
Copyright

by

Divya Jani

2004

Deriving Architecture Specifications from Goal

Oriented Requirement Specifications

by

Divya Jani, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2004

Deriving Architecture Specifications from Goal

Oriented Requirement Specifications

APPROVED BY

SUPERVISING COMMITTEE:

Dewayne Perry, Supervisor

Suzanne K Barber

This thesis is dedicated to my grandmother for her unconditional love and

support.

Acknowledgments

There are a number of people without whom this thesis might not have

been written, and to whom I am greatly indebted.

To my supervisor, Professor Dewayne Perry, for his constant guidance

and encouragement through this thesis work and for being a sincere friend and

mentor.

To Damien Vanderveken, in whom I found not just a great colleague

but a great friend.

Thanks to Professor Suzanne Barber, for all that I learnt in the classes

I took with her.

I am also very grateful to Umesh for all his help with the LaTeX.

To my family, for supporting me throughout my education.

To Roshn, for always being there for me.

And to my two year old nephew Raghav for teaching me to never give

up.

v

Deriving Architecture Specifications from Goal

Oriented Requirement Specifications

Divya Jani, M.S.E

The University of Texas at Austin, 2004

Supervisor: Dewayne Perry

The first step in realizing a software system is collecting the require-

ments and using them to obtain an architecture. In this thesis we use an

example of a power plant system and obtain a goal oriented requirement spec-

ification for it. The KAOS requirement specification language was used for

this. Next we use two different methods to arrive at an architecture. These

methods are compared and contrasted. Some of the problems encountered in

the derivation process are specified. Based on these problems several improve-

ments are suggested for method two. We then look at styles and patterns to

achieve non-functional requirements.

vi

Table of Contents

Acknowledgments v

Abstract vi

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Requirements derivation using the KAOS method 3

2.1 Goal Model . 3

2.1.1 Goal model elaboration 3

2.1.2 Goal model characteristics 4

2.2 Object Model . 8

2.2.1 Object Model Elicitation 8

2.2.2 Object Model Characteristics 9

2.3 Agent Model . 10

2.3.1 Agent Model Elaboration 10

2.3.2 Agent Model characteristics 11

2.4 Operation Model . 12

2.4.1 Operation Model Elaboration 12

2.4.2 Operation Model Characteristics 14

Chapter 3. Architecture derivation 17

3.1 First method: Axel van Lamsweerde 17

3.1.1 Step 1: From software specifications to abstract dataflow
architectures . 17

3.1.2 Step 2: Style-based architectural refinement to meet ar-
chitectural constraints 19

3.1.3 Step 3: Pattern-based architecture refinement to achieve
non-functional requirements 19

vii

3.2 Second method: Dewayne Perry and Manuel Brandozzi 23

3.2.1 First step . 24

3.2.2 Second step . 25

3.2.3 Third step . 27

3.2.4 Achieving non-functional requirements 29

3.2.5 Box diagram . 30

3.3 Problems and Issues . 30

3.3.1 Architecture 1 . 31

3.3.2 Architecture 2 . 35

3.4 Comparison between the two methods 37

Chapter 4. Suggested modifications to the second method: Perry
and Brandozzi 40

Chapter 5. Styles and Patterns 43

5.1 Introduction to styles and patterns 43

5.1.1 Model View Controller Pattern 44

5.1.2 Whole Part Pattern . 45

5.1.3 Proxy Pattern . 46

5.1.4 Publisher Subscriber Pattern 48

5.1.5 Master and Slave Pattern 50

5.1.6 Achieving Fault Tolerance 51

5.1.7 Unit of Work Pattern 53

5.1.8 Memento pattern . 55

5.1.9 Additional Transformations 56

Chapter 6. Conclusion 59

Appendices 61

.1 Goal specifications . 62

.2 Object Specifications . 83

.3 Agents Specifications . 91

.4 Operations specifications . 99

.5 Axel van Lamsweerde Architecture 112

viii

.6 Architecture Prescriptions . 116

.7 Additional constraints on the system 125

.7.1 Constraints on the Database 125

.7.2 Constraints on the connector between ALARM & PRE-
CON (i.e., FaultDetectionEngineAlarmManagerConnect) 126

.8 Goal Oriented Requirements to Architecture Prescription - Up-
dated . 128

Bibliography 137

Vita 140

ix

List of Figures

2.1 Milestone refinement pattern 4

2.2 Communication refinement subtree 6

2.3 Bounded achieve operationalization pattern 13

2.4 Immediate achieve operationalization pattern 13

3.1 Centralized communication architectural style 20

3.2 Fault-tolerant refinement pattern 22

3.3 Consistency maintainer refinement pattern 22

3.4 Interoperability refinement pattern 33

3.5 Fault-tolerant refinement pattern 33

5.1 Model view controller pattern 45

5.2 Whole part pattern . 46

5.3 Proxy pattern . 48

5.4 Publisher subscriber pattern 49

5.5 Master slave pattern . 51

5.6 Fault Tolerance . 52

5.7 Unit of work pattern . 54

5.8 Memento pattern . 56

5.9 Additional transformations pattern 57

1 Goal diagram . 63

2 Goal diagram continued . 64

3 Object diagram . 84

4 Agent diagram . 92

5 Agent diagram continued . 93

6 Step 1: dataflow architecture 113

7 Step 2: style-based refined architecture 114

x

8 Step 3: pattern-based refined architecture 115

9 Component refinment tree . 117

10 Box diagram of the architecture 124

11 Goal refinement tree for the paper selection process 130

12 Component refinement tree for the paper selection process . . 131

xi

Chapter 1

Introduction

The most difficult step in the design process of a system is clearly the

transition from the requirements to the architecture. Requirements obtained

from the various stakeholders are transformed to an architecture that can

be understood by developers. There are several different ways to derive an

architecture and two of those ways are explored here.

The system we used throughout this report was an example of a power

plant that was obtained from [5, 6]. Our first step was to create a goal-oriented

requirements specification from the information available. The KAOS require-

ment specification language is used [8, 9, 11]. The power plant description was

not complete so we often had to make do with inadequate data. The first

method used was developed by Axel van Lamsweerde (University of Louvain

- Belgium) and is described in [14]. The various steps are explained in detail

in one of the following sections of this report. We have also described some of

the problems encountered during the derivation process.

The second method results from the work of Dewayne Perry and Manuel

Brandozzi (University of Texas at Austin). Their work is presented in [1–3].

The resulting architecture and some of the derivation issues are described

1

in this report. After obtaining both architectures we compared them and

suggested some further work. In the case of the Perry Brandozzi method we

have made improvements to solve the problems we encountered and added the

consideration of styles and patterns for non functional properties.

2

Chapter 2

Requirements derivation using the KAOS

method

2.1 Goal Model

2.1.1 Goal model elaboration

Given the fact that KAOS is a goal-oriented requirement specification

method we logically began by trying to extract the goals of the system. A

definition of the system was implicitly given in [5]. However the description

of the powerplant monitoring system provided was partial and lacked details.

So, throughout the requirement extraction process, we had to rely on our

engineering skills, on Professor Perry’s advice and on our common sense in

order to gather requirements that are as realistic as possible.

The following steps were followed in order to build the goal model.

First of all, the informal definition of goals that are mentioned in [5] were

carefully written down. From that, a first goal refinement tree was built.

This first draft was all but complete. This tree was completed thanks to a

refinement/abstraction process. The version we obtained at that point was still

totally informal. Temporal first-order logic [10] was then used to remove this

weakness. It enabled us to ensure our refinement tree was correct, complete

and coherent. The use of refinement patterns as described in [11] served as

3

a guidance. The milestone-driven pattern in particular was applied numerous

times. It prescribes that some milestone states are mandatory in order to reach

the final one. This pattern is presented in fig 2.1. The patterns were a great

help to track and to correct incompleteness and incoherence. Furthermore

they enabled us to save a huge amount of time by freeing us to do the tedious

proof work.

Figure 2.1: Milestone refinement pattern

Because of the iterative nature of the requirements gathering process,

the goal model underwent subsequent changes. The reasons for that were

various e.g., coherence between the different models forming the KAOS spec-

ifications, enhancements, simplifications,etc. A complete goal description can

be found in Appendix .1.

2.1.2 Goal model characteristics

The goal refinement tree is globally structured in two parts. This shape

reflects the two main goals the system has to ensure to monitor the powerplant.

The occuring faults have to be detected and the alarms resulting from those

faults have to be managed. The roots of the two resulting subtrees are re-

spectively FaultDetected and AlarmCorrecltyManaged. They are subsequently

4

refined using the various patterns until the leaf goals are assignable to a single

agent - from the environment or part of the software.

As an illustration of the use of the milestone refinement pattern – the

most widely used – the following example will be developed. Let’s consider

the goal AlarmRaisedIfFaultDetected with its formal definition

(
∀f : Fault, ∃!l : Location,∃!a : Alarm

)(
Detected(f, l) ⇒ ♦Raise(f, a)

)
(2.1)

This goal is refined using the milestone refinement pattern presented in

fig 2.1 by instanciating the parameters as follows:

A :
(
∀f : Fault, ∃!l : Location

)(
Detected(f, l)

)
(2.2)

M :
(
∃fi : FaultInformation

)(
f ≡ fi ∧

Transmitted(fi, PRECON, ALARM)
)

(2.3)

T :
(
∀fi : FaultInformation, ∃!a : Alarm

)(
Raised(fi, a)

)
(2.4)

The application of that pattern in particular results here from the fact

that the information concerning the detected faults has to be transmitted to

the ALARM to enable it to raise the proper alarm. This intermediate state is

a necessary step to reach the final state, i.e., the raising of the alarm.

In order to have a system as robust as possible various goals have

been added to the goal diagram. Among these added goals, one class takes

5

care of the correct working of all the sensors and ensures the data provided

is consistent and coherent. The goals SanityCheckPerformed and Consisten-

cyCheckPerformed belong to this class. Another class – represented by the

goal DataCorrectlyUpdata – makes sure the updates are well performed by

the database. The purpose of some goals is to maintain the powerplant in

a consistent state (e.g., FaultStatusUpdated, AlarmStatusUpdated). The com-

munication has also been constrained in order to prevent any transmission

problems.

The refinement of the goal DataTransmittedToDB is the result of that

policy. The goal was refined as shown in Fig. 2.2

Figure 2.2: Communication refinement subtree

The three first subgoals ensure the corectness of the transmission while

the last one sets a time limit. This constraint varies througout the system

depending on the importance of the communication channel. The FaultIn-

formation has to be transmitted from PRECON to ALARM within 1 second

while answer a request can take a little longer – 5 seconds. The three first

subgoals have been formally refined as followed 1:

1X stands for SensorInformation, FaultInformation, AlarmInformation, FaultDiagnosis

6

NoDataIntroduced :(
∀x : Data

)(
Transmitted(X, ,) ∧ x ∈ Transmitted() ⇒ x ∈ X

)
(2.5)

NoDataLost :(
∀x : Data

)(
x ∈ X ∧ Transmitted(X, ,) ⇒ x ∈ Transmitted()

)
(2.6)

SequencePreserved :(
∀x, y : Data,∃u, v : Data

)(
x, y ∈ X ∧ Transmitted(X, ,)

∧Before(x, y, X) ⇒ u, v ∈ Transmitted(X) ∧

Before(u, v, Transmitted(X)) ∧ x = u ∧ y = v
)

(2.7)

They prescribe that no alteration has occured on the data transmitted

i.e., no data has been introduced or lost and the sequential order has been

preserved.

The formal definition of the last subgoal depends on the time constraint.

If we consider for example the transmission of a FaultInformation – which has

the strongest time constraint – the formalization is:

DataTransmittedWithinT imeConstraint :

¬Transmitted(fi, PRECON, ALARM) ⇒ ♦≤1s

Transmitted(fi, PRECON, ALARM) (2.8)

and AlarmDiagnosis

7

2.2 Object Model

2.2.1 Object Model Elicitation

Entities present in the objects were first derived from the informal

definition of the goals. All the concepts of importance were modelled either

under the form of an object or of a relationship. Attributes were then added to

the different entities in order to characterize them. Some of the attributes were

extracted from the problem definition but most of them proceed necessarily

from the underlying domain from two main reasons.

First, certain goal definitions need the presence of specific attributes.

For example the attribute WorkCorrectly of Sensor was needed by the goal

SanityCheckPerformed.

Second, the definition of the properties of the various entities – ex-

pressed by invariants – requires specific attributes. As an illustration consider

the following invariant of the object Alarm which expresses that all the alarms

still active cannot have a deactivation time:

Activated = true ⇒ DeactivationT ime = null (2.9)

The purpose of certain attributes is to prepare for change. The recon-

figuration function was finally not taken into account in the elaboration of the

different models due to lack of time. However we believe that basically the

only effect will be to modify the allowed range of temperature and pressure.

Attributes representing the minimum, the maximum and desired value of both

8

pressure and temperature were consequently added to the objects SteamCon-

denser and CoolingCircuit.

Last, a few attributes were added in order to build a more complete

model. The justification was common sense. Among these are the attributes

Type and Power of the object PowerPlant.

The last step of the elaboration of the goal model was the formalization

of the domain invariants characterizing the differents entities. The model was

refined many times due to the iterative nature of the requirement extraction

process. The goal model can be found in Appendix .2.

2.2.2 Object Model Characteristics

The main characteristic of the model is the presence of two different

levels of representations for the concepts Sensor, Fault and Alarm. The first

level refers to the object in itself while the second one refers to its representa-

tion in the software. This distinction was introduced for robustness reasons.

In fact it enables us to manage the case where the representation of the object

is not correct which would be unfortunate but can happen. The two levels

are constrained by an invariant prescribing that all the attributes have to be

identical.

The representation of the three main concepts – Sensor, Fault and

Alarm – are linked together by a diagnosis relationship. The information pro-

vided by the sensor permits the detection of the faults and the description

of a fault is the rationale for the raising of an alarm. Consequently the rela-

9

tionship FaultDiagnosis links SensorInformation and FaultInformation while

AlarmDiagnosis links FaultInformation and AlarmInformation. Those two re-

lationships are one-one. It is a modelling choice. We chose that a fault is the

result of one and only one error detected by one sensor and that each fault

raises one and only one alarm. The reason for that is the resulting simplicity

and the easiness of traceability.

2.3 Agent Model

2.3.1 Agent Model Elaboration

The definition of the agents was extracted mostly from [5, 6]. We drew

inspiration from the existing agents. Each leaf goal from the Goal Model

was assigned to an agent. We made sure that every agent has the capacity

to assume the responsibility of that goal. By capacity we mean that every

agent could monitor or control, depending on the case, every single variable

appearing in the formal definition of a goal the agent has to ensure. For further

details please refer to [8].

However a new agent was introduced : the MANAGEMENT UNIT. Its pur-

pose is to ensure that all the sensors are working properly. It was added in a

robustness concern.

Finally the operations needed to operationalize the differents goals were

assigned to the responsible agent. This step will be explained later in the

Operation Model section.

A complete agent model can be found in Appendix .3.

10

2.3.2 Agent Model characteristics

As it was already said, most of the agents come from the existing sys-

tem. This is the case for PRECON, ALARM, COMM, DB and Sensor. The names

used in [5] may be different but basically the functions performed are the same.

PRECON is in charge of the detection of all the faults that might occur

either in the cooling circuit or in the steam condenser. ALARM takes care of the

alarm management. COMM ensures the reliability and the performance of all

the communcication throughout the system. DB stores all the data persistently

and answers all the request concerning current values of the sensors, faults and

alarms. The Sensor agent acquires the data from the field.

The additional agent – MANAGEMENT UNIT – checks the sensors to see if

they work properly.

The agents belong to one of two different categories: they can be ei-

ther part of the sofware-to-be or part of the environment. For example, PRECON

belongs to the first class while Sensor belongs to the second one. This distinc-

tion in agents results also in a goal differentiation. In fact the goals assigned

to environment agents are expectations while the others are requirements.

This leads us to the introduction of the MANAGEMENT UNIT agent. Sensor is

an environment agent and so all the goals assigned to it are expectations.

But obviously we canot assume that the goals SanityCheckPerformed and

ConsistencyCheckPerformed will be true without the intervention of reliable

software devices. Moreover those kind of tests should not be the responsibitlity

11

of the Sensor from a conceptual point of view.

2.4 Operation Model

2.4.1 Operation Model Elaboration

The operation model was the the last one to be constructed because

it relies on a precise formal definition of the goals in order to be derived

automatically. The operations contained in the model were derived in such a

way that they operationalize some goal present in the goal model. A complete

operationalization of a goal is a set of operations (described by their pre-,

trigger- and postconditions) that guarantee the satisfaction of that goal if the

operations are applied. That is where all the difficulty lies: finding complete

operationalizations. We did an extensive use of the operationalization patterns

described in [9] in order to derive complete operation specifications. It enabled

us to save a lot of time on proofs. It is even more true than for the goal

refinement pattern because we found the application of the operationalization

very systematic.

Two patterns were particularly useful and we used them numerous

times. The first one is the bounded achieve pattern described in Fig. 2.3.

Its applicabilty condition (i.e., C ⇒ ♦≤dT) makes it very popular. In fact

most of our system’s goals have that form. The operation specification pre-

scribes that ¬T becomes T as soon as C ∧¬T holds for d− 1 time units. It is

then straightforward to see that such a specification operationalizes the goal

C ⇒ ♦≤dT .

12

Figure 2.3: Bounded achieve operationalization pattern

The second most useful pattern was the immediate achieve pattern

described in Fig. 2.4. Its applicability condition prescribes here that the final

state T has to be reached as soon as C becomes true. In this case it is a bit

more difficult to see why the satisfaction of the two operations guarantee the

satisfaction of the goal. We will give a short explanation why but the interested

reader can find a complete proof in [9]. The first operation prescribes that as

soon C becomes true the operation must be applied if ¬T holds in order to

reach the final state T . The second operation may be applied when C does

not hold if the precondition T is true, making the postcondition ¬T true.

Figure 2.4: Immediate achieve operationalization pattern

Once all the operations were derived the were assigned to the agent

responsible for the goal operationalized by those operations. Furthen details

can be found in Appendix .4.

13

2.4.2 Operation Model Characteristics

We will present in this section an illustration of the two operational-

ization patterns mentionned in the previous section.

For the first pattern, we will examine the operationalization of the goal

FaultInformationTransmittedWhenFaultDetected. Its formal defintion is

given by

(
∀f : Fault, ∃!l : Location,∃!fi : FaultInformation

)
(
Detected(f, l) ∧ f.ID = fi.ID ⇒ ♦≤1s

Transmitted(fi, PRECON, ALARM) (2.10)

We can instantiate the pattern presented in Fig 2.3 with the following

parameters.

C : Detected(f, l) ∧ f.ID = fi.ID (2.11)

T : Transmitted(fi, PRECON, ALARM) (2.12)

The operation resulting from the application of the pattern is:

Operation TransmitFaultInformation

DomPre ¬ Transmitted(fi,PRECON,ALARM)

14

DomPost Transmitted(fi,PRECON,ALARM)

ReqTrig for FaultInformationTransmittedWhenFaultDetected

¬ Transmitted(fi,PRECON,ALARM) S=1ms Detected(f,l)

∧ f.ID=fi.ID ∧ ¬ Transmitted(fi,PRECON,ALARM)

Note that as d − 1 time units is zero we simply took a smaller time

unit.

To illustrate the second pattern consider the goal SanityCheckPerformed

whose formal defintion is given by

(
∀s : Sensor

)(
¬s.workingProperly ∧

s.status =′ on′ ⇒ ◦s.status =′ off ′) (2.13)

The instantiation of the immediate achieve pattern presented in Fig.

2.4 is straightforward.

C : ¬s.workingProperly ∧ s.status =′ on′ (2.14)

T : s.status =′ off ′ (2.15)

The first operation derived thanks to application of the pattern is

Operation SwitchSensorOff

15

DomPre s.status=’on’

DomPost s.status=’off’

ReqTrig for SanityCheckPerformed

¬ s.workingProperly

and the second one is

Operation SwitchSensorOn

DomPre s.status=’off’

DomPost s.status=’on’

ReqPre for SanityCheckPerformed

s.workingProperly

16

Chapter 3

Architecture derivation

3.1 First method: Axel van Lamsweerde

The architecture derived in this section will be derived using the method

developed by Axel van Lamsweerde in [14]. His method prescribes the use of

three different steps. The first step consists of the derivation of a abstract

dataflow architecture from the KAOS specifications. This first draft is next re-

fined using styles in order to meet architecturals constraints. The architecture

obtained is finally refined using design patterns so as to achieve non-functional

requirements. One section will be devoted to each step. After that the issues

encountered will be discussed.

3.1.1 Step 1: From software specifications to abstract dataflow ar-
chitectures

The first architecture is obtained from data dependencies between the

different agents. The agents become software components while the data de-

pendencies are modelled via dataflow connectors. The procedure followed is

divided into two sub-steps.

1. Each agent that assumes the responsibility of a goal assigned to the

17

software-to-be becomes a software component together with its opera-

tions.

2. For each pair of components C1 and C2, drive a dataflow connector

between C1 and C2 if

DataF low(d, C1, C2) ⇔ Controls(C1, d) ∧Monitors(C2, d) (3.1)

This step is very systematic. The result is shown in Fig. 6.

One can note certain features. Due to the fact that the COMM agent

does not control any variables no arrow comes from it. In fact COMM carries all

the data among the different components but does not do any modifications.

Moreover there is a dataflow connector between PRECON and ALARM while the

real dataflow goes through COMM. This situation also happen between Sensor

and Precon. The real dataflow passes through DB but there is no dataflow

derived.

We believe that the underlying cause is the presence of low-level agents

– DB and COMM – performing low-level functionalities – storage and transmission

of data respectively – in the requirements. They were however needed to

achieve certain goals. It results in a strange architecture. The result can be

seen in Fig. 6 in Appendix .5.

18

3.1.2 Step 2: Style-based architectural refinement to meet archi-
tectural constraints

In this step, the architectural draft obtained from step 1 is refine by

imposing a “suitable” style, that is, a style whose underlying goals match

the architectural constraints. The main architectural constraint of our system

[5], [6] is that all the components should be distributed. In fact, in the real

system, only PRECON had to be built and it has to integrate in a pre-existing

architecture characterized by centralized communications and by distributed

components.

The only transformation rule mentionned in [14] did not match our

architectectural constraints so we had to design a new one considering what

we thought we should obtain. The resulting transformation rule is shown in

Fig. 3.1.

This style was applied on our architectural draft and the result is shown

in Fig. 7 in Appendix .5.

As you can see, the architecture looks now closer to what we expected.

Every single communication is achieved in a centralized way through the com-

munication module. The architectural constraints are now met.

3.1.3 Step 3: Pattern-based architecture refinement to achieve non-
functional requirements

The purpose of this last step is to refine further the architecture in

order to achieve the non-functionnal requirements. These non-functional re-

19

Figure 3.1: Centralized communication architectural style

20

quirements can belong to two different categories: they can be either quality-of-

service or developemnt goals. Quality-of-service goals include, among others,

security, accuracy and usability. Development goals encompass desirable qual-

ities of software such as MinimumCoupling, MaximumCohesion and reusabilty.

This step refines the architecture in a more local way than the previous

one. Patterns are used instead of styles. The procedure to follow could be

divided further into two intermediary steps.

1. For each NFG G, identify all the connectors and components G may

constrain and, if necessary, instantiate G to those connectors and con-

straints.

2. Apply the refinement pattern matching the NFG to the constrained com-

ponents. If more than one is applicable, select one using some qualitative

technique (e.g., NFG prioritization).

Two refinement patterns were used on our system. The first one is

presented in Fig. 3.5. We wanted to have a fault-tolerant communication

between PRECON and ALARM because it is the core of the system. The most

critical functions (i.e., the fault detection and the alarm managemnet) are

performed in those two component. That’s why we wanted to make those

modules as resistant as possible to any kinds of failure. One could note than the

pattern was not applied exactly like it is defined in Fig. 3.5. The presence of

the component COMM between PRECON and ALARM was however ignored because

21

we believed it has no influence on the capacity of the pattern to achieve its

goal.

Figure 3.2: Fault-tolerant refinement pattern

The second refinement pattern we used is shown in Fig. 3.3. It was

introduced because both Sensor and Management Unit access and modify

the same data – SensorInformation. We wanted to make sure that all the

modifications made from both sides are consistent.

Figure 3.3: Consistency maintainer refinement pattern

The final architecture is presented in Fig. 8 in Appendix .5.

22

3.2 Second method: Dewayne Perry and Manuel Bran-
dozzi

The second method converts the goal oriented requirement specifica-

tions of KAOS into architectural prescriptions.

The components in an architecture prescription can be of three dif-

ferent types - process, data or connector. Processing components perform

transformation the data components. The data components contain the nec-

essary information. The connector components, which can be implemented

by data or processing components, hold the system together. All components

are characterized by goals that they are responsible for. The interactions and

restrictions of these components characterize the system. The following is a

sample component -

Component PRECON

Type Processing

Constraints FaultDetected

RemedyActionSuggested

PeriodicalChecksPerformed&ReportWritten

Composed of FaultDetectionEngine

FaultInformation

FaultDiagnosis

SensorInformation

SensorConnect

23

Uses /

This example shows a component called PRECON. Type denotes that

the component is a processing component. The constraints are the various

goals realized by PRECON. It thereby defines the constraints on the compo-

nent. Composed of illustrates the sub components that implement PRECON

in the next refinement layer. The last attribute Uses, indicated what are the

components used by this component. It also specifies the connectors used for

the interaction.

There are well defined steps to go from KAOS entities to APL entities.

The following table illustrates this relationship

KAOS entities APL entities

Agent Process component / Connector component
Event -
Entity Data component
Relationship Data component
Goal Constraint on the system / on a subset

One or more additional processing, data
or connector components.

In this method we create a component refinement tree for the architec-

ture prescription from the goal refinement tree of KAOS. This is a three step

process and may be iterated.

3.2.1 First step

In the first step we derive the basic prescription from the root goal of

the system and the knowledge of the other systems that it has to interact with.

24

In this case the software system is responsible for monitoring the power plant.

Thus the root goal is defined as ”PowerPlantMonitoringSystem”.

This goal is then refined into PRECON, ALARM, DataBase and Com-

munication components. These refinements are obtained by selecting a specific

level of the goal refinement tree. If we only take the root of the goal refinement

tree, the prescription would end up being too vague. On the other hand if we

pick the leaves, we may end up with a prescription that is too constrained.

Therefore we pick a certain level of the tree which we feel allows us to create

a very well defined prescription while avoiding a specification that constrains

the lower level designs.

3.2.2 Second step

Once the basic architecture is in place, we obtain potential sub compo-

nents of the basic architecture. These are obtained from the objects in KAOS

specification. We derive data, processing and connector components that can

implement PRECON, ALARM, DataBase and Communication components.

If in the third step we don’t assign any constraints to these components, they

won’t be a part of the system’s prescription.

The following are Preskriptor specifications of some candidate objects

from the requirement specifications.

Component Fault

Type Data

25

Constraints . . .

Composed of . . .

Component FaultInformation

Type Data

Constraints . . .

Composed of . . .

Component SensorConnect

Type Connector

Constraints . . .

Composed of . . .

Component QueryManager

Type Processing

Constraints . . .

Composed of . . .

Since all the components derived from KAOS’ specification are data,

we need to define various processing and connector components at this stage.

At the next step we decide which of these components would be a part of the

final prescription.

26

3.2.3 Third step

In this step we determine which of the sub goals are achieved by the

system and assign them to the previously defined components. With the goal

refinement tree as our reference, we decide which of the potential components

of step two would take responsibilities of the various goals. Note that this is a

design decision made by the architect based on the way he chooses to realize

the system. The components with no constraints are discarded, and we end

up with the first complete prescription of the system.

Components like Fault were discarded from the prescription because

they were not necessary to achieve the sub goals of the system. Instead of the

Fault component we chose to keep FaultInformation. Different architects may

make different decisions.

It is interesting to note that in our first iteration of the prescription

Communication was a leaf connector with no subcomponents. It was respon-

sible for realizing the necessary communication of the system. However the

power plant communication was not uniform throughout the system. Different

goals had different time, connection and security constraints for communica-

tion. In our first iteration we assumed that Communication component could

handle these varying types of requirements on it. However then we realized

that creating sub components for Communication component was a step that

helped illustrate these differences. Therefore we created the sub components -

UpdateDBConnect, FaultDetectionEngineAlarmManagerConnect and Query-

DBConnect. As the names suggest, each of these were responsible for the

27

communication in different parts of the system. Therefore it was easier to

illustrate the different time and security constraints needed for each of these.

The following are the prescriptions for the sub components

Component UpdateDBConnect

Type Connector

Constraints Secure

TimeConstraint = 2 s

Composed of /

Uses /

Component QueryDBConnect

Type Connector

Constraints TimeConstraint = 5 s

Composed of /

Uses /

Component FaultDetectionEngineAlarmManagerConnect

Type Connector

28

Constraints Fault Tolerant

Secure

TimeConstraint = 1 s

Composed of /

Uses /

A detailed prescription can be found in Appendix .6.

3.2.4 Achieving non-functional requirements

An additional fourth step in the prescription design process focuses on

the non functional requirements. Goals like reusability, reliability etc can be

achieved by refining the prescription. This step is iterated till all the non

domain goals are achieved.

For this system we introduced additional constraints on the Database

and the connector between Alarm and Precon (FaultDetectionEngineAlarm-

ManagerConnect).

In case of Database an additional copy of the Database was introduced

to ensure fault tolerance. With the introduction of a copy additional issues

arise. For example, we need to ensure that if the main database recovers from

a failure, all the changes made on the second database since the failure should

now be made on the main database. Once that’s done the control should be

shifted to the main database. This an several other additional constraints were

thus defined.

29

As a second step, we also defined two copies of Alarm and Precon.

This again created additional constraints. For example, each time one copy of

Precon fails, the other one should take over without affecting the functioning

of Alarm.

A comprehensive list of additional constraints can be found in Appendix

.7.

Other areas where constraints can be considered in the future include

no data lost, sequence preserved, data transmitted in x time, mediation, trans-

formation, coordination, hardware interaction, software interaction, human in-

teraction, interoperability, security, fault tolerance, consistency, recovery, post

recovery, retrieval of information, update of information etc.

3.2.5 Box diagram

Once the architecture was created we also added a box diagram illus-

trating the various components and connectors. The component tree created

as a result of the three steps did not show how the various components are

linked through the connectors. The box diagram helps in visualizing this and

thus gives a more complete view of the architecture. The complete box dia-

gram is shown in Fig.10 in Appendix .6.

3.3 Problems and Issues

The following section provides an overview of some of the problems

encountered while working on the architecture.

30

There were some issues common to both architectures. Firstly neither

architecture has means of addressing fault tolerance, reliability etc as archi-

tectural constraints. The architectures are derived only from the goal oriented

requirements, and there is a possibility that for some cases fault tolerance etc

may be introduced for architectural reasons. Neither method has a well de-

fined way of dealing with this. Secondly, we often had to work with inadequate

information on the functioning of the power plant. We were unable to find any

information on certain requirements like performance. Therefore performance

was not included. However in a real world power plant system performance is

very critical to the functioning.

Next we describe the problems encountered specific to each architec-

ture.

3.3.1 Architecture 1

Once the requirements are finalized, the first step is to obtain an ab-

stract dataflow architecture. The dataflow architecture is obtained by using

functional goals assigned to software agents. The agents become architectural

components and then dataflow connectors are derived from input/output de-

pendencies.

In the next stage architectural styles are applied. At this point there

were only a few sample styles to look at. The power plant architecture was

relatively small and we were unable to apply many of these styles to the

architecture.

31

The third step requires the use of patterns to achieve non-functional

requirements. There were various sample patterns given, however the small

size of the power plant architecture limited the choice of patterns to apply.

An other issue with the architecture was the creation of new compo-

nents during the course of the derivation that had no operations. We also had

to create some new connectors that did not have a complete definition.

In some cases the patterns were not well documented so it was difficult

to understand their application.

On the other hand there were cases where it was required to apply two

or more patterns to the same components. It was difficult to decide how to

combine the patterns to realize this.

The following two figures show how to apply patterns to achieve inter-

operability and fault tolerance between components. However it is difficult to

see how the patterns would be applied if say components C1 and C2 needed

to achieve both interoperability and fault tolerance. Another consideration

would be if the order in which we apply these patterns to achieve a combina-

tion matters. There were no clear guidelines provided to realize this.

We were unable to find suitable patterns for some other non functional

requirements. The power plant architecture required certain time constraints

on different functions, however it was not possible to illustrate these time

constraints with the architecture.

In order to achieve fault tolerance some components were made redun-

32

Figure 3.4: Interoperability refinement pattern

Figure 3.5: Fault-tolerant refinement pattern

33

dant as illustrated in the pattern. It was difficult to determine which and how

many components should be redundant. There wasn’t enough information

available on the functioning of the power plant to assign higher priority to

some components and lower to others. The final decision was made based on

the limited information provided.

An additional problem was illustrating the need to ensure consistency

between the two redundant components. The communication between the

components would change with the introduction of redundant components

however it was difficult to explain how.

The alarm component was made redundant since it was critical to en-

sure smooth functioning of the power plant. However we could not define the

method of communication between the two copies of alarm, and the method

used to ensure consistency. It was also difficult to determine how the commu-

nication between Alarm-Operator and Alarm-Communication would change

with the presence of an additional component and how this would change the

current connector.

We could not determine the need for interoperability due to the lack of

detailed system information.

The final architecture we obtained used a communication component

to facilitate all communication for the system. However the communication

between components often had different features and constraints. There were

hardware connections, software connections, redundant components, different

34

time constraints and different reliability constraints. It was not possible to

illustrate these differences in communication with the architecture. One pos-

sibility discussed was to define communication as a connector instead of a

component.

3.3.2 Architecture 2

This method takes as input the requirement specifications in KAOS and

provides as output an architecture specification in an architectural prescription

language (APL) - Preskriptor. Creating the architecture is a three step process

where in the first step the basic prescription is derived from the root goal for the

system and the knowledge of the other systems it has to interact with. In the

second step objects in the KAOS specification are used to derive components

that are potential sub components of the basic architecture. In the third step

an appropriate degree of refinement of the goal refinement tree is selected. At

this point the sub goals that are achieved by the system are assigned to the

sub components created in step two. This defines the basic architecture of the

system. Further refinement can then be done to achieve various non functional

properties. We were unable to find sufficient guidance on the various steps in

the process. There were no examples where we could find both the complete

goal tree and the complete component tree. This would have allowed us to

compare the trees and understand better the progression required to create

the architecture. Therefore our first hurdle was the very first step. It was

difficult to determine how to start and how much to try to do in the first step.

35

It was also difficult to realize how much leeway was allowed for each of the

steps. Some of the questions that came up were -

• What decisions regarding the architecture are made at step 1. Do we

simply assign a root goal or do we need to anticipate the next steps and

have a basic structure thought out?

• Is it possible to have refinement where the tree had more than three

levels?

• If all the sub goals (of a root goal) are realized by a component, does the

root goal (for those sub goals) still need to be assigned to a component?

• Ideally in the second step KAOS objects are used to create sub compo-

nents. Was it possible to use agents in this step also? Sensor Manage-

ment Unit was an agent that we thought could be made a sub-component.

However finally we used SensorInformation (which was an object) in-

stead.

• Is it possible for a goal (and thus constraints) to be shared between sub

components

Once the architecture was created we also added a box diagram illus-

trating the various components and connectors. The component tree created

as a result of the three steps did not show how the various components are

linked through the connectors. The box diagram helps in visualizing this and

thus gives a more complete view of the architecture.

36

Once we obtained the component tree and the box diagram it provided

us with different views. The tree seems to indicate a hierarchy whereas the

actual structure is quite different. The box diagram helps us realize the archi-

tecture as a network. Therefore there were different views of the system and

structure based on the way we chose to look at it.

Additionally there were some components in the architecture that had

no connectors. For example the AlarmInformation component under Alarm is

a data component with various constraints on it, however it does not have a

connector.

In the component tree and the resulting architecture there is no way

to tell the data that is being passed through a connector. This makes the

architecture more difficult to understand. This information is particularly

critical to describing the connectors. An alternative discussed for this problem

was the possibility of having data as a constraint for a connector.

We also considered ways to explore the richness of connectors. Con-

nectors can have different responsibilities like mediation, transformation and

coordination. It would lead to a better design if we could portray this in the

architecture.

3.4 Comparison between the two methods

In this section we compare the two architecture derivation methods and

the resulting architectures . The most significant difference is that the first

37

architecture is more low level. The components are described together with

the operations that they have to perform creating a more rigid design. The

second method uses an architecture prescription language which tends to be

more high level. This allows the designer to pick a better solution at a low

level. However at the same time it provides less guidance in getting to the

solution.

The first method provides a more ’network type’ view showing the

various relationships and interactions between the components. The second

method resulted in a component tree which was more hierarchical in nature.

We needed an additional box diagram to better explain the component inter-

action. However both views though different were useful.

The first method was more systematic in the beginning. There was

a clearly laid out approach for going from requirements to an architecture.

The initial steps were simple enough to consider the possibility of automation

in the future. However in the second method one of our biggest hurdles was

getting past the first step. It was difficult to determine the basic composition

with which to start. This was probably due to the high level nature of this

method.

As we continued with the architecture derivation the first method got

a little more confusing. We had problems choosing the appropriate patterns,

and applying combination of patterns. There was inadequate documentation

on them to help in the process. On the other hand the second method became

more manageable once we decided on an initial design.

38

An interesting difference was that in the first method there were no

constraints on the various connectors. Instead the focus was on the data that

is passed through those connectors. On the other hand, in the second method

we were able to specify various constraints for each of the connector, however

there was no way of specifying the data that is passed through. In both cases

we were unable to specify the differences possible in the nature of various types

of connectors. For example, connectors fault tolerant components may have

mediation type connectors. There was no way to specify this in either case.

As concerns non-functional requirements, in the first method we applied

them by choosing the appropriate pattern. However in the second method we

created additional constraints on the components to realize the non-functional

requirements.

39

Chapter 4

Suggested modifications to the second

method: Perry and Brandozzi

The second method takes as input the requirement specifications in

KAOS and provides as output an architecture specification in an architec-

tural prescription language (APL) - Preskriptor. Obtaining the Architecture

Prescription was a challenging process. There were several points where we

were unclear on how to proceed. Therefore some suggestions are proposed in

this section to make the various derivation steps easier to follow. The biggest

problem encountered was with the very first step. It was difficult to determine

how much of the architecture needs to be in place when deciding the first step.

We did not know how to pick the components to determine the root and the

second level of the component tree.

One way of approaching this is that the root goal of the component

tree is simply the name of the system that is being implemented. In order to

determine the second level of this tree we look at the second level of the goal

tree. This gives a good idea of some of the high level goals of the system. We

also look at some of the main sub systems that the given system would need

to interact with in order to realize these goals.

40

The next step is to determine how detailed we want the second level of

the component tree to be. We can choose to keep the second step simple which

would typically include basic manager type components and a main connector

component. These components are further spilt into detailed subsystems later.

A different approach is seen in the Power plant problem. In this case

the subsystems that the main system interacts with are used to determine

the second level components. This makes the second level of the tree more

detailed. In case of the powerplant - Precon, Alarm and Databases are the

major subsystems that the power plant interacts with so these form the second

level of the component tree. A communication component is also present to

ensure proper communication between these various subsystems. The agents in

the goal model are a way to start looking for the various subsystems involved.

In both cases we look at agents that are subsystems not agents that are people.

It is important to note that in both processes there is always a connector

element present at the second level

Once the basic tree is in place the proceeding steps are easy to follow.

The next problem faced was that the architecture specifies the various

connectors in the subsystem. We can specify the constraints on these connec-

tors. However there is no way to specify the data being passed through them.

Various components do specify the connectors they use however information

regarding the data being passed is absent under the connector description. A

data flow model for this method would be useful in this. Another possibility

41

is specifying data as a constraint for various connectors. Data along with the

constraints would form a complete connector description

Once the component tree was in place it was felt that there was still

a missing element to understand the architecture completely. The component

tree gave us a hierarchical type view of the system, however it was not ad-

equate so we added a box diagram to give us a network type view. This is

essential in understanding how the system works. This diagram also helps in

understanding the connectors of the system because it tells us the way these

connectors link to components. This thereby helps in getting an understanding

of the data that would be passed through these connectors. Understanding of

the data passed is essential to getting a complete description of the connectors.

42

Chapter 5

Styles and Patterns

5.1 Introduction to styles and patterns

For method two (Brandozzi and Perry) we were able to create a final

prescription following the three step process discussed. The fourth step of the

prescription design process focuses on refining the prescription to achieve non

functional requirement. Non functional requirements are a very important

part of a system and it is essential to consider them as early as possible in the

system design process. These goals can alter the prescription at a component

level or affect the design of the whole system. Examples of these goals include

reusability, fault tolerance, reliability etc. Taking into account non functional

requirements while designing a prescription can have three kinds of effects on

an already designed prescription of a system - it can lead to introduction of new

components, transformation of the system topology or further constraining of

already existing components.[3] Architecture styles and patterns can be used

to provide solutions for realizing several of these goals. Styles and patterns

usually deal with a specific problem in the design or implementation of software

system and provide a solution to it. These come from practical, well proven

design experience and can be used to solve design problems effectively. Styles

and patterns determine the basic structure of the solution to a particular design

43

process [4]. This solution can then be implemented according to the basic

needs of the system. This section looks at some specific styles and patterns

used to achieve various non functional requirements for the power plant system

prescription. It discusses the pattern or styles used, the transformations done

and the non function requirements satisfied.

5.1.1 Model View Controller Pattern

The first transformation is derived from the Model-View-Controller ar-

chitecture pattern [4]. The MVC architectural pattern divides an interactive

application into three components. The model contains the core data and

functionality. This is independent of specific output representations or input

behavior. View components display information to the user by obtaining data

from the model. There can be multiple views of a model. Controllers receive

input, usually as events like mouse movement or keyboard input and translate

them to service requests. The user interacts with the system solely through

the controllers. In the power plant architecture the Database contains all the

relevant data and query functionality. The InteractionManager is used to man-

age requests from the operator who is human. This pattern adds UserView

which now handles the various views provided to the operator. The Interac-

tionManager serves as the controller and translates user requests to queries on

the database.

UserView is responsible for presenting information to the operator. Dif-

ferent views can be used to present information in different ways. Thus the

44

Figure 5.1: Model view controller pattern

user interface is not as tightly linked to the core data anymore allowing for

more flexibility and choices. This allows for the independence of the ’look and

feel’ of the system and easier portability to new platforms.

5.1.2 Whole Part Pattern

This transformation is obtained from the idea of the whole-part de-

sign pattern[4]. The whole part design pattern helps with the aggregation

of components that together form a semantic unit. A whole object repre-

sents a collection of smaller objects which are called parts. The object forms

a semantic grouping of its parts in that it coordinates and organizes their

collaboration. A common interface is provided to access the functionality of

the parts. In this case we create a PRECON component that encapsulates

other components - FaultInformation, FaultDetectionEngine, SensorInforma-

tion, FaultDiagnosis. These components are selected because they logically

come under PRECON. An interface is also defined which allows for access to

the functionality of the encapsulated components. Components are accessed

45

only through the interface, not directly. Essentially the transformation creates

a subsystem.

Figure 5.2: Whole part pattern

This can also be applied to the rest of the system to form Alarm and

Database subsystems. This transformation allows for separation of concern.

Each concern can be implemented by a separate part. Reusability of the

various subsystems created is promoted. At the same time various components

that form the subsystems can also be reused.

5.1.3 Proxy Pattern

Proxy[4] is a popular design pattern which allows the clients of a com-

ponent to communicate with a representative rather than the component itself.

46

This representative is called a proxy and acts as the interface to the component.

Direct access to a component may not always be the best approach in terms of

efficiency and protection from unauthorized access etc. Proxy provides some

of additional control methods that are needed such as access control checking.

At the same time the access mechanism is kept simple.

This proxy pattern can have several variants. A protection proxy pro-

tects the component from unauthorized access. In order to realize this, the

proxy checks the access rights in each instance. It is also possible to give vari-

ous clients different access permissions. A cache proxy maintains a data area to

temporarily hold results. In this case the more frequently desired results can be

accessed quicker providing more efficient communication. A synchronization

proxy controls multiple simultaneous client accesses and can also distinguish

between read and write accesses. A virtual proxy assumes that an application

references secondary storage and loads on parts of the application as needed

and frees up space when parts are no longer needed. A firewall proxy protects

local clients by checking outgoing requests and incoming for compliance with

internal security policies. A specific proxy can play several of these roles and

fulfill various responsibilities.

In the case of the power plant the database is accessed frequently for

various queries. Various different types of queries can be placed but they fall

under some specific categories and are repeated often. In this case a proxy

component is created which now provides access to the QueryManger of the

database to the InteractionManager component. The proxy also ensures a

47

safe and correct access by checking access rights thus providing security. The

retrieval process can also be made more efficient by providing a cache.

Figure 5.3: Proxy pattern

5.1.4 Publisher Subscriber Pattern

The following transformation is derived from the Publisher-Subscriber

pattern[4]. This pattern helps to keep the state of cooperating components

synchronized. One dedicated component takes the role of a publisher. Other

components dependent on changes in the publisher are called its subscribers.

The publisher maintains a list of current subscribers. Whenever the publisher

changes state, it sends a notification to all its subscribers. The subscribers in

turn retrieve the changed data. For the power plant system that database is

an important component. In order to ensure reliability and prevent any loss

of data two copies of this database are maintained. One of these copies is the

main database whereas the other is a backup. It then becomes important to

maintain consistency between the two copies. A pattern similar to publisher-

subscriber can be used for this where the main database is the publisher and

48

the backup database is the subscriber. However the two database copies have

several other constraints. If the main database fails the backup database

should take over and update itself as needed. Once the main database recovers

from the failure all the updates made to the backup database should be made

to the main database. Therefore for this particular case sometimes changes

may be made to the subscriber database and they should be replicated to the

publisher database. However this would only happen in the case of failure and

recovery.

Figure 5.4: Publisher subscriber pattern

An additional controller is added to maintain these constraints. The

controller handles control among the databases in case of failure and updates

in case of recovery. The interface is connected to both databases and changes

take place to the publisher database when all functions are running correctly

and to the subscriber database in case of failure. The presence of two databases

49

increases reliability since one database can take over if the other fails ensuring

that the data is always current and available.

5.1.5 Master and Slave Pattern

The master and slave design pattern[4] supports fault tolerance and

computational accuracy. A master component delegates work to identical slave

components and computes final results from the results the slaves return. Thus

the work is partitioned into several sub tasks and assigned to slaves who per-

form the tasks independently and final result is put together from the various

partial results obtained. This structure consists of one master and at least

two slaves. The pattern can support fault tolerance. In that design the master

simply delegates a certain task to a specific number of slaves thereby ensuring

that the result is returned as long as at least one slave does not fail. However

the master is the critical component and must stay alive to make the structure

operate. Another application for this pattern is found in parallel computation.

In this case the master divides a task into smaller subtasks which are performed

independently by the slaves. The master then builds the final results. A third

application is for computational accuracy. Here the execution of a service is

delegated to at least three different slaves. Once the calculations by all the

slaves are complete the master uses a voting system to handle inaccuracies.

The master may select the result that is returned by the greatest number of

slaves or take an average of all the results. The FaultDetectionEngine compo-

nent of the architecture is responsible for performing calculations to check if a

50

fault is detected in the system. A correct detection of fault is very important

for the power plant system so computational accuracy is high on the priority

list for this particular component. A master slave design to assure accuracy

would be desirable here. The following diagram illustrates this design.

Figure 5.5: Master slave pattern

This design improves calculation accuracy and leads to a more reliable

system.

5.1.6 Achieving Fault Tolerance

It is very important to recognize and act on faults appropriately. One

way of implementing fault handling is by making the system fault tolerant.

Systems can vary from single fault tolerant one out of two systems to large

two out of four systems. At the same time there can be systems where only

specific components are designed for fault tolerance. In this case we look at a

very specific part of the system.

51

It is the responsibility of the SensorInformation component to acquire

both digital and analog information from the sensors. It is assumed that var-

ious sensors are used to obtain information from each part of the plant. Each

sensor gives back information and has an associated status. Sanity and con-

sistency checks are then performed on the obtained data. SensorInformation

would raise a fault even if one of the sensors is not working correctly. However

the number of sensors for a power plant may be very high and it may not

always be desirable to do that. It is important that SensorInformation should

be able to detect faults in the data and function in a predefined way if faults

are found.

Figure 5.6: Fault Tolerance

A FaultHandler component is added to act as an exception handler. If

SensorInformation finds that the data obtained is not consistent then this in-

formation is sent to the FaultHandler component. It is then the responsibility

of the FaultHandler to mark the faulty or missing sensors as faulty. Fault-

Handler looks at the list of failed sensors to see if they are safety critical, and

if so a fault is raised by SensorInformation. However if not, and if the percent

52

of failed sensors is below a fixed threshold SensorInformation disregards these

marked signals for performing the consistency check. FaultHandler raises an

alert about the mal functioning sensors but the system continues to function

as usual.

This permits the smooth functioning of the plant since a fault is not

raised every time a particular sensor fails.

5.1.7 Unit of Work Pattern

A Unit of Work component maintains a list of objects affected by a

transaction and coordinates the writing of changes and resolution of concur-

reny problems.

For the power plant system the following transformation is done to in-

crease efficiency. The UpdateManager component is responsible for various up-

dates that are performed on the main database. These updates come through

from various components like SensorInformation, FaultDiagnosis, FaultDetec-

tionEngine, AlarmManager and AlarmDiagnosis. When altering a database it

is very important to keep track of the changes otherwise important data may

be lost.

Changes need to be made to the database every time each of the con-

nected components sends through an update. The database can be altered

with each change that comes through, but this can lead to lots of very small

database calls, which ends up being very slow. Furthermore it requires the

database to interact with each component one at a time, while the other com-

53

ponents wait for their turn, which is impractical if there are multiple requests.

An alternative is the creation of an additional UwDb component.

Figure 5.7: Unit of work pattern

The UwDb componet keeps track of all the change requests to the

database during a specified period of time. At the end of this time it figures

out everything that needs to be done to the database and the appropriate

changes are made. So the component basically interacts with various other

components of the system to collect change requests and then implements

them in groups instead of one at a time. This makes the system more efficient.

Additional responsibilities can be added to UwDb. For example, it can go

through the list of changes requested and if the same element is changed twice

it will only make the most recent change.

54

5.1.8 Memento pattern

The next transformation is derived from the Memento pattern[7]. This

pattern captures and externalizes an objects internal state so the object can

be restored to that state later.

It is often necessary to record the internal state of a component. This

is required when implementing an undo mechanism that lets users back out of

tentative operations or when a system needs to recover from errors. Informa-

tion about the state of the specific component must be stored elsewhere so it

can be restored correctly in case of failure. A memento component stores the

snapshot of the internal state of another component. This component is the

originator of the memento component. The originator initializes the memento

with information that characterizes its current state. The undo mechanism

will request a memento from the originator when it needs to checkpoint the

originator’s state. This is also done when the originator fails and needs to go

back to a previous state.

For the power plant system the InteractionManager is responsible for

interacting with the operator. The operator can send queries to the database

through it. The MementoIM componet would hold a snapshot of the state of

the InteractionManager. The InteractionManager would act as the originator

and initialize MementoIM with its state. Often times an operator may be

performing queries in a specific order (say to generate a report) and may

choose to undo a mistyped query. This would let the user undo a specific

query and return to the previous state.

55

Figure 5.8: Memento pattern

Additionally if the InteractionManager were to fail it could use Memen-

toIM to restore itself to the most previous state. The Caretaker component is

responsible for the safekeeping of of MementoIM. This transformation would

provide better usability and error handling.

5.1.9 Additional Transformations

The Alarm subcomponent of the architecture has several additional

constraints that need to be realized. Some transformations are done to realize

these constraints.

Alarm is a highly critical component of the system since it is responsible

for drawing attention to faults found. It is imperative that an alarm be raised

as soon as a fault is found. Thus the Alarm subcomponent should be very

reliable. Therefore there should be two copies of Alarm. Every time one Alarm

component fails the other should take the relay. However only one component

should work at a time. There is no difference in the importance between the

56

copies so the switch should occur only in case of failure. AlarmInformation is

the only component which requires storing some information so this component

should be consistent for the two copies.

Figure 5.9: Additional transformations pattern

The given figure illustrates how the various constraints are met. There

are two copies of Alarm. The controller component ensures that only one is

active at a time and switches between the two copies in case of failure. When

one of the Alarm component fails the controller also raises the appropriate

alert, The active alarm then uses the interface to communicate with the rest

of the system. However AlarmInformation needs to be consistent between the

two copies. ConsistencyMaintainer assures this. It saves the current AlarmIn-

formation of the active component (say Alarm Copy 1) and in case of failure

copies it over to the new active component (Alarm Copy 2). Once the changes

57

are made (in Alarm Copy 2) it begins to store the current information for the

new active component (Alarm Copy 2).

In this case neither of the two copies is more important; control is

simply switched to the inactive copy if the active copy fails.

This ensures reliability in the operation and raising of an alarm.

58

Chapter 6

Conclusion

In this thesis we have taken a real world example of a power plant sys-

tem and systematically obtained goal-oriented requirement specifications. We

have then created two architectures using two different methods that satisfy

the requirements. We analyzed and compared the results. Both architectures

provide us with different but nonetheless useful views of the system. We use

our example to create further well defined derivation methods making this

critical step of the system design process easier.

Some of the possible further work in the area includes using data flow

and constraints as a basis for logical description on connectors. The connec-

tors were not defined adequately in both architecture approaches, therefore

this would be a useful enhancement. We can also look at the kinds of non

functional constraints that might apply to data flow elements. We can further

explore methods to apply non functional requirements, and study how these

requirements affect the architecture. Non functional requirements constitute

an important part of a system and this would benefit both designs. For the first

method the patterns need to be documented better. It would also be useful to

study ways to apply combinations of patterns. For the second method we have

59

shown how the use of styles and patterns can be provide some non-functional

constraints such as reliability and fault tolerance.

60

Appendices

61

.1 Goal specifications

The goals are listed following a breadth-first traversal of the goal graph

shown in Fig. 1.

• PerformanceOfThePlantMonitored

Def The system must continuously monitor the performance of the

plant in order to detect faults in the steam condenser or in the cool-

ing circuit. Moreover, it supports the operators suggesting remedy

actions.

Concerns PowerPlant, SteamCondensor, CoolingCircuit

RefinedTo FaultDetected, RemedyActionSuggestedWhenFaultDetected,

AlarmCorrectlyManaged

• FaultDetected

Def Faults in the steam condenser and in the cooling circuit must be

detected

Concerns SteamCondensor, CoolingCircuit, Fault

AndRefines PerformanceOfThePlantMonitored

RefinedTo FaultDetectedInSteamCondensor, FaultDetectedInCooling-

Circuit

FormalDef ∀f : Fault, ∃!l : Location

Occurs(f, l) ⇒ ♦Detected(f, l)

62

Figure 1: Goal diagram
63

Figure 2: Goal diagram continued
64

• RemedyActionsSuggestedWhenFaultDetected

Def Remedy actions must be suggested to the operators each time a

fault is detected.

Concerns SteamCondensor, CoolingCircuit, Fault

AndRefines PerformanceOfThePlantMonitored

UnderResponsabilityOf PRECON

• AlarmCorrectlyManaged

Def The system must raised an alarm each time a fault is detected. In

addition, it must trace and keep the state of all the alarms previ-

ously raised.

Concerns Alarm, Fault

AndRefines PerformanceOfThePlantMonitored

RefinedTo AlarmRaisedIffFaultDetected, AlarmTraced, OperatorIn-

terractionManaged

• FaultDetectedInSteamCondenser

Def Faults in the steam condenser must be detected

Concerns SteamCondenser, Fault

AndRefines FaultDetected

RefinedTo DataQuerriedUpondUserRequest, PeriodicalChecksPerformed,

ReportsWritten

65

FormalDef ∀f : Fault

Occurs(f, SteamCondenser) ⇒ ♦Detected(f, SteamCondenser)

• FaultDetectedInCoolingCircuit

Def Faults in the cooling circuit must be detected

Concerns CoolingCircuit, Fault

AndRefines FaultDetected

RefinedTo DataQuerriedUpondUserRequest, PeriodicalChecksPerformed,

ReportsWritten

FormalDef ∀f : Fault

Occurs(f, CoolingCircuit) ⇒ ♦Detected(f, CoolingCircuit)

• AlarmRaisedIffFaultDetected

Def The alarm has to be raised if and only if a fault has been detected

Concerns Alarm

AndRefines AlarmCorrectlyManaged

RefinedTo FaultInformationTransmittedWhenFaultDetected, Alarm-

RaisedWhenFaultInformationTransmitted, AlarmNotRaisedIfFault-

NotDetected

FormalDef ∀f : Fault, ∃!l : Location,∃!a : Alarm

Detected(f, l) ⇒ ♦Raise(f, a)

∧ ∀a : Alarm,∃!f : Fault, ∃!l : Location

Raise(f, a) ⇒ Detected(f, l)

66

• AlarmTraced

Def Informations on alarms previously raised can be retrieved

Concerns Alarm

AndRefines AlarmCorrectlyManaged

RefinedTo AlarmInformationStoredWhenAlarmRaised, AlarmInforma-

tionProvidedUponUserRequest

• DataQuerriedUponUserRequest

Def All the data concerning the state of the Power Plant must be

provided upon operators request

Concerns

AndRefines FaultDetectedInSteamCondensor, FaultDetectedInCool-

ingCircuit

RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted, Quer-

ryAnswered

FormalDef ∀s : Sensor,∃!si : SensorInformation

Querry(s) ⇒ ♦Answer(si) ∧ s ≡ si

• PeriodicalChecksPerformed&ReportWritten

Def A check must be carried out every 5 minutes in order to detect

faults and a report must be written.

Concerns

67

AndRefines FaultDetectedInSteamCondensor, FaultDetectedInCool-

ingCircuit

RefinedTo DataAcquired, ChecksPerformedWhenDataAcquired, Re-

portWrittenWhenChecksPerformed

FormalDef ∀f : Fault, ∃!l : Location

Occurs(f, l) ⇒ ♦≤5minDetected(f, l)

• FaultInformationTransmittedWhenFaultDetected

Def Each time a Fault is detected, information on that fault has to be

transmitted to the ALARM unit

Concerns Alarm

AndRefines AlarmRaisedIffFaultDetected

UnderResponsabilityOf COMMUNICATION

FormalDef ∀f : Fault, ∃!l : Location,∃!fi : FaultInformation

Detected(f, l)∧f ≡ fi ⇒ ♦Transmitted(fi, PRECON, ALARM)

• AlarmRaisedWhenFaultInformationTransmitted

Def Each time the ALARM unit receive information on a fault, an

alarm has to be raised

Concerns Alarm, FaultInformation

AndRefines AlarmRaisedIffFaultDetected

UnderResponsabilityOf ALARM

68

FormalDef ∀fi : FaultInformation, ∃!a : Alarm

Transmitted(fi, PRECON, ALARM) ⇒ ♦Raise(fi, a)

• AlarmNotRaisedIfFaultNotDetected

Def If no fault is detected no alarm can be raised

Concerns Alarm, Fault

AndRefines AlarmRaisedIffFaultDetected

UnderResponsabilityOf ALARM

FormalDef ∀a : Alarm,∃!f : Fault, ∃!l : Location

Raise(f, a) ⇒ Detected(f, l)

• AlarmInformationStoredWhenAlarmRaised

Def Each time an alarm is raised, information on that alarm must be

kept in the DataBase.

Concerns Alarm, AlarmInformation, PowerPlant/AlarmStatus

AndRefines AlarmTraced

RefinedTo AlarmDiagnosisWritten, AlarmStatusUpdated

FormalDef ∀a : Alarm,∃!fi : FaultInformation,

∃!ai : AlarmInformation,∃!fd : FaultDiagnosis

Raise(fi, a) ∧ a ≡ ai ⇒ ♦Stored(ai, DB) ∧ Stored(fd, DB) ∧

Concerns(fd, fi, ai) ∧ PowerP lant.AlarmStatus =′ on′

• AlarmInformationProvidedUponUserRequest

69

Def Operators should be able to retrieve informations about all the

alarms previously raised

Concerns Alarm, AlarmInformation

AndRefines AlarmTraced

RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted, Quer-

ryAnswered

FormalDef ∀a : Alarm,∃!ai : AlarmInformation

Querry(a) ⇒ ♦Answer(ai) ∧ a ≡ ai

• DataAcquired

Def All the data needed are acquired from the field

Concerns Sensor, SensorInformation

AndRefines DataQueriedUponUserRequest, PeriodicalChecksPerformed

RefinedTo CorrectDataPersistentlyStored, QueryTransmitted, QueryAn-

swered

FormalDef ∀s : Sensor,∃!si : SensorInformation

Querry(s) ⇒ ♦≤2sTransmitted(si, DB, PRECON) ∧ s ≡ si

• ChecksPerformedWhenDataAcquired

Def Checks must be performed when all the data needed is available

in order to detect faults in the Steam Condenser or in the Cooling

Circuit

70

Concerns SensorInformation, Fault

AndRefines PeriodicalChecksPerformed

RefinedTo CalculationDone, FaultDetectedWhenCalculationDone

FormalDef ∀f : Fault, si : SensorInformation, l : Location

Occurs(f, l) ∧ Transmitted(si, DB, PRECON)

⇒ ♦≤5minDetected(f, l)

∧ ¬Occurs(f, l) ∧ Transmitted(si, DB, PRECON)

⇒ ♦¬Detected(f, l)

• ReportWrittenWhenChecksPerformed

Def Whether a fault is detected or not, all the results of the check must

be stored.

Concerns SensorInformation, Fault, FaultInformation

AndRefines PeriodicalChecksPerformed

RefinedTo ComputedVariablesStored, DiagnosisWritten, FaultStatusUp-

dated

FormalDef ∀f : Fault, ∃!fi : FaultInformation, ∃!l : Location ∃!fd :

FaultDiagnosis,∃!si : SensorInformation Detected(f, l)

⇒ ♦Stored(fi, DB)∧f ≡ fi∧Stored(fd, DB)∧Concerns(fd, si, fi)

• AlarmDiagnosisWritten

Def Each time an alarm is raised, information on that alarm must be

kept in the DataBase.

71

Concerns Alarm, AlarmInformation, FaultInformation

AndRefines AlarmInformationStoredWhenAlarmRaised

RefinedTo AlarmDataTransmittedToDB, DataCorrectlyUpdated

FormalDef ∀a : Alarm,∃!fi : FaultInformation,

∃!ai : AlarmInformation,∃!ad : AlarmDiagnosis

Raise(fi, a) ⇒ ♦Stored(ai, DB) ∧ a ≡ ai ∧ Concerns(ad, fi, ai) ∧

Stored(ad,DB)

• AlarmStatusUpdated

Def If there is at least one alarm raised, the AlarmStatus must be set

to on, otherwise it must be set to off.

Concerns Alarm, Fault, PowerPlant/AlarmStatus

AndRefines AlarmInformationStoredWhenAlarmRaised

UnderResponsabilityOf ALARM

FormalDef ∀a : Alarm,∃!fi : FaultInformation

Raise(fi, a) ⇒ ◦PowerP lant.AlarmStatus =′ on′

• DataTransmittedToDB

Def Each time an alarm is raised, corresponding information must be

transmitted to the DataBase

Concerns Alarm, AlarmInformation, FaultInformation

AndRefines AlarmInformationStoredWhenAlarmRaised

72

RefinedTo NoDataLost, NoDataIntroduce, SequencePreserved, Data-

TransmittedWithinTimeConstraints

UnderResponsabilityOf COMMUNICATION

FormalDef ∀a : Alarm,∃!fi : FaultInformation,

∃!ai : AlarmInformation,∃!ad : AlarmDiagnosis

Raise(fi, a) ∧ a ≡ ai ⇒ ♦Transmitted(ai, ALARM, DB)

∧ Transmitted(ad,ALARM,DB) ∧ Concerns(ad, fi, ai)

• DataCorrectlyUpdated

Def Each time alarm information is transmitted to the DataBase, this

information has to be stored

Concerns AlarmInformation, DataBase

AndRefines AlarmInformationStoredWhenAlarmRaised

UnderResponsabilityOf DB

FormalDef ∀ai : AlarmInformation, ad : AlarmDiagnosis

Transmitted(ai, ALARM, DB) ⇒ ♦Stored(ai, DB)

Transmitted(ad,ALARM,DB) ⇒ ♦Stored(ad,DB)

• QueryTransmitted

Def Each time the operator queries informations on an alarm, the query

has to be transmitted to the DataBase

Concerns Alarm, AlarmInformation

73

AndRefines AlarmInformationProvidedUponUserRequest

UnderResponsabilityOf COMMUNICATION

FormalDef ∀a : Alarm

Querry(a) ⇒ Transmitted(a, ALARM,DB)

• CorrectDataPersistentlyStored

Def All the data of the system (reports resulting from checks, alarm

information, status of the I/O devices, values of the sensors,etc.)

must be stored persistently)

Concerns AlarmInformation, FaultInformation, SensorInformation

AndRefines DataAcquired, AlarmInformationProvidedUponUserRe-

quest

RefinedTo DataAcquiredFromTheField, ConsistencyCheckPerformed,

DataUpdatedWhenAcquired, ComputedVariablesStored, DiagnosisWrit-

ten, I/OStatusUpdated, AlarmInformationStoredWhenAlarmRaised

FormalDef ∀si : SensorInformation, fi : FaultInformation, ai :

AlarmInformation, fd : FaultDiagnosis, ad : AlarmDiagnosis

Stored(si, DB)∧Stored(fi, DB)∧Stored(ai, DB)∧Stored(fd, DB∧

Stored(ad,DB

• CalculationDone

Def All the calculations needed to detect fault in the PowerPlant are

done

74

Concerns SensorInformation

AndRefines ChecksPerformedWhenDataAcquired

UnderResponsabilityOf PRECON

FormalDef ∀si : SensorInformation

Transmitted(si, DB, PRECON) ⇒ ♦CalculationDone

• FaultDetectedWhenCalculationDone

Def When the calculations are done, all the faults present either in the

cooling circuit or in the steam condenser must be detected

Concerns Fault, SteamCondenser, CoolingCircuit

AndRefines ChecksPerformedWhenDataAcquired

UnderResponsabilityOf PRECON

FormalDef ∀f : Fault, l : Location

CalculationDone ∧Occurs(f, l) ⇒ ♦Detected(f, l)

∧ CalculationDone ∧ ¬Occurs(f, l) ⇒ ♦¬Detected(f, l)

• DataAcquiredFromTheField

Def Data concerning the state of the power plant must be acquired

Concerns Sensor

AndRefines CorrectDataPersistentlyStored

RefinedTo AnalogDataAcquired, DigitalDataAcquired, SanityCheck-

Performed

75

FormalDef ∀s : Sensor

s.type =′ Digital′ ∨ s.type =′ Analog′ ⇒ ♦Acquired(s)

• ConsistencyCheckPerformed

Def Consistency checks are performed on all the acquired data in order

to ensure consistency within all the sensor datas

Concerns SensorInformation

AndRefines CorrectDataPersistentlyStored

UnderResponsabilityOf ACQUISITION UNIT

FormalDef ∀s : Sensor

Acquired(s) ⇒ ♦Consistent(s)

• DataUpdatedWhenAcquired

Def When the data have been acquired, they must be stored correctly

Concerns Sensor, SensorInformation

AndRefines CorrectDataPersistentlyStored

UnderResponsabilityOf DB

FormalDef ∀si : Sensor

Acquired(s) ∧ Consistent(s) ⇒ ♦Stored(si, DB) ∧ s ≡ si

• ComputedVariablesStored

Def

76

Concerns

AndRefines

RefinedTo

FormalDef

• FaultDiagnosisWritten

Def Each time a fault is detected, informations concerning the fault

and the diagnosis must be written

Concerns SensorInformation, Fault

AndRefines ReportWrittenWhenChecksPerformed

RefinedTo DataTransmittedToDB, DataCorrectlyUpdated

FormalDef ∀f : Fault, ∃!l : Location, ∃!fi : FaultInformation, ∃si :

SensorInformation,∃!fd : FaultDiagnosis

Detected(f, l) ⇒ ♦Store(fi, DB) ∧ f ≡ fi ∧ Stored(fd, DB) ∧

Concerns(ds, di, si)

• FaultStatusUpdated

Def If there is a least one fault detected, the FaultStatus must be set

to on, otherwise it must be set to off

Concerns Fault, PowerPlant/FaultStatus

AndRefines ReportWrittenWhenChecksPerformed

UnderResponsabilityOf PRECON

77

FormalDef ∀f : Fault, ∃!l : Location

Detected(f, l) ⇒ ◦PowerP lant.FaultStatus =′ on′

• DataTransmittedToDB

Def Each time an fault is detected, corresponding information must be

transmitted to the DataBase

Concerns Fault , FaultInformation, SensorInformation

AndRefines FaultDiagnosisWritten, ComputedVariablesStored

RefinedTo NoDataLost, NoDataIntroduce, SequencePreserved, Data-

TransmittedWithinTimeConstraints

UnderResponsabilityOf COMMUNICATION

FormalDef ∀f : Fault, ∃l : Location, ∃!fi : FaultInformation, ∃!si :

SensorInformation∃!ad : FaultDiagnosis

Detected(f, l) ∧ f ≡ fi ⇒ ♦Transmitted(fi, PRECON, DB) ∧

Transmitted(fd, ALARM, DB) ∧ Concerns(ad, si, fi)

• DataCorrectlyUpdated

Def Each time fault information is transmitted to the DataBase, this

information has to be stored

Concerns FaultInformation, DataBase

AndRefines FaultDiagnosisWritten, ComputedVariablesStored

UnderResponsabilityOf DB

78

FormalDef ∀fi : FaultInformation, fd : FaultDiagnosis

Transmitted(fi, ALARM, DB) ⇒ ♦Stored(fi, DB)

Transmitted(fd, ALARM, DB) ⇒ ♦Stored(fd, DB)

• AnalogDataAcquired

Def All the data coming from working analog sensors are acquired

Concerns Sensor

AndRefines DataAcquiredFromTheField

FormalDef ∀s : Sensor

s.type =′ Analog′ ∧ s.status =′ on′ ⇒ ♦Acquired(s)

• DigitalDataAcquired

Def All the data coming from working digital sensors are acquired

Concerns Sensor

AndRefines DataAcquiredFromTheField

FormalDef ∀s : Sensor

s.type =′ Digital′ ∧ s.status =′ on′ ⇒ ♦Acquired(s)

• SanityCheckPerformed

Def SanityChecks are performed in order to ensure that all working

sensors work correctly

Concerns Sensor

79

AndRefines DataAcuiredFromTheField

FormalDef ∀s : Sensor

s.workingProperly = false∧•s.status =′ on′ ⇒ ◦s.status =′ off ′

∧s.workingProperly = true∧•s.status =′ off ′ ⇒ ◦s.status =′ on′

• NoDataLost

Def No data can be lost during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation

AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef ∀si : SensorInformation, fi : FaultInformation, ai :

AlarmInformation, fd : FaultDiagnosis, ad : AlarmDiagnosis, x :

Data

x ∈ si ∧ Transmitted(si, ,) ⇒ x ∈ Transmitted(si)

∧ x ∈ fi ∧ Transmitted(fi, ,) ⇒ x ∈ Transmitted(fi)

∧ x ∈ ai ∧ Transmitted(ai, ,) ⇒ x ∈ Transmitted(ai)

∧ x ∈ fd ∧ Transmitted(fd, ,) ⇒ x ∈ Transmitted(fd)

∧ x ∈ ad ∧ Transmitted(ad, ,) ⇒ x ∈ Transmitted(ad)

• NoDataIntroduce

Def No data can be introcue during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation

80

AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef ∀si : SensorInformation, fi : FaultInformation, ai :

AlarmInformation, fd : FaultDiagnosis, ad : AlarmDiagnosis, x :

Data

Transmitted(si, ,) ∧ x ∈ Transmitted(si) ⇒ x ∈ si

∧ Transmitted(fi, ,) ∧ x ∈ Transmitted(fi) ⇒ x ∈ fi

∧ Transmitted(ai, ,) ∧ x ∈ Transmitted(ai) ⇒ x ∈ ai

∧ Transmitted(fd, ,) ∧ x ∈ Transmitted(fd) ⇒ x ∈ fd

∧ Transmitted(ad, ,) ∧ x ∈ Transmitted(ad) ⇒ x ∈ ad

• SequencePreserved

Def The order of the data must be preserved during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation

AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef ∀si : SensorInformation, fi : FaultInformation, ai :

AlarmInformation, fd : FaultDiagnosis, ad : AlarmDiagnosis, x, y :

Data,∃u, v : Data

x, y ∈ si∧Transmitted(si, ,)∧Before(x, y, si) ⇒ u, v ∈ Transmitted(si)∧

Before(u, v, si) ∧ x = u ∧ y = v

∧ x, y ∈ fi ∧ Transmitted(fi, ,) ∧ Before(x, y, fi) ⇒ u, v ∈

81

Transmitted(fi) ∧Before(u, v, fi) ∧ x = u ∧ y = v

∧ x, y ∈ ai ∧ Transmitted(ai, ,) ∧ Before(x, y, ai) ⇒ u, v ∈

Transmitted(ai) ∧Before(u, v, qi) ∧ x = u ∧ y = v

∧ x, y ∈ fd ∧ Transmitted(fd, ,) ∧ Before(x, y, fd) ⇒ u, v ∈

Transmitted(fd) ∧Before(u, v, fd) ∧ x = u ∧ y = v

∧ x, y ∈ ai ∧ Transmitted(ad, ,) ∧ Before(x, y, ad) ⇒ u, v ∈

Transmitted(ad) ∧Before(u, v, ad) ∧ x = u ∧ y = v

• DataTransmittedWithinTimeConstraints

Def All the data that need to be transmittend are effectively transmit-

ted to their destination within 2 s

Concerns SensorInformation, FaultInformation, AlarmInformation

AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef ∀si : SensorInformation, fi : FaultInformation, ai :

AlarmInformationm, fd : FaultDiagnosis, ad : AlarmDiagnosis

♦≤2sTransmitted(si, ,)

∧ ♦≤2sTransmitted(fi, ,)

∧ ♦≤2sTransmitted(ai, ,)

∧ ♦≤2sTransmitted(fd, ,)

∧ ♦≤2sTransmitted(ad, ,)

82

.2 Object Specifications

• PowerPlant

Def Defines the power plant system. Its components include steam

condenser and cooling circuit.

Has PowerPlantID: Integer

Type: Hydrolic, Nuclear, Petrol, Gas, Coal

Power: MegaWatt

Location: Address

FaultStatus: on,off

AlarmStatus: on,off

DomInvar ∀ p:PowerPlant

p.faultStatus = on⇔ (∃ f:Fault,∃ l:Location)(Occurs(f,l) ∧ PartOf(l,p)

∧ f.Corrected = false

p.alarmStatus = on⇔ (∃ a:Alarm,∃ l:Location,∃ f:Fault)(Occurs(f,l)

∧ PartOf(l,p) ∧ Raise(f,a) ∧ f.Activated = true

DomInit FaultStatus = off

AlarmStatus = off

• SteamCondenser

Def condenses steam. It accounts for temperature, desired temperature

and a range, similarly pressure, a desired pressure and a pressure

range.

83

Figure 3: Object diagram
84

Has Temperature: Kelvin

DesiredTemp: Kelvin

MinTemp: Kelvin

MaxTemp: Kelvin

Pressure: Pascal

DesiredPress: Pascal

MinPress: Pascal

MaxPress: Pascal

DomInvar MinTemp ≤ Maxtemp

MinPress ≤ MaxPress

DomInit /

• SteamCondenser

Def cools the power plant. It is a component of the power plant. It ac-

counts for temperature, desired temperature and a range, similarly

pressure, a desired pressure and a pressure range.

Has Temperature: Kelvin

DesiredTemp: Kelvin

MinTemp: Kelvin

MaxTemp: Kelvin

Pressure: Pascal

DesiredPress: Pascal

85

MinPress: Pascal

MaxPress: Pascal

DomInvar MinTemp ≤ Maxtemp

MinPress ≤ MaxPress

DomInit /

• Sensor

Def it obtains information from the power plant using physically placed

sensors. Informations obtained includes data type and its value.

Sensors are also checked to ensure that they are working correctly

Has SensorID: Integer

Status: on,off

Type: Digital, Analog

DataValue: Float

DataType: Temperature, Pressure

WorkCorreclty: Boolean

DomInvar forall s: Sensor

s.workingProperly = false ∧ s.status = on ⇒ ◦ s.status = off

s.workingProperly = true ∧ s.status = off ⇒ ◦ s.status = on

DomInit status = on

workingProperly = true

86

• Fault

Def Faults can occur in the cooling circuit or in the steam condenser.

When each fault is detected, an ID, type, priority, description and

detection time are associated with it. Measures are then taken ot

correct the fault.

Has FaultID: Integer

Type: Temperature, Pressure

Priority: Low, Medium, High, Critical

DetectionTime: Time

CorrectionTime: Time

Corrected: Boolean

Description: String

DomInvar DetectionTime ¡ CorrectionTime

Corrected = true ⇒ CorrectionTime 6= null

Corrected = false ⇒ CorrectionTime = null

DomInit DetectionTime = currentTime

Corrected = false

CorrectionTime = null

• Alarm

Def An alarm is raised when a fault is detected

Has AlarmID: Integer

Type:

87

Priority: Low, Medium, High, Critical

ActivationTime: Time

DeactivationTime: Time

Activated: Boolean

Description: String

DomInvar ActivationTime ¡ DeactivationTime

Activated = true ⇒ DeactivationTime = null

Activated = false ⇒ DeactivationTime 6= null

DomInit Activated = true

DeactivationTime = null

• SensorInformation

Def representation of the sensor

Has SensorID: Integer

Status: on,off

Type: Digital, Analog

DataValue: Float

DataType: Temperature, Pressure

WorkCorreclty: Boolean

Consistent: Boolean

DomInvar forall s: Sensor

s.workingProperly = false ∧ s.status = on ⇒ ◦ s.status = off

88

s.workingProperly = true ∧ s.status = off ⇒ ◦ s.status = on

DomInit status = on

workingProperly = true

Consistent = true

• FaultInformation

Def representation of the fault

Has FaultID: Integer

Type: Temperature, Pressure

Priority: Low, Medium, High, Critical

DetectionTime: Time

CorrectionTime: Time

Corrected: Boolean

Description: String

DomInvar DetectionTime ¡ CorrectionTime

Corrected = true ⇒ CorrectionTime 6= null

Corrected = false ⇒ CorrectionTime = null

DomInit DetectionTime = currentTime

Corrected = false

CorrectionTime = null

89

• AlarmInformation

Def representation of the Alarm

Has AlarmID: Integer

Type:

Priority: Low, Medium, High, Critical

ActivationTime: Time

DeactivationTime: Time

Activated: Boolean

Description: String

DomInvar ActivationTime ¡ DeactivationTime

Activated = true ⇒ DeactivationTime = null

Activated = false ⇒ DeactivationTime 6= null

DomInit Activated = true

DeactivationTime = null

• DataBase

Def A storage unit that hold SensorInformation, AlarmInformation and

FaultInformation

Has Size: Megabytes

DomInvar /

DomInit Size = O

90

.3 Agents Specifications

• ALARM

Def An agent that controls the status of the alarm

Has AlarmID, Type, Priority, ActivationTime, DeactivationTime, Ac-

tivated, Description

Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, FaultInfor-

mation/CorrectionTime, FaultInformation/Corrected, FaultInfor-

mation/Description

Controls Alarm/AlarmID, Alarm/Type, Alarm/Priority,

Alarm/ActivationTime, Alarm/DeactivationTime, Alarm/Activated,

Alarm/Description

ResponsibleFor AlarmRaisedWhenFaultInfoTransmitted, AlarmNo-

tRaisedIfFaultNotDetected, AlarmStatusUpdated

DependsOn PRECON

Perfoms Raise Alarm When Alarm Info Transmitted, Update alarm

status, Not Raise Alarm if Fault Not Detected

• OPERATOR

Def Represents user who interacts with the system

Has /

91

Figure 4: Agent diagram
92

Figure 5: Agent diagram continued
93

Monitors Alarm/AlarmID, Alarm/Type, Alarm/Priority,

Alarm/ActivationTime, Alarm/DeactivationTime, Alarm/Activated,

Alarm/Description

Controls /

ResponsibleFor OperatorInteractionsManaged

DependsOn /

Perfoms Manages Operator Interaction

• DB

Def Stores, updates and returns queries on sensor, fault and alarm

information

Has Size

Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, FaultInfor-

mation/CorrectionTime, FaultInformation/Corrected, FaultInfor-

mation/Description, AlarmInformation/AlarmID,

AlarmInformation/Type, AlarmInformation/Priority, AlarmInfor-

mation/ActivationTime, AlarmInformation/DeactivationTime,

AlarmInformation/Activated, AlarmInformation/Description, Sen-

sorInformation/SensorID, SensorInformation/Status, SensorInfor-

mation/Type, SensorInformation/DataValue,

SensorInformation/DataType, SensorInformation/WorkProperly

94

Controls Database/Size

ResponsibleFor DataCorrectlyUpdated, QueryAnswered

DependsOn Communication, PRECON, ALARM, Sensor

Perfoms Update Data Correctly, Answer Query

• PRECON

Def Detects faults from the data and handles fault status

Has /

Monitors SensorInformation/SensorID, SensorInformation/Status, Sen-

sorInformation/Type, SensorInformation/DataValue, SensorInfor-

mation/DataType, SensorInformation/WorkCorrectly, SensorInfor-

mation/Consistent

Controls FaultInformation/FaultID, FaultInformation/Type, FaultIn-

formation/Priority, FaultInformation/DetectionTime, FaultInforma-

tion/ CorrectionTime, FaultInformation/Corrected, FaultInforma-

tion/Description

ResponsibleFor CalculationDone, FaultDetectedWhenCalculationDone,

RemedyActionSuggestedWhenFaultDetected, FaultStatusUpdated

DependsOn DataBase

Perfoms Do Calculation, Detect Fault When Calculation is Done, Sug-

gest Remedy Action When Fault Detected, Update Fault Status

95

• COMM

Def Handles communication between the different objects

Has /

Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, FaultInfor-

mation/CorrectionTime, FaultInformation/Corrected, FaultInfor-

mation/Description, AlarmInformation/AlarmID,

AlarmInformation/Type, AlarmInformation/Priority, AlarmInfor-

mation/ActivationTime, AlarmInformation/DeactivationTime, AlarmIn-

formation/Activated, AlarmInformation/Description, SensorInfor-

mation/SensorID, SensorInformation/Status, SensorInformation/Type,

SensorInformation/DataValue, SensorInformation/DataType, Sen-

sorInformation/WorkCorrectly

Controls /

ResponsibleFor NoDataIntroduced, NoDataLost, SequencePreserved,

DataTransmittedInTime, FaultInfoTransmittedWhenFaultDetected

DependsOn Sensor, PRECON, ALARM, Database

Perfoms Transmit Query, Transmit Data to DB, Transmit Fault Info

When Fault Detected

• Sensor

Def Physical sensors provide plant information

96

Has SensorId, Status, Type, DataValue, DataType, WorkCorrectly

Monitors SteamCondensor/Temperature, SteamCondensor/DesiredTemp,

SteamCondensor/MinTemp, SteamCondensor/MaxTemp, SteamCon-

densor/Pressure, SteamCondensor/DesiredPress, SteamCondensor/

MinPress, SteamCondensor/MaxPress, CoolingCircuit/Temperature,

CoolingCircuit /DesiredTemp, CoolingCircuit /MinTemp, Cooling-

Circuit /MaxTemp, CoolingCircuit /Pressure, CoolingCircuit /De-

siredPress, CoolingCircuit /MinPress, CoolingCircuit /MaxPress,

SensorInformation/Status,

Controls Sensor/SensorID, Sensor/Status, Sensor/Type, Sensor/DataValue,

Sensor/DataType, SensorInformation/SensorID, SensorInformation/Type,

SensorInformation/DataValue, SensorInformation/DataType, Sen-

sorInformation/WorkProperly

ResponsibleFor AnalogDataAcquired, DigitalDataAcquired

DependsOn /

Perfoms Acquire Analog Data, Acquire Digital Data

• MANAGEMENT UNIT

Def Ensures efficient working of the sensors, checks consistency in data

obtained from the sensors

Has /

97

Monitors SensorInformation/SensorID, SensorInformation/Type, Sen-

sorInformation/DataValue, SensorInformation/DataType, Sensor-

Information/WorkProperly

Controls SensorInformation/Status, SensorInformation/Consistent

ResponsibleFor SanityChecksPerformed, ConsistencyChecksPerformed

DependsOn Sensor

Perfoms Perform Sanity Check, Perform Consistency Check

98

.4 Operations specifications

• AcquireAnalogData

Def Acquire the data coming from an analog device

Input s:Sensor,si:SensorInformation

Output si:SensorInformation/Value

DomPre s.value 6= si.value

DomPost s.value = si.value

ReqTrig for AnalogDataAcquired

s.value 6= si.value S=9s s.Type = ’Analog’ ∧ s.ID=si.ID ∧ s.Value

6= si.Value

PerformedBy Sensor

• AcquireDigitalData

Def Acquire the data coming from an digital device

Input s:Sensor,si:SensorInformation

Output si:SensorInformation/Value

DomPre s.value 6= si.value

DomPost s.value = si.value

ReqTrig For DigitalDataAcquired

s.value 6= si.value S=9s s.Type = ’Digital’ ∧ s.ID = si.ID ∧ s.Value

6= si.Value

99

PerformedBy Sensor

• SwitchSensorOff

Def Turn the sensor off

Input s:Sensor

Output s:Sensor/Status

DomPre s.Status = ’on’

DomPost s.Status = ’off’

ReqTrig For SanityCheckPerformed

¬ s.WorkingProperly

PerformedBy ACQUISITION UNIT

• SwitchSensorOn

Def Turn the sensor on

Input s:Sensor

Output s:Sensor/Status

DomPre s.Status = ’off’

DomPost s.Status = ’on’

ReqPre For SanityCheckPerformed

s.WorkingProperly

Operationalizes SanityCheckPerformed

100

PerformedBy ACQUISITION UNIT

• UnValidateData

Def Unvalidate the sensor data if they are not considered plausible

Input si: SensorInformation

Output si: SensorInformation/Consistent

DomPre si.Consistent

DomPost ¬ si.Consistent

ReqTrig For ConsistencyChecksPerformed(
si.DataType = ’Temperature’ ∧ (si.Value < minTemp ∨ si.Value

> maxTemp)
)

∨
(
si.DataType = ’Pressure’ ∧ (si.Value < minPres ∨ si.Value >

maxPres)
)

PerformedBy ACQUISITION UNIT

• ValidateData

Def Validate the sensor data if they are considered plausible

Input si: SensorInformation

Output si: SensorInformation/Consistent

DomPre ¬ si.Consistent

DomPost si.Consistent

101

ReqPre For ConsistencyChecksPerformed(
si.DataType = ’Temperature’ ∧ (minTemp≤ si.Value≤maxTemp)

)
∨

(
si.DataType = ’Pressure’ ∧ minPres ≤ si.Value ≤ maxPres)

)
PerformedBy ACQUISITION UNIT

• TransmitSensorData

Def Transmit the data to the DataBase

Input si: SensorInformation

Output /

DomPre ¬ Transmitted(si,ACQUISITION,DB)

DomPost Transmitted(si,ACQUISITION,DB)

ReqTrig For SensorDataTransmitted

¬ Transmitted(si,ACQUISITION,DB) S=1s si.Consistent ∧ ¬ Trans-

mitted(si,ACQUISITION,DB)

PerformedBy COMMUNICATION

• UpdateSensorData

Def Update the data in the DataBase

Input si: SensorInformation

Output /

DomPre ¬ Stored(si)

DomPost Stored(si)

102

ReqTrig For SensorDataUpdated

¬ Stored(si) S=1s Transmitted(si,ACQUISITION,DB)∧ ¬ Stored(si)

PerformedBy DB

• TransmitSensorQuery

Def transmit a sensor query to the DataBase

Input s: Sensor

Output /

DomPre ¬ Transmitted(s,PRECON,DB)

DomPost Transmitted(s,PRECON,DB)

ReqTrig For SensorQuerryTransmitted

¬ Transmitted(s,PRECON,DB) S=1s Query(s)

∧ ¬ Transmitted(s,PRECON,DB)

PerformedBy COMMUNICATION

• AnswerSensorQuery

Def Answer to a sensor query

Input s: Sensor

Output si: SensorInformation

DomPre ¬ Transmitted(si,DB,PRECON)

DomPost Transmitted(si,DB,PRECON)

103

ReqTrig For SensorQueryAnswered

¬ Transmitted(si,DB,PRECON) S=1s Transmitted(s,PRECON,DB)∧

Query(s)∧ Stored(si) ∧ si.ID = s.ID ∧ ¬ Transmitted(si,DB,PRECON)

PerformedBy DB

• Calculate

Def calculate all needed things in order to detect faults

Input si: SensorInformation

Output /

DomPre ¬ CalculationDone

DomPost CalculationDone

ReqTrig For CalculationDone

¬ CalculationDone S=1s Transmitted(si,DB,PRECON) ∧ ¬ Calcu-

lationDone

PerformedBy PRECON

• DetectFault

Def detect Fault

Input f: Fault, l: Location

Output /

DomPre ¬ Detected(f,l)

DomPost Detected(f,l)

104

ReqTrig For FaultDetectedWhenCalculationDone

¬Detected(f,l) S=1s CalculationDone ∧Occurs(f,l) ∧ ¬Detected(f,l)

PerformedBy PRECON

• TransmitDiagnosisData

Def Transmit the data concerning the diagnosis of a fault to the DataBase

Input f: Fault, l: Location, fi: FaultInformation, si: SensorInforma-

tion, fd: FaultDiagnosis

Output /

DomPre ¬ Transmitted(fi,PRECON,DB) ∨ ¬

Transmitted(ad,PRECON,DB) ∨ ¬ Concerns(ad,si,fi)

DomPost Transmitted(fi,PRECON,DB)

∧ Transmitted(ad,PRECON,DB) ∧ Concerns(ad,si,fi)

ReqTrig For DiagnosisDataTransmitted

¬ Transmitted(fi,PRECON,DB) ∨ ¬ Transmitted(ad,PRECON,DB)

∨ ¬ Concerns(ad,si,fi) S=1s Detected(f,l) ∧ f.ID = fi.ID ∧
(
¬ Trans-

mitted(fi,PRECON,DB) ∨ ¬ Transmitted(ad,PRECON,DB) ∨ ¬

Concerns(ad,si,fi)
)

PerformedBy COMMUNICATION

• UpdateDiagnosisData

Def Store the data concerning a detected fault in the DataBase

105

Input fi: SensorInformation, fd: FaultDiagnosis

Output /

DomPre ¬ Stored(fi) ∨ ¬ Stored(fd)

DomPost Stored(fi) ∧ Stored(fd)

ReqTrig For DiagnosisDataUpdated

¬ Stored(fi) ∨ ¬ Stored(fd) S=1s Transmitted(fd,PRECON,DB) ∧

Transmitted(fi,PRECON,DB) ∧
(
¬ Stored(fi) ∨ ¬ Stored(fd)

)
PerformedBy DB

• SwitchFaultStatusOn

Def switch the Fault Status on

Input f: Fault, l: Location, PowerPlant

Output PowerPlant/FaultStatus

DomPre PowerPlant.FaultStatus = off

DomPost PowerPlant.FaultStatus =on¬

Transmitted(fi,PRECON, ALARM)

ReqTrig For FaultStatusUpdated

Detected(f,l)

PerformedBy PRECON

• SwitchFaultStatusOff

Def switch the Fault Status off

106

Input f: Fault, l: Location, PowerPlant

Output PowerPlant/FaultStatus

DomPre PowerPlant.FaultStatus = on

DomPost PowerPlant.FaultStatus = off

ReqPre For FaultStatusUpdated

¬ Detected(f,l)

PerformedBy PRECON

• TransmitFaultInformation

Def Transmit Fault Information to The ALARM Management unit

Input f: Fault, l: Location, fi: FaultInformation

Output /

DomPre ¬ Transmitted(fi,PRECON, ALARM)

DomPost Transmitted(fi,PRECON, ALARM)

ReqTrig For FaultInformationTransmittedWhenFaultDetected

¬ Transmitted(fi,PRECON, ALARM) S=1s Detected(f,l) ∧ f.ID =

fi.ID ∧ ¬ Transmitted(fi,PRECON, ALARM)

PerformedBy COMMUNICATION

• RaiseAlarm

Def Raise the alarm

107

Input fi: FaultInformation

Output a: Alarm

DomPre ¬ Raise(fi,a)

DomPost Raise(fi,a)

ReqTrig For AlarmRaisedWhenFaultInformationTransmitted

¬ Raise(fi,a) S=1s Transmitted(fi,PRECON, ALARM) ∧ ¬ Raise(fi,a)

PerformedBy ALARM

• TransmitAlarmData

Def Transmit the alarm data to the DataBase

Input fi: FaultInformation, a: Alarm, ai: AlarmInformation, ad: Alar-

mDiagnososis

Output /

DomPre ¬ Transmitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB)

∨ ¬ Concerns(ad,fi,ai)

DomPost Transmitted(ai,ALARM,DB) ∧ Transmitted(ad,ALARM,DB)

∧ Concerns(ad,fi,ai)

ReqTrig For AlarmDataTransmitted

¬ Transmitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB)

∨ ¬ Concerns(ad,fi,ai) S=1s Raise(fi,a) ∧ a.ID = ai.ID ∧
(
¬ Trans-

mitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB) ∨ ¬ Con-

cerns(ad,fi,ai)
)

108

PerformedBy COMMUNICATION

• UpdateAlarmData

Def Update Alarm data in the DataBase

Input ai: AlarmInformation, ad: AlarmDiagnosis

Output /

DomPre ¬ Stored(ai) ∨ ¬ Stored(ad)

DomPost Store(ai) ∧ Stored(ad)

ReqTrig For AlarmDataCorrectlyUpdated

¬ Stored(ai) ∨ ¬ Stored(ad) S=1s Transmitted(ai,ALARM,DB) ∧

Transmitted(ad,ALARM,DB) ∧
(
¬ Stored(ai) ∨ ¬ Stored(ad)

)
PerformedBy

• SwitchAlarmStatusOn

Def switch the Alarm Status on

Input a: Alarm, fi: FaultInformation, PowerPlant

Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = off

DomPost PowerPlant.AlarmStatus = on

ReqTrig For AlarmStatusUpdated

Raise(fi,a)

109

Operationalizes AlarmStatusUpdated

PerformedBy ALARM

• SwitchAlarmStatusOff

Def switch the Alarm Status off

Input a: Alarm, fi: FaultInformation, PowerPlant

Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = on

DomPost PowerPlant.AlarmStatus = off

ReqPre For AlarmStatusUpdated

¬ Raise(fi,a)

Operationalizes AlarmStatusUpdated

PerformedBy ALARM

• TransmitAlarmQuery

Def transmit a alarm query to the DataBase

Input a: Alarm

Output /

DomPre ¬ Transmitted(a,ALARM,DB)

DomPost Transmitted(a,ALARM,DB)

110

ReqTrig For AlarmQuerryTransmitted

¬ Transmitted(a,ALARM,DB) S=1s Query(a) ∧

¬ Transmitted(a,ALARM,DB)

PerformedBy COMMUNICATION

• AnswerAlarmQuery

Def Answer to a alarm query

Input a: Alarm

Output ai: AlarmInformation

DomPre ¬ Transmitted(ai,DB,ALARM)

DomPost Transmitted(ai,DB,ALARM)

ReqTrig For AlarmQueryAnswered

¬ Transmitted(ai,DB,ALARM) S=1s Transmitted(a,ALARM,DB)∧

Query(a)∧ Stored(ai) ∧ ai.ID = a.ID ∧ ¬ Transmitted(ai,DB,ALARM)

PerformedBy DB

111

.5 Axel van Lamsweerde Architecture

112

Figure 6: Step 1: dataflow architecture
113

Figure 7: Step 2: style-based refined architecture

114

Figure 8: Step 3: pattern-based refined architecture

115

.6 Architecture Prescriptions

Preskriptor Specification: PowerPlant Monitoring System

Problem Goals Specifications: PowerPlant Monitoring Process

Components: • Component PowerPlantMonitoringSystem

Type Processing

Constraints PerformancOfThePlantMonitored

Composed of PRECON

ALARM

DataBase

Communication

Uses /

• Component PRECON

Type Processing

Constraints FaultDetected

RemedyActionSuggested

PeriodicalChecksPerformed&ReportWritten

Composed of FaultDetectionEngine

FaultInformation

FaultDiagnosis

SensorInformation

SensorConnect

116

Figure 9: Component refinment tree

117

Uses /

• Component ALARM

Type Processing

Constraints AlarmCorrectlyManaged

AlarmRaisedIffFaultDetected

AlarmTraced

Composed of AlarmManager

AlarmInformation

AlarmDiagnosis

InteractionManager

Uses /

• Component Database

Type Processing

Constraints CorrectDataPersistentlyStored

Composed of QueryManager

UpdateManager

Uses /

• Component Communication

Type Connector

Constraints NoDataIntroduced

NoDataLost

SequencePreserved

118

DataTransmittedInTime

DataTransmittedToTheDB

QueryTransmitted

FaultInformationTransmittedWhenFaultDetected

Composed of UpdateDBConnect

QueryDBConnect

FaultDetectionEngineAlarmManagerConnect

Uses /

• Component FaultDetectionEngine

Type Processing

Constraints CalculationDone

FaultDetectedWhenCalculationDone

FaultStatusUpdated

CheckPerformedWhenDataAcquired

ReportWrittenWhenCheckPerformed

Composed of /

Uses SensorConnect to interract with SensorInformation

FaultDetectionEngineAlarmManagerConnect to interract with

AlarmManager

UpdateDBConnect to interract with UpdateManager

• Component FaultInformation

Type Data

119

Constraints FaultInformationTransmittedWhenFaultDetected

Composed of /

Uses FaultDetectionEngineAlarmManagerConnect

to interract with AlarmManager

UpdateDBConnect to interract with UpdateManager

• Component FaultDiagnosis

Type Data

Constraints DiagnosisWritten

ComputedVariablesStored

Composed of /

Uses UpdateDBConnect to interract with DBUpdateManager

• Component SensorInformation

Type Data

Constraints AnalogDataAcquired

DigitalDataAcquired

SanityCheckPerformed

ConsistencyCheck

Composed of /

Uses SensorConnect to interract with DB

SensorConnect to interract with FaultDetectionEngine

• Component SensorConnect

Type Connector

120

Constraints DataAcquiredFromTheField

Composed of /

Uses /

• Component UpdateDBConnect

Type Connector

Constraints Secure

TimeConstraint = 2s

Composed of /

Uses /

• Component QueryDBConnect

Type Connector

Constraints TimeConstraint = 5s

Composed of /

Uses /

• Component FaultDetectionEngineAlarmManagerConnect

Type Connector

Constraints FaultTolerant

Secure

TimeConstraint = 1s

Composed of /

Uses /

121

• Component AlarmManager

Type Processing

Constraints AlarmRaisedWhenFaultInformationTransmitted

FaultInformationTransmitted

AlarmStatusUpdated

AlarmNotRaisedIfFaultNotDetected

Composed of /

Uses FaultDetectionEngineAlarmManagerConnect to interract with

FaultDetectionEngine UpdateDBConnect to interract with Up-

dateManager

• Component AlarmInformation

Type Data

Constraints AlarmInformationStoredWhenAlarmRaised

Composed of /

Uses UpdateDBConnect to interract with UpdateManager

• Component AlarmDiagnosis

Type Data

Constraints DiagnosisWritten

Composed of /

Uses UpdateDBConnect to interract with UpdateManager

• Component InteractionManager

Type Processing

122

Constraints OperatorInteractionManaged

Composed of /

Uses QueryDBConnect to interract with QueryManager

• Component QueryManager

Type Processing

Constraints QueryAnswered

DataQueriedUponUserRequest

AlarmInformationProvidedUponUserRequest

DataAcquired

Composed of /

Uses QueryDBConnect to interract with InteractionManager

• Component UpdateManager

Type Processing

Constraints DataCorrectlyUpdated DataUpdatedIfConsistent

Composed of /

Uses SensorConnect to interact with SensorInformation

UpdateDBConnect to interact with FaultDetectionEngine

UpdateDBConnect to interact with FaultDiagnosis

UpdateDBConnect to interact with AlarmManager

UpdateDBConnect to interact with AlarmDiagnosis

123

Figure 10: Box diagram of the architecture

124

.7 Additional constraints on the system

.7.1 Constraints on the Database

1. Informal Def : Every update on the main database has to be done on

the backup database

Formal Def : ∀ x:Data Update(x,mainDB) ⇒ ♦ Update(x,backupDB)

2. Informal Def : No additional update should to be made

Formal Def : Update(x,backupDB) ∧ mainDB.Status = working ⇒

Update(x,mainDB)

3. Informal Def : If the main database fails the backup database should

take the relay

Formal Def : mainDB.Status = failure ∧ backupDB.Status=working

⇒ ◦ ¬ mainDB.work ∧ backupDB.work

4. Informal Def : If the main database recovers after a failure all the

updates made on the backup database have to be done on the main

database. The main database has also to reused instead of the

backup one.

Formal Def : ∀ x:Data Update(x,backupDB) ∧ • mainDB.Status =

failure ∧ mainDB.Status = working ⇒ Update(x,mainDB)

5. Informal Def : No Query on something that is currently updated can

be performed

125

Formal Def : ∀ x:Data Query(x) ⇒
(
¬ Update(x,mainDB)

∧ mainDB.Work
)
∨

(
¬ Update(x,backupDB) ∧ backupDB.Work)

6. Informal Def : Only one database can work at a time

Formal Def : mainDB.Work ⇒ ¬ backupDB.Work

∧ backupDB.Work ⇒ ¬ mainDB.Work

.7.2 Constraints on the connector between ALARM & PRECON
(i.e., FaultDetectionEngineAlarmManagerConnect)

1. Informal Def : There has to be two copies of PRECON and ALARM

Formal Def : ∀ x: Component x.type = PRECON ∨ x.type = ALARM

⇒ ∃ y:Component x.type = y.type ∧ ¬ x = y ∧ x ≡ y

2. Informal Def : Every time a component fails (PRECON or ALARM),

the copy should take te relay

Formal Def : ∀ x:Component
(
x.type = PRECON ∨ x.type = ALARM)

∧ x.Status = failure⇒ ∃ y:Component x.type = y.type ∧ y.Status

= working ∧ ◦
(

y.Work ∧ ¬ x.Work
)

3. Informal Def : Only one component (PRECON or ALARM) should

be working at a time

Formal Def : ∀ x:Component
(

x.type = PRECON ∨ x.type = ALARM)
∧ x.Work⇒ ¬ ∃ y:Component x.type=y.type ∧ ¬ x = y ∧ y.Work

126

4. Informal Def : There is no difference in importance between the copies.

So the switch should only occur in case of a failure

Formal Def : • ¬ x.Work ∧ x.Work ⇒ ∃ y • y.status=working ∧

y.status=failure ∧ x.type=y.type ∧ ¬ x = y ∧ x ≡ y

5. Informal Def : A failure of PRECON or ALARM should not affect the

other. The other should continue to work fine

Formal Def : ∃ x:Component • x.Status = working ∧ x.Status=failure

⇒
(
∀ y:Component x.type 6= y.type ∧ • y.Satus=working⇒ y.Status

=woking
)

127

.8 Goal Oriented Requirements to Architecture Pre-
scription - Updated

The Brandozzi Perry method converts the goal oriented requirement

specifications of KAOS into architectural prescriptions.

The components in an architecture prescription can be of three dif-

ferent types - process, data or connector. Processing components perform

transformation the data components. The data components contain the nec-

essary information. The connector components, which can be implemented

by data or processing components, hold the system together. All components

are characterized by goals that they are responsible for. The interactions and

restrictions of these components characterize the system.

There are well defined steps to go from KAOS entities to APL entities.

The following table illustrates this relationship

KAOS entities APL entities

Agent Process component / Connector component
Event -
Entity Data component
Relationship Data component
Goal Constraint on the system / on a subset

One or more additional processing, data
or connector components.

In this method we create a component refinement tree for the architec-

ture prescription from the goal refinement tree of KAOS. This is a three step

process and may be iterated.

The First Step

128

In the first step we derive the basic prescription from the root goal of

the system and the knowledge of the other systems that it has to interact

with. In this case the software system is responsible for monitoring the power

plant. Thus the root goal is defined as PowerPlantMonitoringSystem. This

goal is then refined into PRECON, ALARM, DataBase and Communication

components.

These refinements are obtained by selecting a specific level of the goal

refinement tree. If we only take the root of the goal refinement tree, the

prescription would end up being too vague. On the other hand if we pick the

leaves, we may end up with a prescription that is too constrained. Therefore

we pick a certain level of the tree which we feel allows us to create a very well

defined prescription while preventing a specification that constrains the lower

level designs.

In this case the root goal of the component tree is simply the name of

the system that is being implemented. In order to determine the second level

of this tree we look at the second level of the goal tree. This gives a good

idea of some of the high level goals of the system. We also look at some of the

main sub systems that the given system would need to interact with in order

to realize these goals.

The next step is to determine how detailed we want the second level of

the component tree to be. We can choose to keep the second step simple which

would typically include basic manager type components and a main connector

component. These components are further spilt into detailed subsystems later.

129

An example of this can be seen in the Paper selection process[1] shown

below.

Figure 11: Goal refinement tree for the paper selection process

G:Maintain[QualityOfTheScientificMagazine]

G1:Maintain[QualityOfPublishedArticles]

G2:Maintain[OriginalityOfSubmission]

G3:Maintain[QualityofPrint]

G4:Achieve[EnoughQuantityOfPublishedArticles]

This tells us the root goal and the second level goals of the system.

Further details about this specific system can be found in [1]

The following is the specification of the second level components of the

tree.

Preskriptor Specification: ScientificPaperManager

KAOS Specification: PaperSelectionProcess

130

Figure 12: Component refinement tree for the paper selection process

Components:

Component SelectionManager

Type Processing

Constraints Maintain[QualityOfTheScientificMagazine]

Composed of /

Uses PeopleConnect to interact with (AutorAgent, ChiefEditorAgent, Asso-

ciatedEditorAgent, EvaluatorAgent)

Component PeopleConnect

Type Connector

Constraints Maintain[QualityOfTheScientificMagazine]

Composed of /

131

Uses /

Specifically for the paper selection process the second level resulting

component tree has only two components. The first component is the Se-

lectionManager which is the basic manager required to realize all the goals.

PeopleConnect is the connector used by this manager to allow the various

subsystems to interact.

A different approach is seen in the Power plant problem. In this case

the subsystems that the main system interacts with are used to determine

the second level components. This makes the second level of the tree more

detailed. In case of the powerplant - Precon, Alarm and Databases are the

major subsystems that the power plant interacts with so these form the second

level of the component tree. A communication component is also present to

ensure proper communication between these various subsystems. The agents in

the goal model are a way to start looking for the various subsystems involved.

In both cases we look at agents that are subsystems not agents that are people.

It is important to note that in both processes there is always a connector

element present at the second level

The Second Step

Once the basic architecture is in place, we obtain potential sub compo-

nents of the basic architecture. These are obtained from the objects in KAOS

specification. We derive data, processing and connector components that can

implement PRECON, ALARM, DataBase and Communication components.

132

If in the third step we don’t assign any constraints to these components, they

won’t be a part of the system’s prescription.

Since all the components derived from KAOS’ specification are data,

we need to define various processing and connector components at this stage.

At the next step we decide which of these components would be a part of the

final prescription.

The Third Step

In this step we determine which of the sub goals are achieved by the

system and assign them to the previously defined components. With the goal

refinement tree as our reference, we decide which of the potential components

of step two would take responsibilities of the various goals. Note that this is a

design decision made by the architect based on the way he chooses to realize

the system. The components with no constraints are discarded, and we end

up with the first complete prescription of the system.

Components like Fault were discarded from the prescription because

they were not necessary to achieve the sub goals of the system. Instead of the

Fault component we chose to keep FaultInformation. Different architects may

use different approaches.

It is interesting to note that in our first iteration of the prescription

Communication was a leaf connector with no subcomponents. It was respon-

sible for realizing the necessary communication of the system. However the

power plant communication was not uniform throughout the system. Different

133

goals had different time, connection and security constraints for communica-

tion. In our first iteration we assumed that Communication component could

handle these varying types of requirements on it. However then we realized

that creating sub components for Communication component was a step that

helped illustrate these differences. Therefore we created the sub components -

UpdateDBConnect, FaultDetectionEngineAlarmManagerConnect and Query-

DBConnect. As the names suggest, each of these were responsible for the

communication in different parts of the system. Therefore it was easier to

illustrate the different time and security constraints needed for each of these.

The following are the prescriptions for the sub components

Component UpdateDBConnect

Type Connector

Constraints Secure

TimeConstraint = 2 s

Composed of /

Uses /

Component QueryDBConnect

Type Connector

Constraints TimeConstraint = 5 s

134

Composed of /

Uses /

Component FaultDetectionEngineAlarmManagerConnect

Type Connector

Constraints Fault Tolerant

Secure

TimeConstraint = 1 s

Composed of /

Uses /

This architecture does specify the various connectors in the subsystem.

We can specify the constraints on these connectors. However there is no way

to specify the data being passed through them. Various components do specify

the connectors they use however information regarding the data being passed

is absent under the connector description. A data flow model for this method

would be useful in this. Another possibility is specifying data as a constraint

for various connectors. Data along with the constraints would form a connector

description.

Achieving Non Functional Requirements

135

Different styles and patterns discussed in this thesis are used to perform

transformation on the architecture to achieve various non functional require-

ments.

Box Diagram

Once the architecture was created we also added a box diagram illus-

trating the various components and connectors. The component tree created

as a result of the three steps did not show how the various components are

linked through the connectors. The box diagram helps in visualizing this and

thus gives a more complete view of the architecture. Whereas the component

tree gave us a hierarchical type view of the system, the box diagram gives

us a network type view. This is essential in understanding how the system

works. This diagram also helps in understanding the connectors of the system

because it tells us the way these connectors link to components. This thereby

helps in getting an understanding of the data that would be passed through

these connectors. Understanding of the data passed is essential to getting a

complete description of the connectors.

136

Bibliography

[1] Manuel Brandozzi. From goal oriented requirements specifications to

architectural prescriptions. Master’s thesis, The University of Texas at

Austin, 2001.

[2] Manuel Brandozzi and Dewayne E. Perry. Transforming goal oriented

requirement specifications into architectural prescriptions. In Castro and

Kramer, editors, STRAW 2001 - From Software Requirements to Archi-

tectures, pages 54–60, 2001.

[3] Manuel Brandozzi and Dewayne E. Perry. Architectural prescriptions

for dependable systems. In ICSE 2002 - International Workshop on

Architecting Dependable Systems, Orlando, May 2002.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal. Pattern Oriented Software Architecture, chapter 3. Wiley,

1996.

[5] Alberto Coen-Porisini and Dino Mandrioli. Using trio for designing a

corba-based application. Concurrency: Practical and Experience, 12(10):981–

1015, August 2000.

[6] Alberto Coen-Porisini, Matteo Pradella, Matteo Rossi, and Dino Mandri-

oli. A formal approach for designing corba based applications. In ICSE

137

2000 - 22nd International Conference on on Software Engineering, pages

188–197, Limerick, June 2000. ACM Press.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns, chapter 5. Addison Wesley, 1995.

[8] Emmanuel Letier and Axel van Lamsweerde. Agent-based tactics for

goal-oriented requirements elaboration. In ICSE 2002 - 24th Interna-

tional Conference of Sofware Engineering, pages 83–93, Orlando, May

2002. ACM Press.

[9] Emmanuel Letier and Axel van Lamsweerde. Deriving operational soft-

ware specifications from system goals. In FSE-10 - 10th ACM Symposium

on the Foundations of Sofware Engineering, pages 119–128, Charleston,

November 2002. ACM Press.

[10] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and

Concurrent Systems: Specification, chapter 3. Springer-Verlag, 1992.

[11] Philippe Massonet and Axel van Lamsweerde. Formal refinement pat-

terns for goal-driven requirements elaboration. In FSE-4 - 4th ACM

Symposium on the Foundations of Sofware Engineering, pages 179–190,

San Fransisco, October 1996. ACM Press.

[12] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software Engineering Notes,

17(4):40–52, October 1992.

138

[13] Mary Shaw and David Garlan. Software Architecture: Perspectives on

an Emerging Discipline. Prentice-Hall, 1996.

[14] Axel van Lamsweerde. From system goals to software architecture. In

Marco Bernardo and Paola Inverardi, editors, Formal Methods for Soft-

ware Architectures, volume 2804 of Lecture Notes in Computer Science,

pages 25–43. Springer-Verlag, 2003.

139

Vita

Divya Jani was born in Jaipur, India on December 16, 1980, the daugh-

ter of S.P. Jani and Pravina Jani. See received the Bachelor of Science degree

in Engineering from Rutgers University. Through the course of her studies

she interned at Lucent Technologies and Dell Inc. After finishing her bache-

lors degree she applied to the University of Texas at Austin for enrollment in

their computer engineering program. She was accepted and started graduate

studies in September, 2002.

Permanent address: 4404 E Oltorf Apt 13203
Austin, Texas 78741

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

140

