suited for the stakeholders is chosen.
Unfortunately, reality does not always allow architects the
opportunity to resolve all inconsistencies. One of our subjects
admits that there are times when architects must rely on their own
judgment to resolve inconsistencies – this is risky and not
recommended; however, sometimes there is no alternative.

2.3 Anticipating Changes
Constant change is a common theme in software development.
Changes represent new requirements or re-evaluations of existing
requirements. They are usually stated as additional functionality
or an incremental problem to solve. One of our subjects indicates
that in order to create an architecture that can solve similar
problems for different customers and adapt to changing needs,

architects need to take a step back and see the big picture to
discover what the true requirements are so that resources can be
better planned and more important problems are addressed. He
further suggests that “what is going to change really is related to
the domain” and trying to handle everything without an
understanding of where changes are likely to occur is a bad
approach in software engineering. One key thing to anticipating
changes is to understand the business needs and what the
customers are trying to accomplish; otherwise, it will be just a
guessing game.
Another subject suggests that to satisfy every customer’s request
may not be the right thing to do because some requests may not fit
in the long-term direction of the industry. He believes that the key
to understanding where the industry is going in the long-term is to
involve not only the industry community but also the research
community. With the knowledge and experience exchange, both
communities can benefit.
Professional experience can contribute greatly. Typically,
experienced architects will seek to reuse information they have
seen and predict the problems and changes that may come in the
future. Experience helps architects to identify what is hard and
what is an issue.
A number of subjects suggest that using good design principles
provides an indirect solution for dealing with changes and
anticipating future requirements. Some of the examples described
by our subjects are as follows: (i) when the natural cohesion from
the requirements is reflected in the design, maintenance and
enhancements will fall into alignment and become easier, (ii) use
modularity to minimize the effects of changes on the entire
system, and (iii) make solutions more generic to provide reusable
and extensible frameworks.
The benefit of anticipating changes does not come free or without
challenges. First, it is a time consuming task. There may be cases
when this investment is not warranted. This is especially true for
products with shorter anticipated life spans and in cases where the
time to market for the first release is a dominant factor.
“Disruptive technologies”, unanticipated technologies that
become dominant in a given industry and radically change this
industry, provide a special challenge. One way of dealing with
such technologies is to design the system to be adaptable to
mitigate the risk of unforeseeable changes.
Another challenge is being able to correctly interpret the given
requirements in the absence of contextual information. In such
cases, making incremental changes and integrating back into the
product is appropriate. It also helps in uncovering any hidden
assumptions.
If there is a ‘middle man’ (such as marketing) filtering and
interpreting the requirements before passing them on, the real
problem may be obscured from the architect. In order to mitigate
this problem, one subject believes that an architect needs to “be
analyzing a number of problems in aggregate” instead of focusing
on a given single instance before committing to a solution.
One of the ways to manage change is to lay out a roadmap to help
customers move on from one version of the system to the next. By
having a clear plan for upgrades and changes, the problem of
dealing with multiple versions with different configurations can
be eliminated.

2.4 Managing Requirements
The production of high-quality software is a major concern for
today's software industry. Delivering software on time and within
budget, and satisfying all of its requirements pose significant
technical challenges for researchers, managers, and practitioners.
Every client wants a product that can do everything that might
conceivably be needed. Such a product would take an
unacceptably long time to build and cost far more than the client
considers reasonable.
Software architects use a number of strategies to manage complex
and costly requirements. Understanding the rationale and the
business problem of the given requirements by asking the ‘why’
and ‘what’ questions is critical. Answers to these questions
provide both deeper insight into the real problem and more
options for solving them. During these back and forth question-
and-answer sessions, the negotiation of the requirements is
actually taking place to produce acceptable requirements that can
be signed off by both sides.
Conflicts, unrealistic ‘sales promises’ and impossible
requirements must all be negotiated with the customer. In some
cases, a compromise can be achieved, but in others, ‘no’ is the
only answer. Under such circumstances, prioritization helps to
determine which requirements are the key and which are
subordinate. These priorities can be based on the cost/benefit
analysis or areas of particular concern to the stakeholders. There
may still be a case that there are too many requirements all with
the highest priority where an “80/20 rule” could be applied, that is
take 80% and leave the rest behind with the consent of the
stakeholders. Problem decomposition is frequently used to
manage complexity. In most problems that involve automating
human activity, decomposition is not very hard to accomplish
because humans will not typically do anything too complicated to
be modeled. The reason for decomposition is to make
implementation easier. The refinement methods and the
techniques for decomposition are based on the architect’s
experiences and domain knowledge.
Since there are no specific techniques or methods to handle
complex requirements, it is important that the architects perform
post mortem analysis so that they can analyze their mistakes and
come up with better methods to handle such requirements.
However, such post mortem analysis is usually not conducted
well in practice because of a lack of tool support to trace back to
the requirements.
So far, we have discussed how architects uncover real
requirements, manage different requirements, and anticipate
changes. In the next section, we will describe our subjects’ views
on software architecture.

3. SOFTWARE ARCHITECTURE
In the literature, software architecture is generally discussed in
terms of a collection of interfaces and components, and it is
mainly used as a communication vehicle to balance different
interests. In this section, we report on how architects understand
the meaning of software architecture, its characteristics and
driving forces, and how the architecture manifests itself in the
final system. Furthermore, we describe the techniques used by our
subjects to evaluate the architecture and to do their jobs as
architects.

3.1 Meaning of Architecture
The software architecture of a large software system is mainly
comprised of the major components of the system and their
interconnections. It can also be defined as a collection of
components and interfaces, which ties together the different
requirements such as business requirements and technical
requirements in a loosely coupled fashion. Moreover, it is
commonly held that multiple views are required to gain a proper
understanding of the various aspects of a software architecture, as
seen for example in Kruchten’s 4+1 views.1 [3]
According to one subject, architecture is an eight faceted diamond
that can be described in different ways by different stakeholders.
For example, from an administrative point of view, the
architecture is described using new templates; but from a product
development point of view, the architecture may not be fully
described or may be described like a deployment view. However,
independent of how many and which views are needed, the
critical question is how much work has to be done upfront to
describe the architecture before moving on to the low-level design
work.
One communicational use of architecture bridges the gulf between
the architect and project management. Clearly, the architecture is
of critical use in planning the development of the system, and its
structure can facilitate or hinder the development interval. A well-
documented architecture facilitates a shorter development
interval.
Some of our subjects believe that the architecture is based on the
problem it solves, but how well it models the problem varies. The
architecture does define the solution to the problem being solved,
but by looking at the architecture, sometimes it is difficult to find
the exact problem. It is sometimes the case that the architecture
does not have anything to do with the problem being solved
because architecture may be analyzed independently from the
processes and decisions. In other words, someone outside of the
domain may be able to investigate a system and ultimately
understand the architecture regardless of the problem being
solved. Furthermore, the architecture is the first step in the
construction of the solution, and they agree that the architecture is
in the solution space rather than in the problem space. [1]
From the data collected, the architect’s views on software
architecture can be summarized as follows:

• Multiple views are needed to satisfactorily understand and
explain a software architecture.

• It is a technical need that is used as a way of communicating
the technical information about the system to the various
stakeholders. It guides them in their tasks, whether it is
creating white papers about the system or implementing the
system.

• It can be viewed as a framework. It always exists in the
system whether it is documented or not. However, it is
important to note that having a documented architecture
facilitates faster development.

1 These five views are 1) the logical view, 2) the process view, 3)

the physical view, 4) the development view, and 5) the use case
or scenario view.

• It is a collection of interfaces and components. In a large
software system, it can be viewed as the major parts of the
system and their interconnections.

• Domain and background knowledge can have a profound
effect on how architects view architecture. For example,
according to one of our subjects, a logical view of the
system, and not necessarily a specific implementation,
constitutes architecture. However, another subject expressed
that he usually creates a proof of concept implementation of
the architecture.

3.2 Characteristics
Software architecture is a structure that encodes the organization
and interactions of components. It contains several parts that may
even include things that are unfamiliar to the architect. These
parts may have high visibility within the system and may be the
central piece that is used by lots of other components. It is
important that the architect identifies these risky areas and does a
careful design. In theory, it is ideal that the system goals and
rationale be captured within the architecture. This is important
because as the next person comes along and modifies the system
it is required that he does not break the fundamental assertions
about the architecture or the implementation. However, some of
our subjects believe that it can do more harm than good to capture
the rationale at the very early stages because people will tend to
treat the commentaries as the actual system specifications. The
key to the disagreement on rationale is when to capture it and how
much to capture. Overall, everyone agrees that it should be
captured. It is best to capture it at the end of the design stage or
even the implementation stage. Reasons for this include reducing
confusion and unnecessary communications. It is also important
to note that only the key elements are captured so that the
fundamental decisions are preserved and the maintenance of this
information does not become a burden during system evolution.
A majority of our subjects agreed that a good architecture is a
critical factor in the success of a system’s development. Certain
critical characteristics of the architecture define its goodness.
Software architecture represents a common high-level abstraction
of a system that most if not all of the system’s stakeholders can
use as a basis for creating mutual understanding, forming
consensus, and communicating with each other. As stated by
Conway’s Law, “Organizations which design systems are
constrained to produce systems which are copies of the
communication structures of these organizations”. In other words,
the organization of the system is the same as the organization of
the people building it. It is well understood that a large system
cannot be built without a large number of people and a large team
of people need to communicate among themselves and take up
responsibilities for different parts of the system. Therefore, the
system starts echoing the same structure and reflects the
architecture of the groups.
A common theme among our subjects is that the architecture is
mainly used as a communication vehicle. However,
communication can be done in a broad range and is not limited to
only the delivered architectural documents. It can be done through
e-mail, presentations, white papers, etc. Whatever the medium,

architecture is widely used for communication purposes.2 Having
an architecture gives stakeholders confidence towards the
satisfaction of their goals. According to one of our subjects, the
bottom line is to “enable everyone with a vested interest to do
what they need to do”. For example, a user is concerned with
whether she can get the desired end product and a developer is
interested in meeting the deadlines of the deliverables. The
architecture provides information on all of these aspects.
Furthermore, the architecture can be used to verify that the
problem has been understood correctly. Using the architecture an
architect can uncover misunderstandings of the requirements. This
process of verification may lead to a new set of improved
requirements.
One of the desired purposes of the architecture is to save other
people’s time. The architect needs to develop an architecture in
such a way that it reduces the development time, maintenance
time, time needed to develop the user manual, etc.
Our subjects expressed that there are several required properties
of the architecture. (i) The architecture needs to be open and
pluggable. This is because there is always advancement in the
technology and it is important to leave enough room so that
modification of different components does not affect the rest of
the architecture. (ii) The architecture should be adaptive in
nature. It should be designed in such a way that when the changes
occur the existing system should not be simply discarded. In other
words, the architecture needs to be robust and not brittle because
different enhancements can cause total reorganization and
restructuring of brittle architectures. (iii) It is also important that
the architecture is simple and elegant, but at the same time, it is
not desirable that the architecture adheres to a specific style at the
cost of functionality or purpose. (iv) Abstraction is needed for the
architecture and it should capture the important aspects but leave
the details open. This property is necessary to avoid over
constraining the architecture.

3.3 Driving Forces
Multiple decisions drive the development of the architecture.
Most of these decisions are made for sound technical reasons. For
example, one such reason is the ability to satisfy customer
requirements. In fact, sometimes a particular requirement may
shape the architecture of the system if there is only one way to
fulfill it, as can be the case when dealing with security
requirements where compromising can mean leaving the system
open to attackers. For example, once you have decided on a
security design goal to impose a specific work factor on the
attacker “you basically have to hit that mark or do better; you
can’t […] really continuously tune your level of security”. In
other words, you either succeed in preventing the attack or you
don’t. Security is not a tunable property like performance.
Another technical reason is the maintainability of the system. If
you do not have the right structure, it is difficult to adapt the
solution to future needs, and maintenance may become an issue.
Ideally, changes and enhancements to the system should be
confined to a small part of a system to prevent the effects from the

2 This use of architecture as a communication mechanism is

consistent with the results of Sim’s study of the social aspects of
architecture [5].

change from affecting the entire system. “So if you can isolate
that new stuff, or at least isolate the enhancement to within a
subsystem or even a component within the subsystem, that's the
ideal.”
In addition to the technical reasons, some architectural decisions
are made for reasons such as business alliances. For example, a
company may dictate that a specific tool be used simply because
it has a contract with other company to use its tool. They can also
be made for the reasons like personal gain. For example, a project
manager may insist on using a certain new technology for the sole
purpose that he can include in his resume about his experience
with the new technology even if it is inappropriate for the project
itself. These decisions can create serious problems by over
constraining the architecture and forcing the developers to use an
inappropriate framework.
On the other hand, projects are not always started by an upper-
level management decisions; they can ‘sneak-in’ as a
“skunkworks project”, a project that is started by developers on
their own initiative. This may be a good idea though they may not
be clearly profitable. Nevertheless, they decide to make a
prototype, which eventually evolves into a real project. In such a
case, the evolution process is the driving force in the creation of
the architecture.

3.4 Manifestation
It is debatable whether and how software architecture manifests
itself in the end product. Our subjects feel that the architecture
does manifest itself, at least partially, in the end product. The
design patterns and naming conventions tend to be clearly visible.
Also, the decomposition of the architecture into subsystems and
components can be seen in the code. “A lot of times, you'll see
things mentioned in the architecture still mentioned at the product
level.” In fact, one of our subjects suggests that “if you can't see it
in the code, then you probably got chaos going on.” However, the
more detailed parts of the architecture and the intermediate steps
that led to its creation (such as rationale, negotiations, and
processes) are usually not visible. These aspects may be kept in
documentation but are, in general, hard to maintain.

3.5 Evaluation
Software architecture is a foundation for building successful
software-intensive systems. Evaluating the architecture before
implementation can reduce costs through early detection of errors
and problems. In addition, evaluations also reduce the risks of
disaster projects. It helps to increase the understanding of the
system and to clarify and prioritize the requirements. In order to
evaluate architecture, there needs to be a set of specific criteria for
measuring goodness. However, there is no universal set of criteria
for determining goodness in practice. Our subjects discussed the
following criteria that they have used: (i) a good architecture
should be extensible, adaptable, elegant, and represent an
abstraction of the problem, (ii) it needs to be marketable since
there is no use in having an architecture that nobody cares about,
and (iii) it should have clean well-defined interfaces.
It should be noted that the most important criterion for goodness
can vary from situation to situation. What is critical for one case
may not apply to another. In general, an architecture has to be
implementable, support good performance, and be reliable.

Once the criteria for determining the goodness of the architecture
are established, different techniques can be applied for evaluating
the architecture. Metrics can be used to detect problems quickly
before doing a serious review. If there are well-established
metrics with expected values, then deviations from those values
could indicate problems. For areas that are immature and
unstable, there may not be a simple, easily defined measurement.
Because the domain is changing so rapidly, it is impossible to
create a practical ontology that would even come close to
covering everything. In such cases, the only real technique for
evaluating the architecture is to think about it carefully.

3.6 Tool Support
There are several tools and techniques that the architects use for
constructing architectures, understanding requirements, and doing
their jobs as architects. The tools currently used in practice
include requirements management systems, code analysis
software, and logic programs. Tools for capturing the rationale
behind the architecture and linking the requirements with the
architecture are still not very well developed and trying to
document this still requires a huge amount of effort. However,
such tools would be nice to have because it is important that this
information is not lost. Not all available tools are readily adopted.
For example, tools that are overly detailed for the task or are
difficult to use will not be adopted. It is evident that tools can
make the job easier, but they are not a silver bullet for solving the
problem of radical design. This is because it is not possible to
create a tool to reason about all the issues that an architect would
normally need to consider.
In addition to the tools, there are different general and specific
approaches that the architects use for constructing the
architectures. The first approach is to control the complexity by
decomposing the problem into things that are of the right size to
think about. The second approach is to apply reuse in terms of
both reusing past solutions and planning for future reuse. Even in
cases where it is not possible to apply reuse directly, it is best to
break down the problem into familiar pieces and then apply reuse
to these pieces. The third approach is using iterative development
or prototyping to make sure that the solution is feasible before
committing to it.
Specific methods that the architects use for constructing the
architecture are as follows: (i) the use of design and architecture
patterns; (ii) the use of standard frameworks such as J2EE ; (iii)
the use of specialized models built as references for the
architecture (for example in security, the architecture is based on
the use of threat models.); and (iv) using Use Case analysis [1] to
model higher levels of abstraction. One subject specifically
indicated that asking ‘why’ questions allows him to uncover
higher levels of abstraction and brings an understanding of the big
picture. In turn, he was able to have a broader range of options to
solve the problem. In this sense, use cases were a useful tool to
him in ensuring the requirements are met; “you have to run
through the use cases rigorously and make sure that we are
meeting all the sets of requirements”.
We now discuss how architects transform requirements into
architectures.

4. REQUIREMENTS TO ARCHITECTURE
The requirements and architecture of any software system are
interdependent. Little guidance and few methods are available to
refine a set of software requirements into an architecture
satisfying those requirements. We have collected data from our
subjects on two subtopics – how architecture is shaped and its
relation to the problem structure.

4.1 Shaping the Architecture
The goal of the requirements phase of software development is to
decide precisely what to build and how to document the results.
The architecture is the first artifact in the development process
that addresses the requirements of the system. In designing and
building software systems of any complexity, understanding
requirements and using them to make informed architectural
decisions is crucial to project success.
Requirements take different forms and they vary from
organization to organization. Typically, the requirements capture
some definition of the product. For example in one company, they
are captured in a product content document and are used as input
to the system design document. The next step for this company is
then to transform these requirements into a technical architectural
design document and then produce a component design document
that includes details for the implementation of each component.
According to our subjects, it is important to consider all
requirements, whether functional or non-functional, from the
beginning. However, it is generally more difficult to obtain the
details of non-functional requirements upfront. Some of our
subjects claim that the current trend in industry is to deal with
functional requirements earlier than non-functional requirements
because setting the functional requirements in the initial
architecture frame is much easier. Furthermore, customers are
usually better at conveying functional requirements than non-
functional requirements. But even then their input may be entirely
misleading “some people know exactly what they want until they
get it”.
Nonetheless, non-functional requirements are critical to the
formulation of software architecture and can significantly
influence the shape of the architecture. One subject expressed that
in some applications, non-functional requirements are an integral
part of the system rather than an add-on as an afterthought. For
example, in x-ray machines, reliability is the most fundamental
requirement. In other cases where non-functional requirements are
close to the implementation level, what architecture leaves out
can be as important as what it includes. As one of our subjects
notes, the architecture should not be overly constraining on details
such as how to perform disk I/O, since the key factors which
influence performance in that case would be very low-level
implementation decisions that are best left up to the developers.
As the system evolves, changes in functional and non-functional
requirements have a variety of effects on the architecture.
According to one of our subjects, changes to functional
requirements are easy to handle because they tend to be contained
in a smaller set of components rather than affecting the entire
system. In contrast, changes to non-functional requirements can
be very disruptive and can cause serious problems to the
architecture because non-functional requirements tend to be
requirements that are pervasive throughout the entire system.

When transforming requirements into architectures, it is tempting
to rush headlong into the trap of thinking about the solution too
soon. Software development problems are about the world outside
the computer - the real environment in which the system must
operate - and demand consideration of the surrounding
characteristics, relationships, and context. According to our
subjects, as a first step it is important that the architect shape the
problem by providing the context around it, which would in turn
help the business and sales people understand what the customer
actually requires.
The next step is then to understand this problem shape and come
up with a shape for the solution. The architects tend to draw upon
previous experiences to shape the solution. Reusing past solutions
is a natural tendency, and analyzing the requirements thoroughly
is one of the ways to determine how to reuse familiar existing
solutions. Even in cases where it is not possible to reuse past
solutions and a new solution must be developed, architects still
have a tendency to break down the new solution into pieces they
are familiar with, i.e. pieces that are similar to ones they have
used in the past.
If the domain is entirely new and unfamiliar to the architect and
the development team, one method for constructing an
architecture that is easily understood is to use a metaphor that is
familiar and represents a similar type of problem, although it may
be from a completely different domain. For example, one of our
subjects discussed a project that involved creating software
controls for a robotic tape deck system. In order to communicate
effectively about the control system, he structured the architecture
using a metaphor of passengers (the tapes) on a mass transit
system (the robotic arms) in order to move from one terminal
(tape deck) to the next.

4.2 Effect of the Problem Structure on
Architecture
Because of the complexity of the requirements and the problem
space, there is the danger of misunderstanding them. These
misunderstandings could lead to development failures. To avoid
such failures it is important to have a clear and good
understanding of the problem structure and then develop the
architecture based on this understanding.
Domain analysis is considered essential by our subjects in
designing high-quality software systems. If carried out properly,
domain analysis can help designers understand the requirements,
identify the fundamental abstractions, verify the design, and drive
the implementation. In order to deliver what the customer actually
needs and understand the relationships between the different
requirements, it is important that the architect has a good and
thorough understanding of the problem domain. For example, one
of our subjects credits the success of architecting a project to his
having lived the problem and thus understanding the domain.
However, according to our subjects, it is very difficult (or at least,
very unusual) for an architect to have both sound technical skills
and deep domain knowledge. This is because part of the job of an
architect is dealing with the business aspects while the other part
is dealing with technical matters. It is often very difficult to find a
person who can do both sides of the job. Architects tend to be
generalists, having broad knowledge rather than specific, deep
knowledge.. Therefore, in order to understand the problem deeply
and to transform the business requirements into a design solution,

it is important to have a multi-disciplinary team consisting of
requirements engineers who have in depth knowledge of the
domain and architects who have sound technical skills.
In systems where security is critical, in addition to the logical (or
if you will, intellectual) aspects, the physical aspects play an
important role. It is therefore important that the architects look at
the entire system and not just at a particular set of technologies. It
is also crucial that architects detect and analyze any assumptions
made about the system and its environment, which are not
explicitly stated. Failure to consider hidden assumptions can be
disastrous; according to one of our subjects, a protocol for cell
phones had to be reworked because it had rested on the flawed
hidden assumption that attackers could not put up anything which
could act as a cell phone tower. In other words, architects need to
have a broad knowledge of the entire domain and be aware of the
underlying assumptions of the system and its environment in
order to come up with the right solutions.
It is not always possible to have a team with domain experts. In
such circumstances, the following methods help in coping with
the lack of domain knowledge: (i) to be agile and ready for
change; (ii) to hire a marketing firm who would help in
understanding the problem; or (iii) to interact directly with real
customers. Despite the difficulty in obtaining the domain
knowledge, it is a worthwhile activity as it can result in more
generalized solutions, which will have immense benefits in the
future.

5. LESSONS LEARNED
We summarize lessons learned from the interview data as well as
our own remedies in the following eleven lessons.

Lesson 1 Architects tend to be generalists rather than
specialists and draw on a wide-ranging background to provide
the overall structure and interdependencies of the architecture.

Lesson 2 Regardless of whether or not our subjects made a
distinction between functional and non-functional requirements,
all of them agreed that both need to be considered and reflected
in the architecture.

Lesson 3 Change is inevitable in software developments, so
anticipating changes can provide significant benefits by reducing
the amount of effort needed to implement changes later on.
Although there are not many formal approaches for doing this,
there are heuristics that are used in practice. Professional
experience plays a large role in identifying which parts of the
system are likely to change.

Lesson 4 Research needs to address issues of how to collect
contextual information along with the requirements and how to
mitigate the effects of having a ‘middle man’ filtering the
requirements.

Lesson 5 Architects need to ensure that they are working with
reasonable, consistent requirements. If there are problems with
the requirements, then they should either send the requirements
back to the requirements engineers for rework, or they should be
more involved in dealing with the customers directly to negotiate
the requirements directly. There is some disagreement over which
method is better; however, most of our subjects favored the latter
approach.

Lesson 6 Software architecture is multifaceted; it can be
described in different ways by different people. The most common
definition is that it is a collection of interfaces and components
whose main purpose is to be used as vehicle for communication
with the various stakeholders. This communication gives
confidence to the stakeholders that their goals are being
addressed and verifies that the problem is correctly understood.

Lesson 7 The architectural decisions that drive the
development of the architecture should only be made on the basis
of sound technical reasons, such as satisfying customer
requirements, providing better maintainability, etc. However,
sometimes, things other than technical reasons, such as business
alliances and personal gain, play a role as well.

Lesson 8 Evaluating the architecture reduces the cost of the
project by detecting errors and problems earlier rather than later.
There are several criteria for determining the goodness of
architecture. Architecture should be extensible, adaptable, and
elegant and have good abstraction; it also needs to be marketable
and have well-defined interfaces.

Lesson 9 Tools and techniques like requirements
management systems, code analysis software and logic programs
are adopted by the architects to understand the requirements and
to do their jobs as architects. It should be noted that these tools
must be easy to use; if a tool is too complicated or burdensome,
then it will not be adopted.

Lesson 10 The first step in transforming requirements into
architecture is to shape the problem by understanding the context
around it. The next step is to use the shape of the problem, along
with reusable parts from the past, to shape the solution. If there
are no reusable parts, one approach is to use a well-understood
metaphor, using a similar type of problem to guide the shaping of
the solution for the current problem.

Lesson 11 Domain knowledge is essential to constructing a
good architecture that addresses the problem and making sure
that it does not rest on faulty assumptions.

6. CONCLUSIONS AND FUTURE WORK
We have summarized some of the critical results of our interviews
and drawn what we consider to be important lessons from this
part of our multiple case study. There are still lessons to be
obtained from our architects beyond what we have provided here.
We expect these further results to be made available in workshop,
conference and journal publications. We will also make available
appropriately sanitized technical reports summarizing the results
of our interviews and providing salient quotes [15].

In [6], we discussed two important things: 1) our chain of
evidence; and 2) various validity issues with the then current state
of our case studies. Our main concern then was the concentration
of architects from one international company. Since then we have
expanded the representation in terms both of companies and of
domains. Thus, we feel that the external validity of our multiple
case study has been strengthened significantly.

One of the frustrating things about our case studies, however, has
been the lack of significant details about the specific mechanisms
and intellectual tools for transforming requirements into
architectures. We have generic details for such things as design

and architecture patterns, references to architectural styles, the use
of threat models, etc., but little in the way of specific details. We
hope to remedy that, at least in part, with one or more participant
observer studies where one or more of our students work in
partnership with architects long enough to see what happens in
practice.

The current results of our work and progress can be found and
downloaded from the project website [15].

7. ACKOWLEDGEMENTS
We thank all of our anonymous interviewees and their companies
for their participation and contributions. This research is
supported in part by NSF CISE Grant CCR-0306613 and IBM
CAS Fellowship. We also thank our co-researcher Deepika
Mahajan who arranged the interviews of two of our architects and
assisted with our transcriptions.

8. REFERENCES
[1] Cockburn, A., “Writing Effective Use Cases”, 2001, Boston:

Addison-Wesley.
[2] M. Jackson and P. Zave, “Deriving specifications from

requirements: An example”, ICSE May 2005.

[3] P.B. Krutchen, “The 4+1 View Model of Architecture”,
IEEE Software, November 1995.

[4] Robert K. Yin, “Case Study Research: Design and
Methods”, 3/e. Thousand Oaks, CA: Sage Publications,
2002.

[5] Susan Elliott Sim, “A small Social History of Software
Architecture”, Proceedings of the 13th International
Workshop on Program Comprehension, May 2005.

[6] W. Liu, C. L. Chen, V.Lakshminarayanan, D.E. Perry, “A
Design for Evidence-based Software Architecture Research”,
Workshop on REBSE'2005, ICSE May 2005.

[7] Bashar Nuseibeh and Steve Easterbrook, “Requirements
engineering: a roadmap”, Future of Software Engineering,
22nd International Conference on Software Engineering,
Limerick Ireland, June 2000, pp 35-46.

[8] David Garlan, “Software architecture: a roadmap”, Future of
Software Engineering, 22nd International Conference on
Software Engineering, Limerick Ireland, June 2000, pp 91-
101.

[9] J. Castro and J. Kramer, editors, The First International
Workshop on From Software Requirements to Architecture
(STRAW’01). International Conference on Software
Engineering 2001. Toronto 2001,

[10] D. M. Berry, R. Kazman, and R. Wieringa, editors, The
Second International Software Requirements to Architecture
Workshop (STRAW’03), International Conference on
Software Engineering 2003, Portland OR, May 2003.

[11] M. Brandozzi and D. E. Perry, “From Goal-Oriented
Requirements to Architectural Prescriptions: The Preskiptor
Process”, in [9].

[12] A. van Lamsweerde, “From System Goals to Software
Architecture”, In M. Bernardo and P. Inverardi, editors,
Formal Methods for Software Architectures, pp 25-43, 2003.

[13] Divya Jani, Damien Vanderveken and Dewayne E Perry.
“Deriving Architectural Specifications from KAOS
Specifications: A Research Case Study”, European
Workshop on Software Architecture 2005, Pisa Italy, June
2005.

[14] Damien Vanderveken, Axel van Lamsweerde, Dewayne E
Perry, and Christophe Ponsard, “Deriving Architectural

Descriptions from Goal-Oriented Requirements Models”,
September 2005

[15] Dewayne E Perry. NSF Grant CCR-0306613 Project Web
Site “Transforming Requirement Specifications into
Architectural Prescriptions”, http://www.ece.utexas.edu/
~perry/work/projects/nsf-r2a/ [29 October 2005]

	On Functional vs. Non-functional
	Discovering the Real Requirements
	Tool Support

