
UNIVERSITE CATHOLIQUE DE LOUVAIN
Faculté des Sciences Appliquées
Département d’ingénierie informatique

Deriving architectural descriptions
from goal-oriented requirements

Mémoire présenté en vue
de l’obtention du grade

Promoteur : Prof. Axel van Lamsweerde d’Ingénieur Civil
Co-promoteur : Prof. Dewayne E. Perry en Informatique

par
Damien Vanderveken

Louvain-la-Neuve
Année académique 2003-2004

Abstract

Requirements and software architecture form two essential steps of the soft-
ware life cycle. Although closely inter-related, most research has considered
them to date as isolated products. On the one hand methodologies have
been developed in order to gather complete, coherent, consistent and ade-
quate requirements. On the other hand work on architecture has focused on
enabling precise descriptions and on allowing formal reasoning about system
properties such as deadlock, starvation, race conditions and so on. However,
the problem of building an architecture that actually satisfies the require-
ments is so far largely unaddressed. Nevertheless two methods have recently
emerged in this direction: the KAOS method and the Preskriptor process.
Both are still at an early development stage and need therefore a validation
to be said effective.

This thesis validates those two approaches on a case study of significant
size (a power plant supervisory system built for ENEL, the Italian electric-
ity company). It results from the analysis that both methods seem to be
productive. Indeed both resulting architectures satisfy all the functional
requirements and most of the non-functional ones. Some weak points were
also identified among which the absence of behavioral aspects in resulting
architecture descriptions and weak pattern descriptions.

This work extends the KAOS method by proposing the use of an archi-
tecture description language to complete and precise the architectural de-
scription. It results from there a set of rules and heuristics enabling to derive
a structural and behavioral architecture description. In addition two pat-
terns are described in details, one to achieve fault-tolerant communication
and the other to maintain data consistency. Both the resulting architecture
fragment and the implied transformation process are discussed.

2

Acknowledgments

Foremost I thank my supervisor, Axel van Lamsweerde, to have introduced
me to Dewayne E. Perry, so giving me the opportunity to perform a five
months stay in United States. Moreover I thank him for his precious feed-
back, his encouragements and support all along the year.

I thank Dewayne E. Perry for his warm welcome at the University of
Texas at Austin, for his availability and his logistic support. I benefited
from his wise advices and from his experience.

I also wish to thank Divya Jani since part of this work was realized in
close interaction with her. It has been a pleasure to collaborate with her.

I am indebted to Christophe Ponsard for his helpful comments on earlier
versions of this thesis. His suggestions significantly improved the quality of
this work.

I also thank my two reviewers, Christophe Ponsard and Simon Brohez,
for their interest about my work.

Finally, I wish to thank all my family for their every day support and
more particularly my sister. Her help was invaluable.

3

Contents

Introduction 7

1 Background 9
1.1 Goal-oriented Requirements Engineering 9

1.1.1 Introduction . 9
1.1.2 KAOS: A Goal-Oriented Requirement Engineering Me-

thod . 10
1.2 Architecture Description Languages 18

1.2.1 Software Architecture 18
1.2.2 ADLs . 18

1.3 From System Goals to Software Architecture 24
1.3.1 The KAOS Method 24
1.3.2 The Preskriptor Process 29

2 Architecture derivation for a Power Plant Supervisory Sys-
tem 34
2.1 Informal Description of the Problem 34
2.2 Requirements Analysis . 38

2.2.1 Requirements Elaboration 38
2.2.2 Obstacle Analysis . 49

2.3 Architecture Derivation . 56
2.3.1 Using the KAOS Method 56
2.3.2 Using the Preskriptor Process 61
2.3.3 Comparing the Resulting Architectures 68

2.4 Discussion . 71
2.4.1 Evaluating the Methods 71
2.4.2 Opportunities for Improvements 75
2.4.3 Comparing the Methods 76

5

CONTENTS 6

3 Toward More Precise Architecture Derivation 78
3.1 Wright . 79
3.2 Deriving Architectures in Wright 81

3.2.1 Integration within the KAOS method 81
3.2.2 Structure . 82
3.2.3 Behavior . 84
3.2.4 Elaboration of Scenarios 95

3.3 Application to the Power Plant System 96
3.4 Making Architectural Patterns Further Precise 103

3.4.1 The Fault-Tolerant Communication Pattern 103
3.4.2 The Observer Pattern 113

3.5 Discussion . 119

Conclusion 121

Bibliography 124

List of Figures 128

List of Tables 130

A KAOS Specifications 131
A.1 Goal specifications . 131

A.1.1 Functional goals . 131
A.1.2 Non-functional goals 142

A.2 Object Specifications . 143
A.3 Agents Specifications . 149
A.4 Operations specifications . 154
A.5 Modifications resulting from the obstacle analysis 162

B Architectural Prescriptions 165
B.1 Initial Prescriptions . 165
B.2 Prescriptions resulting from step 4 169

C Wright Specifications 172
C.1 The Fault-Tolerant Communication Pattern 172

C.1.1 Initial Wright Specification 172
C.1.2 Resulting Wright Specification 173

C.2 The Observer Pattern . 176
C.2.1 Initial Wright Specification 176
C.2.2 Resulting Wright Specification 177

Introduction

Requirements and software architecture have long been recognized as two
crucial parts of the software development process. Inadequate, inconsistent,
incomplete or ambiguous requirements have a critical impact on the qual-
ity of the resulting software. So does software architecture. Its influence
is particularly significant on non-functional properties such as performance,
reliability, and security. Since ten years, the scientific community has there-
fore focused its efforts on the development of methods and tools so as to
improve practices in those two areas. Therefrom goal-oriented requirement
engineering and architectural description languages (ADL) have emerged as
the most satisfactory solutions.

Far from being independent, requirements and architecture are closely
inter-related. Requirements should serve as the basis to the architecture
design while architecture must satisfy requirements. However, research has
only recently considered the problem of building an architecture that satisfies
the requirements.

The KAOS method and the Preskriptor process are two different ap-
proaches toward this direction. They both use goal-oriented requirements
expressed in linear temporal logic using the KAOS framework in order to
build an architecture satisfying functional and non-functional requirements.
The KAOS method starts by deriving an abstract dataflow architecture in
which all functional goals hold. It refines it further by applying styles and
patterns in order to achieve architectural constraints and non-functional
goals respectively. The Preskriptor process constructs an architectural pre-
scription of the system. A component refinement tree is elicited from re-
quirements so that each goal is ensured by a component.

However these two methodologies are still at an early development stage.
They lack of a validation on real examples to prove their efficiency. The aim
of this work is twofold; it is first to evaluate and compare both methods
by applying them on a system of reasonable size and secondly to improve a
method on the basis of weak points identified during the methods applica-

7

INTRODUCTION 8

tion.
The case study deals with a power plant supervisory system developed

for ENEL, the Italian electricity company. System description was extracted
from various papers reporting this industrial experience. Therefrom the
requirements specifications needed as starting point for both architecture
derivation techniques were extracted. The KAOS method and the Preskrip-
tor process were then applied to derive the software architecture.

The main result which has emerged from the experiment analysis was
the two methods seem to be effective. Indeed both resulting architectures
ensure all functional and most of the non-functional requirements.

Those methodologies were nevertheless not perfect. The absence of be-
havioral description in the resulting architectures was identified as their main
common weakness. Moreover patterns descriptions were also insufficient in
the KAOS method.

An Architectural Description Language (ADL) was used to improve the
KAOS method with respect to the identified problems. It results from there
a set of rules and heuristics enabling to derive a structural and behavioral
architecture description as well as a precise description of two patterns,
one to achieve fault-tolerant communication and the other to maintain data
consistency.

This thesis is structured as follows: Chapter 1 provides the necessary
background material, Chapter 2 describes the case study and Chapter 3 ex-
plores the use of an ADL in order to add a behavioral aspect to architecture
description and defines precisely two patterns. Finally the conclusion sum-
marizes the main points of this work and presents some further work. The
appendices include complete specifications of the requirements and of the
derived architecture for the power plant supervisory system.

Chapter 1

Background

1.1 Goal-oriented Requirements Engineering

1.1.1 Introduction

Before being able to construct any system, it has first to be understood.
Requirements of the envisioned system have to be defined. Its objectives
together with the needs they fulfill state why the system is needed. Its
features, be they functional or non-functional, state what the system has
to do. Functional aspects consist of the services to be provided while non-
functional ones deal with the quality of the developed software. They en-
compass safety, security, usability, flexibility, performance, robustness, in-
teroperability, cost, maintainability, and so on. The way those requirements
will be met state how the system will be built. Precise requirements should
answer the WHY/WHAT/HOW questions.

Requirement engineering is concerned with the elaboration of such re-
quirements. Goals to be achieved have to be identified then operationalized
into services and constraints. The responsibility of achieving those two must
next be assigned to some agents, be they part of the environment (e.g., hu-
man or devices) or of the software itself. One should note that requirements
are not fixed once and for all. They need continuous review and revision.
So requirement engineering is an iterative process

Requirement engineering is recognized as a stage of prime importance in
the software development process. Inadequate, inconsistent, incomplete or
ambiguous requirements have a critical impact on the quality of the resulting
software. Studies have shown that a requirement error corrected at a late
development phase could cost up to 200 times more than if it had been
corrected during the requirement engineering phase. Poor requirements are

9

CHAPTER 1. BACKGROUND 10

also a major cause of software failure according to the managers in charge
of the project. By software failure, it is meant a project that was never
completed or only partially.

Goals are an essential component in the requirement engineering process.
They provide the rationale of the system answering the WHY question.
Object-oriented analysis techniques do not address such concerns. This has
led to a migration from an object orientation to a goal orientation.

Goal-oriented requirement engineering encompasses a set of techniques
including goal modeling, goal specification, and goal-oriented reasoning.
Two complementary approaches have emerged into two different frame-
works: a formal and a qualitative one.

The formal framework assigns linear temporal logic formulas to goals
and uses AND/OR refinements to structure them. Roughly, when a goal is
AND-refined into subgoals it means that the satisfaction of all of its subgoals
is a sufficient condition to satisfy this goal. Similarly, when a goal is OR-
refined it means that the satisfaction of one of its subgoals is a sufficient
condition to satisfy the goal.

In the qualitative framework, weaker versions of those links are intro-
duced to relate ”soft” goals. The links express contribution, be it positive
or negative, from a goal to another. ”Soft” goals denote goals whose satis-
faction is difficult to check in a clear-cut sense. The concept of satisficing
is introduced to express that some goal is achieved within acceptable limits,
rather than absolutely. If a goal is AND-decomposed into subgoals and all
subgoals are satisficed, assuming all the subgoals contribute positively, then
the goal is satisficeable; but if a subgoal is denied then the goal is deniable.

1.1.2 KAOS: A Goal-Oriented Requirement Engineering Me-
thod

The formal framework gave rise to the KAOS methodology for eliciting,
specifying and analyzing goals, requirements, scenarios, and responsibility
assignments. This is the methodology used to elaborate the requirements of
the power plant supervisory system.

Four complementary and interdependent models form the requirements
in the KAOS method: (1) the goal model, (2) the object model, (3) the agent
model and (4) the operation model. Each of them presents a different view of
the system and consists of a graphical and a textual representation. KAOS
has a two-level semantic. A semantic net layer captures goals, constraints,
agents, objects and actions together with their link while the formal assertion
layer uses real-time first order linear temporal logic [22] to support formal

CHAPTER 1. BACKGROUND 11

specification and reasoning.
The goal model presents an intentional view of the studied system. Func-

tional and non-functional goals are structured by AND/OR goal diagrams.
Higher level goals are rather general and involve multiple agents while lower
levels are more technical and involve less agents. Goals belong to various
categories (e.g., Security, Information), can be of different types (e.g., Main-
tain/Avoid, Achieve/Cease) and are characterized by attributes (e.g., Name,
Definition). Terminal goals are distinguished according to the agent they
are assigned to. A requirement is a terminal goal assigned to an agent of the
software-to-be while an expectation is a terminal goal assigned to an agent
part of the environment. The latter cannot be enforced by the software-
to-be. The refinement ends up when each leaf goal is realizable by a single
agent.

The object model provides a structural view. Domain objects of interest
are modeled by UML class diagrams. Objects can be entities, associations,
events or agents and are characterized by attributes and invariants. In-
variants can be domain properties, that is, properties about object of the
environment that hold independently of the software-to-be. Objects reflect
the state of the system at a certain point in time.

The agent model points out the responsibilities in the system. Agents
are active components that play some role toward goal satisfaction. They
can be either part of the software or part of the environment (e.g., humans,
sensors, actuators). Goals under the responsibility of software agents are
requirements while those under the responsibility of environment agents
are expectations. Their capabilities in terms of monitored and controlled
variables are expressed through context diagrams.

The operation model reveals the behavior of the system. Operations
express state transitions over objects of the system. An operation is specified
by the classic pre/postcondition mechanism. A distinction is though made
between domain pre/post conditions and pre-, post- and trigger conditions
required for the satisfaction of some goal. The dynamic can be expressed
graphically using scenarios and state charts.

These four models are strongly interwoven. The definition of goals refers
to objects. Agents perform operations that operationalize goals, i.e., ensure
goal satisfaction. The interface of agents refers to object definition. Opera-
tion application defines a state transition of some object. The links between
models ensure a coherent, consistent, complete, and adequate picture of the
system is constructed.

Now that basic underlying concepts have been exposed, the KAOS me-
thodology itself will be illustrated with simplified excerpts of requirements

CHAPTER 1. BACKGROUND 12

Figure 1.1: Preliminary goal graph for the power plant supervisory system

specification of the power plant supervisory system. A complete description
will be exposed in section 2.2.

Goal identification from the initial document

A first set of goals are identified from the available sources [8, 9, 10] by
searching for intentional keywords such as ”purpose”, ”objective”, ”con-
cern”, ”intent”, ”in order to”, and so forth. Goals elicited during that step
tend to be higher level and may consequently be unformalizable (soft goals).
Figure 1.1 shows the first goals derived. Clouds denote soft goals while par-
allelograms denote formalizable goals. The classic graphic representation of
AND and OR gate has been borrowed from digital circuit theory to represent
AND and OR refinements.

Formalizing goals and identifying objects

This step consists in formalizing existing goals and in identifying objects,
associations and attributes appearing in the goal specification. The goal
FaultDetected for example may be defined precisely:

Goal FaultDetected

InformalDef Faults occurring in any location (i.e., the steam con-
denser or the cooling circuit) must be detected. Faults occur in
only one location at a time.

FormalDef ∀ f: Fault, ∃! l: Location:
Occurs(f,l) ⇒ ♦ Detected(f,l)

CHAPTER 1. BACKGROUND 13

From the definition of that goal, several objects and relationships can be
identified. The resulting portion of the object model is presented in Figure
1.2.

Figure 1.2: First draft of the object model

The goal AlarmManaged is hardly formalizable but an informal definition
can nonetheless be given.

Goal AlarmManaged

InformalDef The system must raise an alarm each time a fault is
detected. In addition, it must trace and keep the state of all
alarms previously raised.

The model previously built can now be enriched with the new concepts
added by this definition (see Figure 1.3.

Figure 1.3: Second draft of the object model

Eliciting new goals through WHY questions

Finding more abstract goals, besides completing the goal diagram, can point
out some subgoals missing in the first description. A lot of goals are often

CHAPTER 1. BACKGROUND 14

implicit in the available sources and may be discovered as a by-product of
the abstraction mechanism.

Abstraction translates an upward move into the graph and is achieved
by asking the WHY question. Applied to the goals FaultsDetected and
AlarmManaged it yields the parent goal PowerPlantSupervised. To achieve
proper supervision, remedy actions should be suggested in case of fault
detection. This leads to the originally missing subgoal RemedyActions-
SuggestedWhenFaultDetected. The resulting subgraph is presented in Fi-
gure 1.4.

Figure 1.4: Addition of missing goals via WHY elicitation

Eliciting new goals through HOW questions

Goals have to be refined until leaf goals can be assigned to a single agent, be
it part of the software or the environment. Goals should thereby be refined
into more concrete ones.

Refinement translates a downward move into the graph and is achieved
by asking the HOW question. Asking the HOW question to the goal Alarms-
Managed leads to the two subgoals AlarmRaisedWhenFaultDetected and
AlarmsTraced. The former can be further refined into FaultInforma-
tionTransmittedWhenFaultDetected and AlarmRaisedWhenFaultInfor-
mationTransmitted. Without going into too much details, the software
agents in charge of faults detection and in charge of alarm management
cannot be identical. This is why some information on diagnosed faults have
to be transmitted. The resulting portion of the goal diagram is presented in
Figure 1.5.

The refinement of AlarmRaisedWhenFaultDetected can be proved to
be correct and complete using formal goal refinements patterns [12]. These
patterns can also be used to derive automatically new refinements.

CHAPTER 1. BACKGROUND 15

Figure 1.5: Addition of missing subgoals via HOW elicitation

Identifying potential responsibility assignments

During this step, terminal goals are examined and agents having the ca-
pabilities to take the responsibility of those goals are identified. Multiple
agents can be able to achieve some goals. The goal AlarmRaisedWhenFault-
InformationTransmitted could be assigned either to some automated (i.e.,
software or hardware) components or to a power plant employee. The former
would raise the alarm automatically while the later would do it manually.
The situation is presented in Figure 1.6.

Figure 1.6: Potential agents

A qualitative reasoning can drive the selection among alternatives. In
this case, assigning the goal to a power plant employee would contribute
negatively to the soft goal Minimize[OperationCosts]. The software agent
should therefore be preferred.

CHAPTER 1. BACKGROUND 16

Deriving agent interfaces

Let assume that the goal AlarmRaisedWhenFaultInformationTransmitted
has been assigned to a software component, namely ALARM. Its interface in
terms of monitored and controlled variables can be derived from the formal
specification of this goal:

Goal AlarmRaisedWhenFaultInformationTransmitted

FormalDef ∀ fi: FaultInformation, ∃! a: alarm
Transmitted(fi,PRECON,ALARM) ⇒ ♦ Raise(fi,a)

Note that FaultInformation is the software representation of the fault
concept and that PRECON is the agent in charge of fault detection. ALARM
needs consequently to be able to monitor FaultInformation and controls
Alarm. Similar reasoning can be applied to other agents to derive their
interface.

Identifying operation

For each goal, an operation is identified and preliminary defined by pre- and
postconditions resulting from the domain. For the goal AlarmRaisedWhen-
FaultInformationTransmitted defined previously, the following operation
can be defined:

Operation RaiseAlarm

Input fi: FaultInformation, a: Alarm
Output a: Alarm
DomPre ¬Raise(fi,a)
DomPost Raise(fi,a)

This operation definition only defines the basic state transition but does
not ensure the goal.

Operationalizing goals

Once identified, operations have to be straighten in order to ensure the goal
they operationalize. Required pre-, post- and trigger conditions are added
to operations specification to ensure the satisfaction of goals. Operational-
ization can be automated using operationalization patterns [20]. In order to
ensure the goal AlarmRaisedWhenFaultInformationTransmitted the spec-
ification of RaiseAlarm has to be modified:

CHAPTER 1. BACKGROUND 17

Operation RaiseAlarm

Input fi: FaultInformation

Output a: Alarm

DomPre ¬Raise(fi,a)

DomPost Raise(fi,a)

ReqTrig for AlarmRaisedWhenFaultInformationTransmitted
@ Transmitted(fi,PRECON,ALARM)

The trigger condition states that when the trigger condition becomes
true and if the preconditions hold then the operation must be applied.

The introduced KAOS methodology provides a set of both formal and
semi-formal techniques enabling to build requirements. One should note
that the method has been explained as being sequential but it was only for
a presentation purpose. Far from the waterfall model, the KAOS method
considers requirement elaboration as an iterative process.

In order to keep things concise, neither conflicts that can arise between
goals nor obstacles to goal satisfaction have been addressed. However, these
concerns are included in the method. More information on conflict manage-
ment can be found in [28] and on obstacles handling in [29].

CHAPTER 1. BACKGROUND 18

1.2 Architecture Description Languages

1.2.1 Software Architecture

Software architecture is concerned with the organization of software. It con-
sists of a description of constituent architectural elements, their interactions
and the constraints on those elements. Elements are divided into two cate-
gories: components and connectors. Components are used to denote points
of computations while connectors define the interactions between these com-
ponents. Interactions include communication and synchronization protocols
which set up a coordination scheme between components. Typical con-
straints include security, performance or conformance to a particular style
(e.g, pipes and filters, client-server, event-based).

Architecture can be viewed as a bridge between requirements and code
and should thereby provide a framework in which to satisfy the requirements
and serve as a basis for the design [24]. Architecture is besides known to have
a major impact on non-functional requirements like performance, security,
maintainability, interoperability.

When specifying an architecture, whatsoever be the mean used, some
characteristics are desirable for the resulting description:

• Different aspects of the architecture have to be expressed in an appro-
priate manner. Aspects encompass structure (i.e., the way the different
components and connectors are interconnected, the system topology),
behavior (i.e., the abstract behavior of each component, the protocols
of interactions they use to communicate and coordinate their effort in
order to achieve some global behavior) and style (i.e., belonging to a
particular style with its associated properties and constraints).

• Architecture descriptions should allow some form of reasoning to check
whether or not some key system properties such as performance, reli-
ability or security are satisfied and to what extent. In distributed en-
vironments, classical issues like presence of deadlock, starvation, race
conditions should be addressed.

1.2.2 ADLs

Architectural description languages (ADL) are an attempt in this direction.
They set up means enabling to describe and analyze architecture in a very
much satisfactory way compared to traditional ”box-and-line” architecture
descriptions. Various formalisms allow precise specifications and formal rea-
soning. Their use is often supported by tools for displaying, compiling,

CHAPTER 1. BACKGROUND 19

analyzing or simulating architectural descriptions. Lots of ADL have been
designed over the last decade and they differ greatly by the intent pur-
sued, the formalism used and the capabilities offered. Three representative
ADLs[16] – C2 [23], Darwin [21, 18] and Wright [2, 1] – will be examined
in details, looking for similarities and differences. Their capabilities with
respect to the criteria stated above will be checked.

Although very different in the capabilities offered ADLs nonetheless
share a set of primitive concepts that form the basis for any architecture
description [16]. The main elements are:

• Components represent the primary computational and data stores of
a system. Components often have interfaces describing any point of
interaction between the component and its environment.

• Connectors represent interactions between components. They coordi-
nate the linked components and are therefore often called the ”glue”
of the system.

• Systems are configurations of components and connectors. They cap-
ture the overall topology of the system. Some ADLs also provide hier-
archical constructs, enabling some subsystems with their own internal
structure to be described in terms of a new architecture.

• Properties express semantic information about a system and its com-
ponents that goes beyond structure. For example, some ADLs allow to
estimate the overall performance of a system expressed by a its latency
time and throughput.

• Constraints prescribe claims about an architectural design that should
remain true even if it evolves over time. One could imagine for exam-
ple to constrain the topology of the system in such a way that all
components are linked through binary connectors.

• Styles describe families of related systems. A style is typically de-
scribed by a design vocabulary (i.e., the types of components and con-
nectors), a composition rule (i.e., describing the allowable structure)
and by invariants (i.e., properties that hold in any instantiation of the
style) [26]. Typical examples of style include pipes and filters, layered
systems, blackboard systems and client-server systems.

CHAPTER 1. BACKGROUND 20

Comparative study

Now that the common basis has been provided, three considered ADLs are
further described. In a first time it is important to introduce them and
to reveal their aim. C2 is a component- and message-based style used to
support the particular needs of applications that have a graphical user in-
terface aspect. Darwin aims at modeling and analyzing distributed systems.
Wright focuses on formal specifications and analysis of interactions between
architectural components.

Modeling capabilities First ADL ability to model different aspects of
architecture – structure, behavior and styles – is inspected.

Structure With respect to the structure description, the three ADLs
take different approaches. C2 structures components into layers. Each com-
ponent has a top and a bottom domain used to define the interface with the
upper and the lower layer respectively. Layers are structured by level of ab-
straction, each layer n using services of component belonging to layer n− 1.
The principle of limited visibility holds between layers, that is, components
of layer n are only aware of components belonging to layer n−1. In Darwin, a
system consists of components linked through connectors. Each component
defines a set of services provided and required. Connectors link services,
one end provides the service the other end requires. A textual and a graphi-
cal representation support are used. Darwin allows composites components,
that is, components that are constructed from basic or composite elements.
So it enables to describe the system hierarchically. Wright distinguishes
components and connectors as basic primitives. Each component defines its
external interface by a set of ports, each one representing a particular point
of interaction with the environment. Connectors are characterized by roles.
Roles describe the expected behavior of the interacting parties. Connec-
tors are then used to link components whose ports are compatible with the
roles of the connectors. As in Darwin, hierarchical structures are supported.
Structural aspects are handled in a more general manner in Darwin and
Wright while the way C2 addresses structure reflects the intended audience.
Actually, applications having a graphical user interface often decouple the
presentation layer from the computation layer.

Behavior Behavior is as important as structure to describe architec-
tures since it provides a mean to check whether the system will actually do
what it is expected to. Surprisingly, the behavioral view is missing from

CHAPTER 1. BACKGROUND 21

C2. Although not present in the early days, Darwin now supports behavior
description of components using a finite process algebra (FSP). In Wright,
the behavioral view is fundamental. As in Darwin, a process algebra is
used, namely CSP in this case. Behavior of components and connectors
can be specified. Each component possesses a computation field describing
its global behavior and the ports describe its behavior at that particular
point of interaction. Similarly connectors roles indicate the local expected
behavior of the interacting parties while the glue field specifies how the ac-
tivities of the different roles are coordinated. Compared to Darwin, Wright
puts emphasis on connectors, adding a degree of freedom in the behavioral
description while Darwin considers connectors as link elements without any
role in the coordination of components.

Styles The increasingly recognized importance of styles in the software
architecture field has made the ability to define a style in a ADL a “must”.
Once again C2 does not support styles description. This is not strictly true
since every architecture description in C2 follows implicitly a layered style
and no emphasis is put on the resulting invariant of this style. Darwin does
neither provide any constructs supporting style definitions. Only Wright
really supports it. A style definition in Wright consists of descriptions of
components and/or connectors, interface types and constraints. Component
and connector can be parametrized in order to enable specialization for ap-
plication purposes. Interface types, opposed to components and connectors,
only constrain part of a component or connector. Constraints express prop-
erties that every style instantiation must obey. Such constraints include
for example topological issues. Wright is here the only one that provides
satisfactory style support.

Reasoning capabilities After evaluating the ADLs with respect to their
abilities to express the different aspects of an architecture it is tried to
examine the various forms of reasoning supported. It represents a move
from a modeling point of view toward an analysis point of view.

C2 does support some analysis but not at the architectural level, strictly
speaking. Type checking mechanisms are used to check whether a concrete
component can be used as an implementation of an architectural component
or whether a concrete component may substitute to another. Darwin pro-
vides both structural and behavioral checks. A configuration can be checked
to see whether services provided and required by linked components are
compatible. The behavior can be analyzed through the Labeled Transition

CHAPTER 1. BACKGROUND 22

Analyzer (LTSA) tool. It enables to visualize execution traces and to check
safety1 and progress2 properties. Similar checks are performed in Wright.
The ports of components are compared to the roles of connectors to check
whether they are behaviorally compatible. The analysis tools available for
CSP – ProBE and FDR – can be used on Wright descriptions. ProBE[14] is
an animator used to visualize potential executions while FDR[13] is a model
checker enabling for example to check the presence of deadlock, starvation
and race conditions. The level at which C2 performs its analysis deals with
the dependencies between architecture and code phases. Darwin and Wright
concentrate their analysis to the architectural level checking both structure
and behavior.

Tool support The three presented ADLs are supported by tools. These
tools belong to three categories:

1. Design Assistants: these tools focus on providing a graphical front end
to allow architects to develop designs.

2. Design Checkers: they provide various analysis properties

3. Code Generators: they enable to generate code from the architectural
description

C2 is supported by a design assistant and by a code generator. The
code generator provides partial implementation that forms a development
framework. Darwin has a development environment and as previously said
design checkers. Wright only possesses design checkers.

Conclusion The evaluation of the three considered ADLs is summarized
in Table 1.1. The results obtained bring the following conclusions. Wright is
the more powerful. It is the only one to describe the three architectural as-
pects – structure, behavior and style and the analysis supported covers both
the structural and the behavioral part of the architecture. Darwin is less
complete in the architecture behavior description since no account is made of
connectors. Moreover styles are not addressed. C2 seems more limited both
in the description of the architecture and in the analysis provided. Nonethe-
less it points out an important fact: with the central position of architecture
in the software engineering process between requirements and code, ADLs

1a safety property refers to a property that holds over all executions
2the progress property states that the program will eventually reach the desired state

(it implies for example that the program never enters an infinite loop)

CHAPTER 1. BACKGROUND 23

ADL Structure Behavior Style Reasoning tools
C2 layered no no implementation design assistant

systems conformance code generator
Darwin all systems components yes structure design assistant

behavior design checker
Wright all systems components yes structure design checker

connectors behavior

Table 1.1: Comparison between C2, Darwin and Wright

should provide some means to check that requirements are satisfied and the
code complies with the architecture. Moreover none of the ADLs studied
are able to perform analysis concerning critical non-functional properties
such as performance, reliability, fault tolerance, security. This critic seems
to apply to all ADLs in general.

CHAPTER 1. BACKGROUND 24

1.3 From System Goals to Software Architecture

In Sections 1.1 and 1.2 it has been argued that requirements and architec-
ture are essential in the software development process. Poor requirements
are a major cause of software failure and architecture has a critical impact
on non-functional requirements like performance, maintainability, security
and so forth. These two products are inter-related. Requirements should
serve as the basis to construct architecture while architecture has to satisfy
requirements. The problem of building an architecture which satisfies the
requirements is central to software engineering. This section expounds two
architecture derivation methods with as starting point, KAOS goal-oriented
requirements specifications. At this stage it is important to note there is a
reduction of scope compared to requirements. Actually, requirements deal
with both the software and its environment while the derived architecture
concerns only the software itself. The first methodology has been developed
by Axel van Lamsweerde [27] while the second one is the fruit of the work
of Dewayne E. Perry and Manuel Brandozzi [4, 5, 6].

1.3.1 The KAOS Method

The derivation method consists of three incremental steps, each one achiev-
ing a particular purpose. The first stage builds a first architectural draft
that satisfies functional requirements. This draft is globally refined during
the second stage using styles to meet architectural constraints. The final
architecture is eventually obtained by applying locally pattern refinements
in order to ensure non-functional requirements.

From Software Specifications to Abstract Dataflow Architectures

This step aims at constructing an architectural draft which satisfies all
functional requirements. Each software agent assigned to a functional re-
quirement becomes a component. The data dependencies existing between
software agents yield dataflow connectors between corresponding software
components. Fine-grained components are preferred so as to achieve the
non-functional soft goal Maximize[Cohesion(C)].

More formally, the abstract dataflow architecture is derived from KAOS
requirements specifications as follows:

1. For each functional goal assigned to the software-to-be, define one com-
ponent regrouping the responsible agent together with the operations

CHAPTER 1. BACKGROUND 25

Figure 1.7: Assigned agents, their interfaces and data dependencies

operationalizing the goal. It is here that the distinction is made be-
tween the software and its environment since the only goals considered
are those assigned to the software-to-be.

2. For each pair of components C1 and C2, derive a dataflow connector
from C1 to C2 labeled with variable d iff d is among C1’s controlled
variables and C2’s monitored variables:

Dataflow(d,C1, C2) ⇔ Controls(C1, d) ∧Monitors(C2, d) (1.1)

This step is illustrated on the “meeting scheduler” problem. Figure 1.7
shows a portion of the goal graph while Figure 1.8 exhibits the resulting
dataflow architecture.

In the dataflow architecture, each component is characterized by the
specifications of the goal assigned to it together with the specifications of
the operations operationalizing that goal.

Since every functional goal has been assigned to a software component
performing the necessary operations to ensure that goal, one can be con-
vinced that all the functional requirements are satisfied.

CHAPTER 1. BACKGROUND 26

Figure 1.8: Derived dataflow architecture

Style-based architecture refinement to meet architectural
constraints

The abstract dataflow architecture obtained in Section 1.3.1 defines our
refinement space. This space may need to be globally constrained by archi-
tectural requirements. These typically arise from domain-specific features
of environment agents or relationships among them, e.g., the distribution
of human agents, organizational data or physical devices the software is
controlling. An other possible cause could be the need for the software to
integrate into a pre-existing system.

In this step, the architectural draft obtained from step 1 is refined by
imposing a “suitable” style, that is, a style whose underlying goal matches
the architectural constraint.

Style-based refinements are expressed through transformation rules. The
advantage is twofold: first it documents style by applicability conditions3

and effect conditions, secondly it makes the step more systematic.
An example of transformation rule for the event-based style is presented

in Figure 1.9. The “house” notation is used to denote a domain property.
Standard arrows denote dataflow connectors. A grey dashed arrow labeled
by ?d means that source component registers interest to the target compo-
nent for events corresponding to productions of d. The latter events carry
corresponding value for d.

The result of the application of the event-based style transformation rule
(see Figure 1.9) on the abstract dataflow architecture of Figure 1.8 is shown
on Figure 1.10.

3such as the architectural constraint and soft goals the style addresses

CHAPTER 1. BACKGROUND 27

Figure 1.9: Event-based style transformation rule

Figure 1.10: Style-based architecture

CHAPTER 1. BACKGROUND 28

Pattern-based architecture refinement to achieve non-functional
requirements

The purpose of this last step is to refine further the architecture in order
to achieve the non-functional requirements. Those can belong to two diffe-
rent categories; they can be either quality-of-service or development goals.
Quality-of-service goals include, among others, security, accuracy and us-
ability. Development goals encompass desirable qualities of software such
as low coupling, high cohesion and reusability. Many of these goals impose
constraints either on components interactions or on single components.

This step refines the architecture in a more “local” way than the previous
one. Patterns are consequently used instead of styles. The procedure to
follow can be divided further into two intermediate steps.

1. for each non-functional goal (NFG) G, identify all the connectors and
components G may constrain and, if necessary, instantiate G to those
connectors and constraints.

2. apply the refinement pattern matching the instantiated NFG to the
constrained components. If more than one is applicable, select one
using some qualitative technique (e.g., NFG prioritization).

Architectural refinement patterns are represented via rewriting rules con-
sisting of a source architectural fragment, a target architectural fragment
and a set of NFG achieved by the target. For example, the NoReadUpNo-
WriteDown pattern is shown in Figure 1.11. Note that the required post-
condition of the component SecurityFilter is derived formally using op-
erationalization patterns.

This third step is illustrated on the architecture obtained in Figure
1.10. First the impact of the confidentiality goal Avoid[ParticipantCons-
traintsKnownToNonInitiatorParticipants] is localized on the dataflow
connector between the MeetingPlanner component and the MeetingNoti-
fier component via the EventBroker component. Second the NoReadUp-
NoWriteDown pattern is identified as matching the confidentiality goal. Two
disclosure levels are introduced: one for the meeting initiators and the other
for normal participants. The instantiated pattern is then applied, resulting
in the introduction of a new component – ParticipantConstraintFilter
– between the EventBroker and the MeetingNotifier.

A sample of patterns achieving quality-of-service and development goals
is presented in [27].

CHAPTER 1. BACKGROUND 29

Figure 1.11: The NoReadUpNoWriteDown pattern for condidentiality goals

1.3.2 The Preskriptor Process

The second method converts the goal oriented requirement specifications of
KAOS into architectural prescriptions. An architectural prescription is the
architecture of the system in terms of its components, the constraints on
them as well as the interrelationships among the components. Architectural
prescriptions differ from classical descriptions by the fact that they are ex-
pressed at a higher level in the problem domain language rather than in the
solution language. The intent is twofold: first it is to make the transition
from requirements to architecture easier since there is a common vocab-
ulary, secondly it is to favor reuse of pieces of architectural prescriptions
since prescriptions are more general. This choice comes at a cost. Indeed
prescriptions provide less guidance to designers than usual descriptions.

The components in an architecture prescription can be of three differ-
ent types - process, data or connector. Processing components perform
transformation on the data components. The data components contain the
information to be used and transformed. The connector components encap-
sulate the various forms of interaction among process and data component,
so holding the system together (the glue). All components are constrained
by goals that they are responsible for. The interactions and restrictions of
these components characterize the system. Here is an example of a com-
ponent prescription expressed in the Architecture Prescription Language
(APL):

Component Scheduler

CHAPTER 1. BACKGROUND 30

Type Processing

Constraints MeetingScheduledEffectively,
MeetingRequestInitiated,
ParticipantsConstraintKnown,
. . .

Composed of PlanningEngine,
ParticipantClient,
ParticipantInitiatorClient,
RessourcesAvailableRepository,
SecureConnector1,
. . .

Uses /

This example shows a component called Scheduler. The type field de-
notes that the component is a processing type component. The constraints
are the various goals realized by Scheduler. It thereby defines the con-
straints on the component. Composed of illustrates the sub components
that implement Scheduler in the next refinement layer. The last attribute,
Uses, indicates what are the components used by this component. It also
specifies the connectors used for the interaction.

There exist some correspondences between KAOS entities and APL en-
tities. Table 1.2 shows the potential mappings. It will serve as guidance
during derivation process.

The Preskriptor process is composed by three required steps and by a
fourth optional one. Figure 1.12 illustrates the interactions between the
required steps.

Step 1: Derivation of the skeleton of the architecture

The first step considers the root goal of the requirements specification, and
the other systems the software will have to interact with. From there a
very high level description of the system is obtained. It is composed of a
central processing element that achieves the root goal, and of a connector
per surrounding system with which there will be some interaction.

The central processing element can be refined further in order to set up
the skeleton of the component refinement tree. The structure of the goal
diagram can serve as a basis.

CHAPTER 1. BACKGROUND 31

KAOS entities APL entities

Agent Process component/
Connector component

Event -

Entity Data component

Association Data component

Goal Constraint on the system
or on a subset of the system/
One or more additional processing,
data or connector components.

Table 1.2: Mapping KAOS entities to APL entities[4]

Figure 1.12: The 3 required steps of the Preskriptor process

CHAPTER 1. BACKGROUND 32

Step 2: Identification of potential subcomponents from objects
specification

Once the basic architecture is in place, potential subcomponents are derived
from the objects in KAOS specification. The derived components can be
either process, data or connectors. The selection among these possibilities
is guided by the correspondences presented in Table 1.2. If in the third
step, no constraint is assigned to these components, they won’t be part of
the final system prescription.

The derived components are then used to refine the architectural skeleton
obtained in step 1. Different rationale lead to different decompositions.

Step 3: Selection among potential components via constraints as-
signment

In this step it is determined which of the sub goals are achieved by the
system. They are then assigned as constraints to the previously defined
components. A level of refinement in the goal diagram is selected and serves
as reference. The choice of the level imposes the degree of constraint put
on the resulting architecture. A high level gives more freedom to designers,
possibly enabling innovative solutions but provides them little guidance. A
low level may constrain too much the architecture but is more helpful. It
is then decided which of the potential components of step two will take re-
sponsibilities of the various selected goals. Note that this is a design decision
made by the architect, decision based on the way he or she has chosen to
realize the system. The components without constraints are discarded, and
it is ended up with the first complete prescription of the system.

The resulting system achieves all the goals, be they functional or non-
functional, provided they belong to the goal diagram. A distinction is made
in the non-functional goals between those coming from the domain and the
others. For example the former would include security goals in a bank
application while the later includes desirable properties not specific to the
domain like reusability. The result of the three first steps is called a problem
oriented prescription since the goals treated only come from the problem
domain.

Step 4: Architecture refinement to achieve non-problem goals

The fourth step aims at refining further the architecture in order to achieve
additional non-functional goals that are not from the domain. These goals

CHAPTER 1. BACKGROUND 33

Figure 1.13: Step 4 of the Preskriptor process

are typically development goals (e.g., reusability, evolvability, maintainabil-
ity), quality-of-service goals (e.g., performance, fault tolerance, usability),
compatibility goals (e.g., CORBA) or conformance to a particular style.

The fourth step is iterated till all the non-domain goals are achieved.
A graphical representation of this fourth step is presented in Figure 1.13.
Given the problem oriented prescription of step 3, step 4 produces a solution
oriented prescription. This terminology comes from the fact that the addi-
tional non-domain goals reflect needs for the particular developed product
while the three first steps only concentrate on problem requirements.

Although the aim of this step is clear, its effective realization is still very
vague. No general mean to achieve non-domain goals is given but specific
examples are addressed. Reusability is achieved by splitting components [4],
CORBA compatibility is added by constraining further some components [4]
and fault tolerance is ensured by introducing a new connector and multiple
copies of an existing component [6].

Chapter 2

Architecture derivation for a
Power Plant Supervisory
System

2.1 Informal Description of the Problem

This description results from the gathering of requirements pieces spread out
in three different papers [8, 9, 10] in which Coen-Porisini et al reported their
experience on an industrial project provided by ENEL, the Italian electrical
company.

The application concerns an information system designed to support
ENEL’s personnel in managing thermal power plant operations. Power
plants are typical examples of safety-critical systems since they may manip-
ulate very hazardous substances in order to produce their electricity (e.g.,
fossil or nuclear fuel). Any error uncorrected could lead to critical failures
in the power plant. The potential damage are huge in terms of human lives
as well as for the environment. One can just remember what happened in
Tchernobyl in 1986. Almost 20 years later the consequences of the nuclear
reactor explosion are still killing people. The environment is polluted for
hundreds of years. Reliability is therefore a main concern.

The purpose of the system is to optimize power plant efficiency, to reduce
operating and maintenance costs, and to avoid forced outages by implement-
ing (separately or in combination) functions related to supervision, condition
monitoring, performance monitoring and fault diagnosis. Those functions
include data acquisition from the field through sensors, detection of faults
occurring in the power plant, and raising of appropriate alarms in case of

34

CHAPTER 2. ARCHITECTURE DERIVATION 35

fault detection.
The main problem with such a system is that each of the above func-

tions is usually developed separately, as a standalone application. Therefore,
when installed on the plant, each application needs its own field data acqui-
sition system, data processing unit, data storage system, and man-machine
interface. This in turn results in obvious drawbacks in terms of higher
implementation, installation, maintenance, and training costs, increased op-
erational complexity, confusion and distraction of the system users, and
possibly even incorrect and unsafe plant management. To solve this prob-
lem, ENEL is trying to integrate the aforementioned functions in a unified
environment, called the Advanced Supervisory System.

Figure 2.1 depicts a view of the main components of the Advanced Su-
pervisory System:

• PRECON is a diagnostic system whose goal is to continuously monitor
the performances of the plant in order to detect faults in the steam
condenser or in the cooling circuit. Moreover, PRECON supports the
operators by suggesting remedy actions

• the Alarm Management unit traces and keeps the state of the alarms
issued by all modules and manages operator interactions.

• the Configuration Management unit allows dynamic reconfiguration.
It enables to have a general supervisory system that can easily be
configured according to the peculiar needs of single plants (e.g., the
amount of produced power, the type of plant component, etc.)

• the Data Acquisition and Pre-processing unit acquires data from the
field.

• the Global Plant Data Base (GPDB) is a virtual database, consisting of
a set of distributed – possibly heterogeneous – databases, that contains
both static and dynamic data coming from the Acquisition subsystem,
PRECON, the Configuration subsystem, and other components of the
supervisory system.

• the Communication Resource supports and centralizes communica-
tions among the different components.

More precise statements define further the requirements (functional, per-
formance, usability, fault-tolerance, etc.) that the different components
must satisfy. Real-time constraints are ubiquitous given the safety-critical
nature of power plant supervision.

CHAPTER 2. ARCHITECTURE DERIVATION 36

Figure 2.1: The ENEL’s supervision and control system[8]

The Acquisition and Preprocessing resource must periodically acquire
from plant sensors the measurements of analog and digital variables (mostly
pressures and temperatures).

PRECON must perform its activity:

1. periodically, every 5 minutes; and

2. upon user request, whenever the user asks for some diagnosis. PRE-
CON serves only one request at a time and must answer each of them
within 5 seconds. The request service can be activated even when
PRECON is performing its periodical diagnostic activity.

Each time PRECON achieves its task, it should thereafter store into
the database the computed variables, the diagnosis of the current situation
and the input/output data relation associated with the current situation
detected.

The occurrence of an anomalous situation identified by PRECON must
be notified to the Alarm Management that should raise the appropriate
alarm. Alarms have to manage within an extremely short delay. Reliability
is critical for the alarm management unit.

The Communication Resource should achieve strong time and reliability
constraints.

The system must also tolerate some faults. There should be a system
monitoring the activity of field devices (sensors, actuators, etc.) installed in

CHAPTER 2. ARCHITECTURE DERIVATION 37

the power plant, in order to detect possible failures and malfunctions. Data
collected from the field should be validated. To do so, physical devices can
be asked to perform a self-test.

The system is subject to both hardware faults and disturbances which
tend to change the value of a state variable, thus causing incorrect system
operation. The system should be able, when a hardware fault occurs and
remains unrepaired for at least delta seconds, to find the damaged part
and put it off-line. The system operates normally only if the value of state
variables is not altered by a disturbance.

CHAPTER 2. ARCHITECTURE DERIVATION 38

2.2 Requirements Analysis

2.2.1 Requirements Elaboration

The requirements specifications were constructed using the KAOS method
presented in Section 1.1. The informal description of Section 2.1 has pro-
vided the preliminary requirements assessment. However the description of
the power plant supervisory system provided was partial and lacked details.
So, throughout the requirement extraction process, it has been necessary
to rely on personal engineering skills, on professor Perry’s advices and on
the common sense in order to gather requirements as realistic as possible.
Note also that the reconfiguration function mentioned in Section 2.1 was not
taken into account due to lack of time.

Since this thesis aims at deriving an architecture from the requirements
rather than deriving requirements themselves, this section will be essentially
descriptive rather than constructive especially as the KAOS methodology
has already been explained on the power plant supervisory system in Section
1.1.2. Nevertheless a short paragraph will introduce for each model (i.e.,
goal, object, agent, and operation) some considerations on model elicitation.
Next main characteristics of the model will be exposed.

The complete requirements specifications can be found in Appendix A.
Appendix A should be used as reference companion. Moreover, the graphical
representations of the different models are only present in the appendix. The
reader is thus strongly advised to refer to Appendix A during the reading
of this section.

Goal Model

Elicitation The following steps were followed in order to build the goal
model. First of all, the informal definition of goals mentioned in [8] were
carefully written down. From that, two first goal refinement trees were built,
one for the functional goals and the other for the non-functional ones. Note
that the soft goals are not addressed in this analysis since they are not
really part of the KAOS constructs. This first draft was all but complete.
These trees were completed thanks to a refinement/abstraction process. The
version obtained at that point was still totally informal. Temporal first-order
logic [22] was then used to remove this weakness. It enabled to ensure the
refinement tree was correct, complete and coherent. The use of refinement
patterns as described in [12] served as a guidance. The milestone-driven
pattern in particular was applied numerous times. It prescribes that some
milestone states are mandatory in order to reach the final one. This pattern

CHAPTER 2. ARCHITECTURE DERIVATION 39

is presented in Figure 2.2. The patterns were of a great help to track and
correct incompleteness and incoherence. Furthermore they enabled to save
a huge amount of time by avoiding to do the tedious proof work.

Figure 2.2: Milestone refinement pattern

Because of the iterative nature of the requirements gathering process,
the goal model underwent subsequent changes. The reasons for that were
various, e.g., coherence between the different models forming the KAOS
specifications, enhancements, simplifications, omissions, etc.

Characteristics The goal refinement diagram representing the functional
goals (see Figure A.1) is globally structured in two parts as presented in
Figure 2.3. This shape reflects the two main goals the system has to ensure
to monitor the power plant. The occurring faults have to be detected and the
alarms resulting from those faults have to be managed. The roots of the two
resulting subtrees are respectively FaultDetected and AlarmCorrectly-
Managed. They are subsequently refined using the various patterns until the
leaf goals are assignable to a single agent – be it part of the environment
or of the software. The fault detection part deals with data acquisition
from the field, the fault detection in itself, and the writing of a report after
checks have been performed (see Figure 2.4). The alarm management part
covers the raising of the appropriate alarm in case of fault detection, the
management of information on alarms previously raised and interactions
with a human operator (see Figure 2.5).

As an illustration of the use of the milestone refinement pattern – the
most widely used – the following example will be developed. Let’s consider
the goal AlarmRaisedIfFaultDetected with its formal definition

Goal AlarmRaisedIfFaultDetected

FormalDef ∀ f:Fault, ∃! l:Location

CHAPTER 2. ARCHITECTURE DERIVATION 40

Figure 2.3: General Structure of the goal diagram

Figure 2.4: Refinement of the goal FaultsDetected

CHAPTER 2. ARCHITECTURE DERIVATION 41

Figure 2.5: Refinement of the goal AlarmCorrectlyManaged

Detected(f,l) ⇒ ♦ (∃! a:Alarm, ∃! fi:FaultInformation) (Repre-
sentation(fi,f) ∧ Raise(fi,a))

One can note that the presented milestone pattern does in fact only
apply on propositional formulas. It can nonetheless serve as a guidance
during goal refinement. Propositional reduction patterns can be generalized
to first-order logic [11]. This goal is refined using as guidance the milestone
refinement pattern (see Figure 2.2) into the following subgoals:

Goal FaultInfoTransmittedWhenFaultDetected

FormalDef ∀ f:Fault, ∃! l:Location
Detected(f,l) ⇒ ♦ (∃! fi:FaultInformation) (Representation(fi,f)
∧ Transmitted(fi,PRECON,ALARM))

Goal AlarmRaisedWhenFaultInfoTransmitted

FormalDef ∀ fi:FaultInformation
Transmitted(fi,PRECON,ALARM) ⇒ ♦ (∃! a:Alarm) Raise(fi,a)

The application of that particular pattern results from the fact that the
information concerning the detected faults has to be transmitted to ALARM to

CHAPTER 2. ARCHITECTURE DERIVATION 42

Figure 2.6: Communication reliability refinement subtree

enable it to raise the appropriate alarm. This intermediate state is necessary
to reach the final state, i.e., the raising of the alarm.

In order to build a system as robust as possible, various goals have been
added to the goal diagram.

Among these a first class takes care of the correct working of all the sen-
sors and ensures the data provided is consistent and coherent. As described
in Section 2.1, two types of actions are supported to do so: consistency and
sanity checks. Once data have been acquired they have to be validated.
This fact is represented by the goal ConsistencyCheckPerformed. Mal-
functions of sensors – detected for example by asking suspicious sensors to
perform self-tests – should result in switching their status to ’off’, so putting
it off-line. This is the purpose of SanityCheckPerformed.

The second category – represented by the goal DataCorrectlyUpdated
– makes sure the updates are well performed by the database. The purpose
of some goals is to maintain the power plant in a consistent state (e.g.,
FaultStatusUpdated, AlarmStatusUpdated).

The communication has also been constrained in order to prevent any
transmission problems. This is expressed in the NFG diagram (see Figure
A.2) through the reliability goals and the performance goal.

The refinement of the goal CommunicationReliability is the result of
the robustness policy. The goal was refined as shown in Figure 2.6.

To model the data transmission, a relationship at the meta-level has
been introduced. It is used to denote that some data has been transmitted
from a sender agent to a receiver agent. Data can be either a whole object
or only a part of it (i.e., a subset of its attributes). Figure 2.7 exhibits the
transmission meta-relationship.

The three subgoals ensure the correctness of the transmission. They
prescribe that no alteration has occurred on the data transmitted, that
is, no data has been introduced or lost and the sequential order has been
preserved. They have been formally refined as follows 1:

1Data can either be SensorInformation, FaultInformation, AlarmInformation,

CHAPTER 2. ARCHITECTURE DERIVATION 43

Figure 2.7: Transmission meta-relationship

Goal NoDataIntroduced

FormalDef ∀ x:Data, X:P(Data)2, A1,A2:Agent
Transmitted(X,A1,A2) ∧ x ∈ Transmitted(X,A1,A2).content
⇒ x ∈ X

Goal NoDataLost

FormalDef ∀ x:Data, X:P(Data),A1,A2:Agent
x ∈ X ∧ Transmitted(X,A1,A2)
⇒ x ∈ Transmitted(X,A1,A2).content

Goal SequencePreserved

FormalDef ∀ x,y: Data, X:P(Data), A1,A2:Agent, ∃ u,v: Data
x,y ∈ X ∧ Before (x,y,X) ∧ Transmitted(X,A1,A2)
⇒ u,v ∈ Transmitted(X,A1,A2).content ∧ x =u ∧ y=v
∧ Before(u,v,Transmitted(X,A1,A2))

Performance is also a major non-functional goal. Communication is con-
strained by a time bound. This is expressed by the NFG Communication-
Efficiency. This limit varies throughout the system depending on the
importance of the communication channel. The FaultInformation has to
be transmitted from PRECON to ALARM within 1 second while answering
a request can take a little longer – up to 5 seconds.

The formal definition of this goal depends on the time constraint. If one
consider for example the transmission of a FaultInformation – which has
the strongest time constraint – the formalization is a straightened version
of the goal FaultInfoTransmittedWhenFaultDetected:

FaultDiagnosis or AlarmDiagnosis
2P(Data) denotes the set of subsets of Data

CHAPTER 2. ARCHITECTURE DERIVATION 44

Goal CommunicationEfficiency

FormalDef ∀ f:Fault, ∃! l:Location
Detected(f,l)⇒ ♦≤1s (∃! fi:FaultInformation)(Representation(fi,f)
∧ Transmitted(fi,PRECON,ALARM))

Object Model

Elicication The object model constructed is a model of the composite
system, that is, it models both real objects and their perception by the
system. The motivation is to express accuracy goals. Figure A.3 shows the
object diagram. Entities present in the objects were first derived from the
informal definition of the goals. All the concepts of importance were modeled
either under the form of an object or of a relationship. Attributes were then
added to the different entities in order to characterize them. Some of the
attributes were extracted from the problem definition but most of them only
reflect a necessity. This necessity arises from two main reasons.

First certain goal definitions need the presence of specific attributes.
For example the attribute WorkCorrectly of Sensor was needed by the
goal SanityCheckPerformed.

Secondly the properties definition of the various entities – expressed by
invariants – requires specific attributes. As an illustration consider the fol-
lowing invariant of the object Alarm which expresses that all the alarms still
active cannot have a deactivation time:

Activated = true ⇒ DeactivationTime = null

The purpose of certain attributes is to prepare for change. The recon-
figuration function was finally not taken into account in the elaboration
of the different models due to a lack of time. However it is believed that
the only effect would be to modify the allowed range of temperatures and
pressures. Attributes representing the minimum, the maximum and desired
value of both pressure and temperature were consequently added to the
objects SteamCondenser and CoolingCircuit.

Last, a few attributes were added in order to build a more complete
model. The justification was in this case common sense. Among these are
the attributes Type and Power of the object PowerPlant.

The last step of the goal model elaboration was the formalization of
the domain invariants characterizing the different entities. The model was
refined many times due to the iterative nature of the requirement extraction
process.

CHAPTER 2. ARCHITECTURE DERIVATION 45

Characteristics The main characteristic of the model is the presence of
two different levels of representations for the concepts Sensor, Fault and
Alarm. The first level refers to the object in itself while the second one
refers to its representation in the software. This distinction was introduced
for robustness reasons. In fact it enables to manage the case where the
representation of the object is not correct which would be unfortunate but
could happen. The two levels are constrained by an invariant prescribing
that all the attributes have to be identical.

The representation of the three main concepts – Sensor, Fault and Alarm
– are linked two by two by a diagnosis relationship. The information pro-
vided by the sensor permits the detection of the faults and the description
of a fault is the rationale for the raising of an alarm. Consequently the
relationship FaultDiagnosis links SensorInformation and FaultInfor-
mation while AlarmDiagnosis links FaultInformation and AlarmInfor-
mation. Those two relationships are one-one. It is a modelling choice. It
has been chosen that a fault is the result of one and only one error detected
by one sensor and that each fault raises one and only one alarm. The reason
for that is the resulting simplicity and the easiness of traceability.

Agent Model

Elicitation The definition of the agents was extracted mostly from [8, 9].
Inspiration has been drawn from the existing agents. Each leaf goal from
the Goal Model was assigned to one of the agents. It was ensured that every
agent has the capacity to assume the responsibility of the goal. By capacity
it is meant that every agent could monitor or control, depending on the case,
every single variable appearing in the formal definition of a goal the agent
has to ensure. For further details please refer to [19]. Figure A.5 shows
the context diagram expressing controlled and monitored variables of each
agent.

However a new agent was introduced : the Instrumentation Mainte-
nance System (IMS). Its purpose is to ensure that all the sensors are working
properly. It was added in a robustness concern.

Finally the operations needed to operationalize the different goals were
assigned to the responsible agent. This step will be explained later in the
Operation Model section.

Characteristics As already said, most of the agents come from the ex-
isting system. This is the case for PRECON, ALARM, COMM, DB, Acquisition

CHAPTER 2. ARCHITECTURE DERIVATION 46

Unit and Sensor. The name used in [8] may be different but basically the
performed functions are the same.

PRECON is in charge of the detection of all the faults that might occur
either in the cooling circuit or in the steam condenser. ALARM takes care of
the alarm management. COMM ensures the reliability and the performance
of all the communication throughout the system. Moreover it performs all
the transmissions between agents. DB persistently stores all the data and
answers all the request concerning current values of the sensors, faults and
alarms. The Sensor agent continuously measures the field variables and
Acquisition Unit acquires data from the sensors. The resulting responsi-
bility assignment is presented in Figure A.4.

The additional agent – IMS – has to check whether the sensors are work-
ing properly and if the data provided by the sensors are consistent in order
to validate them.

The agents belong to two different categories; they can be either part
of the software-to-be or part of the environment. For example, PRECON
belongs to the first class while Sensor belongs to the second one. This
distinction in agents results also in a goal differentiation. In fact the goals
assigned to environment agent are expectations while the others are re-
quirements. This leads to the introduction of the IMS agent. Sensor is
an environment agent and so all the goals assigned to it are expectations.
But obviously it cannot be assumed that the goals SanityCheckPerformed
and ConsistencyCheckPerformed will be true without the intervention of
a reliable software device. Moreover those kind of tests should not be the
responsibility of the Sensor from a conceptual point of view.

Operation Model

Elicitation The operation model was the the last one to be constructed
because it relies on a precise formal definition of the goals in order to be
derived automatically. The operations contained in the model were derived
in such a way that they operationalize some goal present in the goal model.
A complete operationalization of a goal is a set of operations (described by
their pre-, trigger- and postconditions) that guarantee the satisfaction of
that goal if the operations are applied. It is where all the difficulty lies:
finding complete operationalizations. An extensive use of the operational-
ization patterns described in [20] has been made in order to derive complete
operation specifications. It enabled to save a lot of time on proofs. It is
even more true than for the goal refinement pattern as the application of
the operationalization pattern has been found very systematic.

CHAPTER 2. ARCHITECTURE DERIVATION 47

Figure 2.8: Bounded achieve opeartionalization pattern

Two patterns were particularly useful and have been used numerous
times. The first one is the bounded achieve pattern described in Figure 2.8.
Its applicability condition (i.e., C ⇒ ♦≤dT) makes it very popular. In fact
most system goals have that form. The operation specification prescribes
that ¬T becomes T as soon as C ∧ ¬T holds for d − 1 time units. It is
then straightforward to see that such a specification operationalizes the goal
C ⇒ ♦≤dT .

The second most useful pattern was the immediate achieve pattern de-
scribed in Figure 2.9. Its applicability condition prescribes that the final
state T has to be reached as soon as C becomes true. In this case it is a bit
more difficult to see why the satisfaction of the two operations guarantees
the satisfaction of the goal. A intuitive explanation why will be given but
the interested reader can find a complete proof in [20]. The first operation
prescribes that as soon C becomes true the operation must be applied if
¬T holds in order to reach the final state T . The second operation may
be applied when C does not hold if the precondition T is true, making the
postcondition ¬T true.

Once all the operations derived, they were assigned to the agent respon-
sible for the goal operationalized by those operations.

Characteristics This section presents an illustration of the two opera-
tionalization patterns forementioned.

Concerning the first pattern, the operationalization of the goal Fault-
InformationTransmittedWhenFaultDetected will be examined. Its formal
definition is given by

Goal FaultInformationTransmittedWhenFaultDetected

CHAPTER 2. ARCHITECTURE DERIVATION 48

Figure 2.9: Immediate achieve operationalization pattern

FormalDef ∀ f:Fault, ∃! l:Location
Detected(f,l) ⇒ ♦ (∃! fi:FaultInformation) (Representation(fi,f)
∧ Transmitted(fi,PRECON,ALARM))

The pattern presented in Figure 2.8 can be instantiated using the fol-
lowing parameters:

C : Detected(f,l) ∧ Representation(fi,f)
T : Transmitted(fi,PRECON,ALARM)

The operation resulting from the application of the pattern is:

Operation TransmitFaultInformation

DomPre ¬ Transmitted(fi,PRECON,ALARM)

DomPost Transmitted(fi,PRECON,ALARM)

ReqTrig for FaultInformationTransmittedWhenFaultDetected
¬ Transmitted(fi,PRECON,ALARM) S=1ms Detected(f,l
∧ Representation(fi,f) ∧ ¬ Transmitted(fi,PRECON,ALARM)

Note that as d − 1 time units makes here zero a smaller time unit is
simply taken.

To illustrate the second pattern consider the goal SanityCheckPerformed
whose formal definition is given by

Goal SanityCheckPerformed

FormalDef ∀ s:Sensor
¬ s.workingProperly ∧ s.status=’on’ ⇒ ◦ s.status=’off’

CHAPTER 2. ARCHITECTURE DERIVATION 49

The instantiation of the immediate achieve pattern presented in Figure
2.9 is straightforward.

C : ¬ s.workingProperly ∧ s.status=’on’
T : s.status=’off’

The first operation derived thanks to application of the pattern is

Operation SwitchSensorOff

DomPre s.status=’on’

DomPost s.status=’off’

ReqTrig for SanityCheckPerformed
¬ s.workingProperly

and the second one is

Operation SwitchSensorOn

DomPre s.status=’off’

DomPost s.status=’on’

ReqPre for SanityCheckPerformed
s.workingProperly

2.2.2 Obstacle Analysis

A recurrent problem with initial requirements specifications is that they
tend to be too ideal. Unexpected behavior of agents like humans, devices,
or software components can lead to violation of goals, requirements, or as-
sumptions [29] resulting into differences between the system specifications
and its actual behavior. Such differences can have a critical impact espe-
cially in safety-critical contexts like a power plant supervisory system. As
the well-known proverb says: ”Prevention is better than cure”. The aim
of this section is thus to anticipate the occurrence of undesirable behaviors
from the system or from its environment in order to build more robust sys-
tem specifications. The methodology used for this purpose is described in
[29]. This is basically a two-steps process. First obstacles to goals satis-
faction are identified. Secondly depending on various criteria (likelihood of
the obstacle, importance of the obstructed goal, cost, etc.) strategies are
applied in order to resolve the identified obstacles.

CHAPTER 2. ARCHITECTURE DERIVATION 50

The obstacle identification and coverage presented here is not exhaustive.
It has been focused on ”critical goals”, that is, goals thought as the most
important with respect to the general purpose of the system.

Fault Detection

The first key function is the fault detection. FaultDetectedWhenCalcula-
tionDone is thus the first goal considered. Its formal definition is:

Goal FaultDetectedWhenCalculationDone

FormalDef ∀ f:Fault, l:Location
CalculationDone ∧ Occurs(f,l) ⇒ ♦ Detected(f,l)∧

CalculationDone ∧ ¬Occurs(f,l) ⇒ � ¬Detected(f,l)

Obstacles will be generated using regression for this first goal. For the
analysis purpose, this goal will be further AND-refined into the two following
subgoals:

(G1) ∀ f:Fault, l:Location
CalculationDone ∧ Occurs(f,l) ⇒ ♦ Detected(f,l)

(G2) ∀ f:Fault, l:Location
CalculationDone ∧ ¬Occurs(f,l) ⇒ � ¬Detected(f,l)

The negation of the goals is given by:

(NG1) ♦ ∃ f:Fault, l:Location
CalculationDone ∧ Occurs(f,l) ∧ � ¬ Detected(f,l)

(NG2) ♦ ∃ f:Fault, l:Location
CalculationDone ∧ ¬ Occurs(f,l) ∧ ♦ Detected(f,l)

The domain contains the two following property:

(D1) ∀ f:Fault, l:Location, ∃ s:Sensor
Detected(f,l) ⇒ Monitors(s,l) ∧ s.Status=on

∧ s.DataValue /∈ AllowedRange
(D2) ∀ f:Fault, l:Location, s:Sensor

¬ Detected(f,l) ⇒ ¬ Monitors(s,l) ∨ s.Status=off
∨ s.DataValue ∈ AllowedRange

CHAPTER 2. ARCHITECTURE DERIVATION 51

The property states that a necessary and sufficient condition for a fault
detection is the presence of some working sensor monitoring the fault lo-
cation with a value outside an allowed range. The second property states
if a fault is not detected there cannot be a working sensor monitoring the
fault location with a value outside the allowed range. These rules can be
rewritten by contraposition:

(D1’) ∃ f:Fault, l:Location, ∀ s:Sensor
¬ Monitors(s,l) ∨ s.Status=off ∨ s.DataValue ∈ AllowedRange

⇒ ¬ Detected(f,l)
(D2’) ∃ f:Fault, l:Location, s:Sensor

Monitors(s,l) ∧ s.Status=on ∧ s.DataValue /∈ AllowedRange
⇒ Detected(f,l)

The right part of the equivalence in (D1’) unifies with a literal in (NG1);
regressing through (NG1) through (D1’) then amounts to replacing in (NG1)
the matching consequent in (D1) by the corresponding antecedent. Let’s
proceed similarly for (D2’) and (NG2). The two following potential obstacles
have thereby been formally derived:

(O1) ♦ ∃ f:Fault, l:Location, ∀ s:Sensor
CalculationDone ∧ Occurs(f,l)

∧ � [¬ Monitors(s,l)∨ s.Status=off
∨ s.DataValue ∈ AllowedRange]

(02) ♦ ∃ f:Fault, l:Location, s:Sensor
CalculationDone ∧ ¬ Occurs(f,l)

∧ ♦ [Monitors(s,l) ∧ s.Status=on
∧ s.DataValue /∈ AllowedRange]

Obstacle 1 covers three situations, namely, the first where no sensor
monitors the location where the fault occurs, the second where no sensor
is working and the third where a fault effectively occurs while the value of
the sensor is in the allowed range, the allowed range being thus not enough
restrictive. Using OR-refinement three subobstacles could thereby be iden-
tified: LocationNotMonitored, AllSensorOff and DetectionCriterion-
NotStrictEnough.

Obstacle 2 covers the situation where there is a working sensor monitor-
ing some location whose value is outside the allowed range while no fault
occurs in that location. This leads to the obstacle DetectionCriterion-
TooStrict. The situation is summarized in Figure 2.10.

CHAPTER 2. ARCHITECTURE DERIVATION 52

Figure 2.10: Refinement and obstacles for the goal FaultDetectedWhen-
CalculationDone

Once obstacles have been identified, they have to be resolved. The ob-
stacles LocationNotMonitored and AllSensorOff are resolved using the
Obstacle prevention [29] by adding two new goals: Avoid[LocationNot-
Monitored] and Avoid[AllSensorOff]. The case of DetectionCriterion-
NotStrictEnough and DetectionCriterionTooStrict is far more com-
plex. One should convince himself of the inherent difficulty of finding a
good criterion with respect to fault detection. Having a criterion too re-
strictive leads to the detection of non-existing faults while having a criterion
not restrictive enough leads to the non-detection of existing faults. To do a
parallel with sensitivity test in statistics, straighten the criterion increases
the number of false positives and loosen the criterion increases the number
of false negatives. This is a critical aspect and the choice of an appropriate
threshold should be considered very carefully. A strategy of goal mitiga-
tion could be imagined considering the fact that whatsoever be the chosen
criterion, it will not be perfect. One reasonable solution would consist in
adding some goal stating that if an error occurs in a fault detection, it will
be corrected within a certain time bound. For simplicity and because the
choice of such criterion is outside the scope of this thesis, it will be assumed
in what follows that the chosen criterion is perfect.

CHAPTER 2. ARCHITECTURE DERIVATION 53

Transmission of fault informations from PRECON to ALARM

Once a fault has been detected, information on the occurring fault have
to be transmitted from PRECON to ALARM in order to raise the appropriate
alarm. The goal considered here is FaultInformationTransmittedWhen-
FaultDetected. Its definition3 is given by:

Goal FaultInformationTransmittedWhenFaultDetected

FormalDef ∀ f:Fault, l:Location, ∃! fi:FaultInformation
Detected(f,l) ⇒ ♦ Transmitted(fi,PRECON,ALARM)
∧ Representation(fi,f)

The following domain property states that a necessary condition to the
transmission of data from A1 to A2 is the correct operation of the source
and the target of the transmission and of the communication channel (C).
This property can be instantiated to PRECON, ALARM and COMM as follows:

(D) ∀ fi:FaultInformation
Transmitted(fi, PRECON, ALARM) ⇒ Operating(PRECON)

∧ Operating(ALARM) ∧ Operating(COMM)

Proceed similarly to what has been done for fault detection leads to the
following obstacle:

(O) ♦ ∃ f:Fault, l:Location, ∀ fi:FaultInformation
Detected(f,l) ∧ � [¬ Operating(PRECON)

∧ ¬ Operating(ALARM) ∧ ¬ Operating(COMM)
∧ ¬ Representation(fi,f)]

This obstacle mainly covers two situations, one where either PRECON,
ALARM or COMM does not operate and the other where the transmitted
fault information does not describe correctly the detected fault. Four subob-
stacles are thereby identified: PRECONNotOperating, ALARMNotOperating,
COMMNotOperating, IncorrectFaultInformationTransmitted. One can-
not afford to have one of these components down for whatever reason. Conse-
quently, Fault-tolerant communication is added between PRECON and ALARM
resulting in the addition of the new goal Maintain[FaultTolerantCommu-
nication(PRECON,ALARM)].

3A FaultInformation fi is the representation of a Fault f iff all their attributes are
equal

CHAPTER 2. ARCHITECTURE DERIVATION 54

The last obstacle corresponds to a classic problem where the representa-
tion in the software of an environment object is incorrect. This problem has
been solved by adding the accuracy goal Maintain[AccurateRepresenta-
tion(fi,f)]. This problem can be extended to the whole set of software
representations of environments objects and similar goals are consequently
added for SensorInformation and AlarmInformation.

Data Acquisition

Since all the system relies on the data collected by the sensors, data acqui-
sition is also a critical function. For brevity purpose, the entire obstacle
analysis will not be exposed but one will rather concentrate on the key
aspects emerging from such an analysis.

The first recurring obstacle is InfoOutdated. For example, data pro-
vided by a sensor can be diagnosed as inconsistent even though this is no
longer the case just because sensor information is outdated. Moreover out-
dated sensor information value can lead to wrong fault detection when the
actual sensor value is no longer outside the allowed range or to undetected
faults when the fault occurs between two updates. The solution to that
problem is to perform data acquisitions more often.

Surprisingly, updates can also be realized too quickly. An obstacle to the
goal SanityCheckPerformed is the situation where the sensor is turned off
while it is starting to work correctly again. Dually a sensor could be turned
on while it is starting to behave incorrectly again. It is however very un-
likely this situation takes place and the Do-nothing strategy is consequently
applied.

A third problem can arise from the fact that sensor information are
modified by two different agents, namely Acquisition Unit and IMS. Ac-
quisition of data could take place while sensors are currently being turned
off because of a malfunction. This would lead to undesirable inconsisten-
cies. It has thereby been decided to add the goal Maintain[Accurate-
Data(Acquisition Unit,IMS)] ensuring that both Acquisition Unit and
IMS have accurate and coherent information on sensors.

Conclusion

The conducted obstacle analysis, although not complete, enabled to pin-
point some important unforeseen potential problems. The presence of a
location not monitored, the absence of a working sensor, and an ill cho-
sen detection criterion have been identified as obstacles to fault detection.

CHAPTER 2. ARCHITECTURE DERIVATION 55

Inconsistencies between representations of environment objects and the ob-
jects themselves are general problem affecting the entire system. Non op-
erating agents could be an obstacle to the correct operations of the system
preventing critical functions such as fault detection, transmission of fault
information from PRECON to ALARM and alarm raising. The issue of the time
interval between two successive data acquisitions has been recognized as cru-
cial. The potential incoherences resulting from the concurrent modifications
on SensorInformation by Sensor and ManagementUnit agents have also
been demonstrated.

Different strategies have been applied to solve the envisioned obstacles
such as goal prevention, goal mitigation. Various goals have been added
to the goal model in order to build a more robust system. Added goals
are all non-functional and belong to different categories. Avoid[Location-
NotMonitored] and Avoid[AllSensorOff]) are safety goals. Maintain-
[FaultTolerantCommunication(PRECON,ALARM)] is a reliability goal. Main-
tain[AccurateRepresentation(fi,f)] and Maintain[AccurateData(Ac-
quisitionUnit,IMS)] are accuracy goals. Figure A.6 exhibits the non-
functional requirements added by the obstacle analysis. One should also
note the process of obstacle analysis can be iterative. In fact, the added
goals could also be subject to various obstacles. However, an additional
obstacle analysis has not been performed because the system is thought to
be robust enough.

CHAPTER 2. ARCHITECTURE DERIVATION 56

2.3 Architecture Derivation

This section presents the application of the two methods exposed in Sections
1.3.1 and 1.3.2 on the requirements elaborated in Section 2.2. For each
methodology, the intermediate results and the derivation process will be
commented. Afterward the two resulting architectures will be compared in
details.

2.3.1 Using the KAOS Method

The architecture in this section will be derived using the method described
in Section 1.3.1. The method prescribes the use of three different steps.
The first step consists of the derivation of an abstract dataflow architecture
from the KAOS specifications. This first draft is next refined using style in
order to meet architectural constraints. The architecture obtained is finally
refined using design patterns so as to achieve non-functional requirements.
One section will be devoted to each step.

Step 1: From software specifications to abstract dataflow archi-
tectures

The first architecture is obtained from data dependencies between the dif-
ferent agents. The agents become software components while the data de-
pendencies are modeled via dataflow connector. The followed procedure is
divided into two sub-steps.

1. Each agent that assumes the responsibility of a functional goal assigned
to the software-to-be, becomes a software component together with its
operations.

2. For each pair of components C1 and C2, drive a dataflow connector
between C1 and C2 if:

DataFlow(d,C1,C2) ⇔ Controls(C1,d) ∧ Monitors(C2,d)

This step is very systematic. From the context diagram shown in Figure
A.5 it was needed to get rid off the environment agents to obtain the abstract
dataflow architecture. The result is presented in Figure 2.11.

One can note certain features. Two components seem to be “absorbent”:
COMM and DB. Four dataflow connectors come to each of them but none comes
from them. This is caused by the fact neither COMM nor DB does control any

CHAPTER 2. ARCHITECTURE DERIVATION 57

Figure 2.11: Abstract dataflow architecture

variables. In fact COMM carries all the data between the different components
but does not perform any modification and DB stores all the data without
any modification. Moreover there is a dataflow connector between PRECON
and ALARM while the real data flow goes through COMM. A similar situation
also happens between Acquisition Unit and PRECON. The real data flow
should pass from DB through COMM but there is no dataflow derived.

It is believed that the underlying cause is the presence of low-level agents
– DB and COMM – performing low-level functionalities – storage and transmis-
sion of data respectively – in the requirements. They were however needed to
achieve certain goals. The resulting dataflow architecture may then appear
quite strange.

Step 2: Style-based architectural refinement to meet architectural
constraints

In this step, the architectural draft obtained from step 1 is refined by im-
posing a “suitable” style, that is, a style whose underlying goal matches the
architectural constraints. The main architectural constraint of this system
[8, 9, 10] is that all the components should be distributed. In fact, in the
real system, only PRECON has to be built and it has to integrate in a pre-

CHAPTER 2. ARCHITECTURE DERIVATION 58

Figure 2.12: Centralized communication architectural style

existing architecture characterized by centralized communications and by
distributed components.

The only transformation rule mentioned in [27] did not match this ar-
chitectural constraints so a new one had to be designed. However, even
if the transformation rule does not correspond, the produced architecture
is centralized. The designed rule can therefore be seen as a variation of
the event-based style where the transformation and the source architecture
fragment are different while the target architecture fragment is similar. The
COMM component plays in this case the role of broker. The resulting trans-
formation rule is shown in Figure 2.12.

This style was applied on the architectural draft and the result is shown
in Figure 2.13. The situation described by the rule arises 7 times, proof that
the style constrains globally the architecture. Note that for presentation
purpose, arrows coming from the COMM component to DB have been merged.

The architecture looks now closer to what was expected. Every single
communication is achieved in a centralized way through the communication
module. The architectural constraints are now met.

Nevertheless, one “absorbent” component subsists: DB.

CHAPTER 2. ARCHITECTURE DERIVATION 59

Figure 2.13: Style-based refined architecture

CHAPTER 2. ARCHITECTURE DERIVATION 60

Figure 2.14: Fault-tolerant refinement pattern

Step 3: Pattern-based architecture refinement to achieve non-
functional requirements

The purpose of this last step is to refine further the architecture in or-
der to achieve the non-functional requirements. Those can belong to two
main categories; they can be either quality-of-service or development goals.
Quality-of-service goals include, among others, security, accuracy and us-
ability. Development goals encompass desirable qualities of software such as
low coupling, high cohesion and reusability.

This step refines the architecture in a more local way than the previous
one. Patterns are used instead of styles.

Two refinement patterns were used on the system. They come both from
[27]. The first one is presented in Fig. 2.14. Thanks to the conducted obsta-
cle analysis, the potential problems that could result from a misbehavior of
either PRECON or ALARM have been pointed out. A fault-tolerant communica-
tion between those two components was required because they form the core
of the system. They perform the most critical functions (i.e., the fault de-
tection and the alarm management). This is the reason why those modules
were desired to be as resistant as possible to any kinds of failure. The non-
functional goal Maintain[FaultTolerantCommunication(PRECON,ALARM)]
was therefore added. One could note than the pattern was not applied ex-
actly according to its definition (see Figure 2.14). The presence of the com-
ponent COMM between PRECON and ALARM was however ignored because it is
believed it has no influence on the capacity of the pattern to achieve its goal.

The second refinement pattern used is shown in Figure 2.15. As the
previous one, its introduction was motivated by the obstacle analysis. It
pinpoints the potential incoherence and inconsistency problems that could
arise since both Acquisition Unit and IMS access and modify the same
data, namely information on sensor. The goal Maintain[AccurateData(Ac-

CHAPTER 2. ARCHITECTURE DERIVATION 61

Figure 2.15: Consistency maintainer refinement pattern

quisition Unit,IMS)] was consequently introduced to make sure that all
the modifications made from both sides lead to a consistent state.

The final architecture is presented in Figure 2.16.

2.3.2 Using the Preskriptor Process

The second method converts the goal oriented requirement specifications of
KAOS into architectural prescriptions. The derivation process consists of
four sequential steps as described in Section 1.3.2. The structure of this
section will thus reflect this separation. The complete system prescriptions
are presented in Appendix B.

Step 1: Derivation of the skeleton of the architecture

In the first step the basic prescription is derived from the root goal of the sys-
tem and the knowledge of the other systems that it has to interact with. In
this case the software system is responsible for monitoring the power plant.
The root component is thus defined as PowerPlantSupervisingSystem.

This goal is then refined into PRECON, ALARM, DataBase and Communica-
tion components. This refinement is obtained by selecting a specific level
of the goal refinement tree. Considering only the root of the goal refinement
tree, the prescription would end up being too vague. On the other hand pick-
ing the leaves may end up with a too constrained prescription. Therefore
the second level of the tree has been picked as it allows to create a very well
defined prescription while preventing a specification constraining the lower
level design. The second level enables to identify two components PRECON
and ALARM. Communication was introduced thereafter because PRECON and
ALARM were obviously processing component and needed thus a connector
component to communicate. The constraint for the system to use central-

CHAPTER 2. ARCHITECTURE DERIVATION 62

Figure 2.16: Pattern-based refined architecture

CHAPTER 2. ARCHITECTURE DERIVATION 63

Figure 2.17: component refinement tree resulting from step 1

ized communication infrastructure confirms this choice. DataBase was fi-
nally introduced to complete this refinement as the need for a database was
clearly identified from the requirements. The component refinement tree
obtained is presented in Figure 2.17. The boxes represent components, be
they processing, data, or connectors, and the lines are composition links.

Step 2: Identification of potential subcomponents from objects
specification

Once the basic architecture in place, potential sub components of the basic
architecture are obtained from the objects in KAOS specification. Data,
processing and connector components are derived to implement PRECON,
ALARM, DataBase and Communication components. If in the third step no
constraint is assigned to these components, they won’t be part of the system
prescription.

The Preskriptor specifications of some candidate objects from the re-
quirement specifications are presented below.

CHAPTER 2. ARCHITECTURE DERIVATION 64

Component Fault

Type Data

Constraints . . .

Composed of . . .

Component FaultInformation

Type Data

Constraints . . .

Composed of . . .

Component SensorConnect

Type Connector

Constraints . . .

Composed of . . .

Component QueryManager

Type Processing

Constraints . . .

Composed of . . .

One can note that the Database component defined in step 1 would have
been derived automatically since a database object is present in the KAOS
object model.

Since all the components derived from KAOS specifications are data,
various processing components need to be defined at this stage to effectively
implement the component from step 1. In the same way connector com-
ponents are specified to permit communication between the newly defined
components. The latest two components forementioned are an example. At
the next stage it will be decided which of these components would be part
of the final prescription based on the assignment of the goals responsibility.
The decision will be guided by the goal diagram. The components of step
1 come from goals present in the goal diagram and are thus roots of goals
subtrees. Since goal definitions are expressed in terms of objects one looks,
in which subtree is the object from which a component is derived. Of course
some objects can be present in the definitions of goals in two different sub-
trees. The choice is then based on what goal this object is the most related
to. This is fairly qualitative though.

CHAPTER 2. ARCHITECTURE DERIVATION 65

Step 3: Selection among potential components via constraints as-
signment

In this step it is determined which of the subgoals are achieved by the system
and they are assigned to the previously defined components. With the goal
refinement tree as reference, it is decided which of the potential components
of step two would take the responsibility of the various goals. Note that this
is a design decision made by the architect based on the way he or she chooses
to realize the system. The components with no constraints are discarded,
and it is ended up with the first complete prescription of the system.

Components like Fault were discarded from the prescription because
they were not necessary to achieve the sub goals of the system. Instead of
the Fault component it was chosen to keep FaultInformation. This choice
was motivated by the fact FaultInformation is the software representation
of Fault. Different architects may use different approaches.

It is interesting to note that in the first iteration of the prescription
Communication was a leaf connector with no subcomponents. It was respon-
sible for realizing the necessary communication of the system. However the
power plant communication was not uniform throughout the system. During
the first iteration it was assumed that Communication component could han-
dle these varying types of requirements. However it was then realized that
creating sub components for Communication component could help to illus-
trate these differences. Therefore the sub components - UpdateDBConnect,
FaultDetectionEngineAlarmManagerConnect and QueryDBConnect were
created. As their name suggests, each of them is responsible for the com-
munication in different parts of the system. It was therefore easier to illus-
trate the different time and security constraints needed for each of them.
Note that the fault tolerance requirement introduced after obstacle anal-
ysis constrains the connector linking the processing components in charge
of fault detection and alarm management, namely FaultDetectionEngine
and AlarmManager.

Please find below the prescriptions for the sub components:

Component UpdateDBConnect

Type Connector

Constraints Secure
TimeConstraint = 2 s

Composed of /

Uses /

CHAPTER 2. ARCHITECTURE DERIVATION 66

Component QueryDBConnect

Type Connector

Constraints TimeConstraint = 5 s

Composed of /

Uses /

Component FaultDetectionEngineAlarmManagerConnect

Type Connector

Constraints TimeConstraint = 1 s
Secure
Maintain[FaultTolerantCommunication(PRECON,ALARM)]

Composed of /

Uses /

Figure 2.18 shows the resulting component refinement tree.

Step 4: Architecture refinement to achieve non-problem goals

An additional fourth step in the prescription design process focuses on the
non-functional requirements. Goals like reusability, reliability, etc. can be
achieved by refining the prescription. This step is iterated till all the non
domain goals are achieved.

During step 2, the fault-tolerant constraint has been added on the con-
nector linking ALARM and PRECON. However the architecture in itself was
not constrained so to ensure fault tolerance. Additional architectural con-
straints were thereby added to the connector and two copies of both PRECON
and ALARM were introduced. The constraints added state for example that
only one copy should work at a time and that whenever a failure of the
active copy occurs the other one should take the relay.

A comprehensive list of additional constraints together with the modified
system prescriptions is presented in Appendix B.2.

Box-and-line diagram

Once the architecture created, a box-and-line diagram was added to illus-
trate the various components and connectors. The component tree created
as a result of the three steps did not show how the various components are

CHAPTER 2. ARCHITECTURE DERIVATION 67

Figure 2.18: Component refinement tree resulting from step 3

CHAPTER 2. ARCHITECTURE DERIVATION 68

Figure 2.19: Box-and-line diagram

linked through the connectors. The box-and-line diagram helps in visual-
izing this and gives a more complete view of the architecture. Figure 2.19
shows the resulting diagram.

2.3.3 Comparing the Resulting Architectures

This section will focus on derived architecture characteristics strictly speak-
ing. The general differences such as the formalism used, the level of details
provided, the way non-functional requirements are addressed will be exam-
ined in Section 2.4.3. First the architectures will be examined with regard
to their components in order to check whether they share a subset of com-
ponents. If some components are missing in an architecture, the reason
will be stated. Secondly the presence of an internal structure will be dis-
cussed. The ability of the architecture to meet the architectural constraint
will then be assessed. Finally the way the two architectures deal with the
non-functional goals imposing fault-tolerant communication between PRECON

CHAPTER 2. ARCHITECTURE DERIVATION 69

and ALARM and ensuring accurate data between Acquisition Unit and IMS
will be inspected.

For reporting purpose, it will thereafter be referred to the architecture
derived by the KAOS method by architecture number one and to the one
derived using the Preskriptor process by architecture number two.

The two derived architectures have similarities but also differences. First
a set of components are common to both architectures. Among those the
two main components of the system, namely PRECON and ALARM, the com-
munication facilities and the database. The functions performed by those
components are roughly equivalent except for PRECON. In fact, the first ar-
chitecture assigns to it as sole function fault detection while the second
one adds it sensors management. This results into two additional compo-
nents in the first architecture, one for data acquisition and the other for
data validation and sensor operation checking. Since fault detection and
sensor management are two separate concerns, the first architecture can be
considered as better with respect to the high cohesion design heuristic.

An other important aspect is that the second architecture is hierarchi-
cally structured while the first one is not. The components are considered
as a whole in the first architecture while they have an internal structure in
the second one. The case of PRECON is symptomatic. It is composed of four
subcomponents – one processing, two data, and one connector component.

One architectural constraint identified from the domain was the use of
a centralized communication infrastructure. In both architectures this re-
quirement is met. This is clearly the case in the first one. One can convince
himself by a single at Figure 2.16. This results from the application of cen-
tralized communication style defined in Figure 2.12. The situation is less ob-
vious in the second architecture because of the multiple connectors defined.
Nonetheless all the connectors used for interaction between PRECON, ALARM
and Database belong to the same component, namely Communication. The
communication can thereby be said centralized. However, there is some in-
ternal communication into the PRECON component. It results from the fact
that FaultDetectionEngine needs the measured values of the variables
monitored by sensors stored in the SensorInformation component in order
to detect faults in the power plant.

The obstacle analysis has enabled to identify the fault tolerance require-
ment for the communication between PRECON and ALARM. The way both
architectures address this issue have common points. Two copies of the
components are introduced. There are nevertheless some differences. In the
first architecture, a connector links the copies and each copy of PRECON is
linked to one copy of ALARM. In the second architecture, there is no linking

CHAPTER 2. ARCHITECTURE DERIVATION 70

Criterion Architecture 1 (KAOS) Architecture 2 (Preskriptor)
Components PRECON PRECON

ALARM ALARM
COMM Communication
DB DB
Acquisition Unit
IMS
Consistency Maintainer

Hierarchical no yes
Structure
Centralized yes (COMM) yes (Communication)
communication
Fault yes yes
tolerance
Consistency yes not needed
maintainer

Table 2.1: Comparison between the resulting architectures

connector between the copies and only one connector is used to manage
interactions between the two copies of PRECON from one side and the two
copies of ALARM from the other side. Moreover the semantic of the different
connectors is not very clear in the first architecture. Thanks to the addi-
tional constraint introduced the situation is somewhat better in the second
case.

The last difference arises from the fact that in the second architecture,
the acquisition of data is grouped together with data validation and sanity
checkings for sensors. As they are performed in the same component –
SensorInformation – there is no need for a consistency maintainer like the
one present in the first architecture.

All these considerations are summarized in Table 2.1.

CHAPTER 2. ARCHITECTURE DERIVATION 71

2.4 Discussion

2.4.1 Evaluating the Methods

This section will evaluate the two methods used. In a first time the deriva-
tion process will be examined. Since in both cases it consists of interme-
diate steps, each one will be carefully examined. Various concerns will be
reviewed such as the easiness of application, the level of guidance/freedom
provided/allowed, the issues encountered during the architecture derivation.
In a second time the formalism used will be studied considering its advan-
tages and disadvantages in terms of capabilities/limitations . Thirdly the
mapping from the requirements will be examined. Finally the remaining gap
between the final architecture and the implementation will be discussed.

The KAOS Method

Once the requirements finalized, the first step allows to get an abstract
dataflow architecture. Dataflow architecture is obtained by using functional
goals assigned to software agents. The agents become architectural com-
ponents and then dataflow connectors are derived from data dependencies.
This stage is fairly systematic and its application is thus straightforward.
The abstract dataflow architecture can be obtained from the agent context
diagram by suppressing all the environment agents. The guidance is here
maximal and there is no doubt that this step can be automated easily. An
important issue here is that the dataflow connectors do not reflect perfectly
the actual data flows but the data dependencies. And those two are not
always equivalent. Moreover, “absorbent” components appear when some
agent do not control any variables. It was the case for COMM and DB since,
due to their inherent function – communication and storage, it could not be
said they control the variables transmitted/stored.

In the next stage architectural styles are applied to meet architectural
constraints. This step is the most qualitative. Only one style is mentioned
in [27] and it does not match the architectural constraints of the system
(centralized communication). A new transformation rule had to be designed.
The design of the transformation rule was driven by two facts:

1. initial situation
COMM was one of the absorbent components discussed here above.

2. desired situation
The architecture needs to reflect the actual data flows by having all
the communications centralized through the COMM component.

CHAPTER 2. ARCHITECTURE DERIVATION 72

This enterprise was almost a complete success. The only remaining prob-
lem is that DB is still an absorbent component although the information on
sensors are for example provided by the database to PRECON. The architec-
tural constraint was nonetheless achieved since all the communications are
centralized through the COMM component.

The third step prescribes the use of patterns to achieve non-functional
requirements. Various sample patterns are given in [27], however they are
only suggested. Their description is very partial and informal, leaving lots of
shadow areas. First their applicability condition is very vague, defined only
by an initial configuration of components in terms of box and lines and by
the name of non-functional goal concerning the initial architecture fragment.
Secondly the resulting refined fragment of architecture often leads to the
introduction of new connectors and components. Neither the components
nor the connectors introduced are described in terms of operations performed
or data carried. For example, fault-tolerant communication was introduced
between PRECON and ALARM thanks to the pattern presented in Figure 2.14
but no information is provided about how the two copies communicate, how
they are coordinated and how the surrounding components are affected.
Similarly, for the consistency maintainer pattern (see Figure 2.15) applied
on Acquisition Unit and IMS, the consistency maintainer component has
no associate operations and there is no semantic for the newly introduced
connectors. Those investigations lead to the discovery of an other issue:
combination of patterns. When two different patterns can be applied on
the same components the method does not provide any guidelines. Yet, this
situation brings many questions:

• Do the patterns conserve their efficiency if they are combined?

• If not, how to choose the one to apply?

• Does the order of pattern application matter?

• Once one pattern has been applied, will the resulting piece of archi-
tecture still match the applicability condition of the other?

Finally, some non-functional requirements are not handled by the pro-
posed patterns. For example the performance requirements so important in
real-time systems are not ensured by any patterns.

The KAOS method uses a graphical formalism which is completed by
formal definitions coming from the requirements specifications. A structural
view of the architecture is provided by a box-and-line diagram, boxes rep-
resenting components and arrows connectors. This diagram gives a good

CHAPTER 2. ARCHITECTURE DERIVATION 73

overview of the general structure of the system. The components are de-
scribed by a set of operations that are formally defined in temporal logic.
The connectors are specified by the data they carry if they are dataflow
while no precise notation is introduced otherwise. The description of the
connectors is so far not sufficient. The way the different components inter-
act needs to be described in a precise way. In fact the behavioral view of
the architecture is globally missing. Operations describe pieces of behavior
of components but there is until now little information on how this different
operations form the global behavior of the components. Moreover there is
no information on how the different components coordinate their effort to
achieve the general system behavior.

The mapping from requirements to architecture is first based on agents.
Each agent ensuring a functional goal becomes a software component. The
operations ensuring the functional goals are part of its description. The
controlled/monitored variables – described in the object model – are used to
derive dataflow connectors. Patterns are used to achieve the non-functional
requirements. Each model is used and it can thereby be said that the KAOS
method uses fully the requirements specifications.

As explained in Section 1.2, architecture should serve as a basis for the
design. This method provides a well structured architecture whose func-
tions of the different components are clear thanks to operations specifica-
tions. The remaining work concerns mostly the description of the behavior
of the components, the way they interact through connectors and how they
coordinate their effort to act as a whole. The design phase comes thereafter,
specifying the needed data structures, algorithms, communications proto-
cols and so on. The method provides so a good structural basis for the
design but is unsatisfactory with respect to the description of the behavior
of the system.

The Preskriptor Process

In the first step the basic prescription is derived from the root goal of the
system and the knowledge of the other systems it has to interact with. It was
difficult to determine how to start and how much to try to do in the first step.
The dilemma was the following: what decisions regarding the architecture
are made at step one? Is a root component simply assigned or is it needed
to anticipate the next steps and to have a basic thought-out structure? The
second solution was chosen by defining four subcomponents to the root one,
namely PRECON, ALARM, Communication and Database because a general
structure was thought to be needed.

CHAPTER 2. ARCHITECTURE DERIVATION 74

In the second step objects in the KAOS specification are used to de-
rive potential sub components of the basic architecture. This step was very
systematic and did not present any major difficulties. Nonetheless the possi-
bility of using agents instead of objects to derive components was discussed.
In fact, it was initially thought at using the IMS agent as a sub component
but SensorInformation (which is an object) was finally used instead.

In the third step an appropriate degree of refinement of the goal refine-
ment tree is selected. At this point the sub goals achieved by the system are
assigned to the sub components created in step two. The component that
are not constrained by any goals are discarded. The decision of the assign-
ment of goal to a particular component is left to the architect. The method
does not provide any guidance. It was sometimes difficult to choose to which
component assign a goal. The eventuality of sharing the responsibility of a
goal between two components even came up.

The fourth step aims at satisfying the non-problem requirements. The
goal of this step is clear but there is no real methodology to achieve this.
Once again this lack of guidance was an obstacle to overcome. In order to
describe more precisely the architectural implications of the fault tolerance
requirement, it was decided to add multiple copies of PRECON and ALARM
similarly to what has been done with the KAOS method and to add a few
constraints to the connector linking. All these were personal decisions not
motivated by the method.

Architectural prescriptions form the core of the architectural descrip-
tion. They define the components in a hierarchical way. Each component
is described by its type, the constraints it has to ensure, the various com-
ponents it is composed of and the components with whom some interaction
is performed as well as the connectors used for those interactions. An im-
portant characteristic is here that connectors can have associate constraints
like any other component. They can therefore be more active than if their
only purpose was to carry data or to call a remote procedure. However con-
nectors cannot specify the data passed through them. Two graphical views
are used to support prescriptions. The component refinement tree shows
the hierarchy of the components while the box-and-line diagram exhibits
the actual structure of the architecture. The behavioral view of the system
is not addressed. The views proposed are only static.

The Preskriptor process takes as starting point the objects present in
the requirements specification. The various goals of the system are then
assigned as constraints to those components. Neither the agents nor the
operations are used in the derivation process. The Preskriptor process does
thus not make a full use of the requirements specifications.

CHAPTER 2. ARCHITECTURE DERIVATION 75

As the components are only described by constraints, nothing is said
about how those constraints are actually realized. This is up to the designer.
The whole behavior of each component has to be defined. Even the struc-
ture is not totally clear since this method focuses essentially on component
hierarchy. There is so a lot of remaining work to achieve even before being
able to effectively design the system, in terms of implementation choices for
example.

2.4.2 Opportunities for Improvements

The KAOS Method

Suggested improvements belong to two main categories: the first dealing
with patterns and style description, the second adding a behavioral view to
the architecture descriptions.

In Section 2.4.1, patterns description has been identified as an obsta-
cle to the derivation process. They should therefore be better documented.
First their applicability condition should be clearly stated presenting the
non-functional goal achieved and the conditions the concerned part of ar-
chitecture has to satisfy. Secondly the resulting piece of architecture must
be clearly defined. Introduced components should be described by a set of
operations (like any other component) and new connectors by the data car-
ried and by the interaction protocol used. These considerations also apply
to style except that architectural constraints replace non-functional goals.

The behavioral view of the architecture is essentially missing from the
KAOS method. Pieces of behavior component are described by operations
but the way these operations are coordinated to form the global component
behavior, the way the different components interact through connectors and
the way all the components coordinate their efforts to achieve a global be-
havior are not addressed. Therefore, a better description of connectors is
essential since they provide the mean of communication and coordination
between components. Moreover, the way the different operations of a com-
ponent form its global behavior in terms of a sequential or parallel execution
order for example needs to be further detailed.

The Preskriptor Process

The lack of guidance especially in the first step was really felt as a hard
obstacle to overcome and therefore the first improvement suggested concerns
a better definition of the method. For the various steps, there should be
at least explanations of the different possible strategies, their impact on

CHAPTER 2. ARCHITECTURE DERIVATION 76

the resulting prescriptions, their associate advantages and disadvantages.
For example in step 1, the issue of the refinement of the root component
should be addressed. An other example is the assignment of constraints to
components in step 3. Different strategies lead to different prescriptions and
the impact of such strategies should be examined.

An other important improvement should be to develop further the method
concerning the satisfaction of non-functional requirements. The way they
are handled at the present time is all but clear. There is no methodology to
achieve them and very few examples are addressed in [8, 9, 10]. The method
provides so far too little support to be useful.

2.4.3 Comparing the Methods

The first important thing to note is that both architectures ensure the sat-
isfaction of all functional requirements, by different means, though. The
KAOS method takes every functional goal and creates a component from
the responsible agent. The derived component is described by the opera-
tions operationalizing the goals so ensuring its satisfaction. The Preskriptor
process derives components from objects and uses the goals to constraint
them. The KAOS method ensures thus goals satisfaction by adding needed
operations to components while the Preskriptor process constraints the com-
ponents.

The most significant difference is that the KAOS method is more “low
level”. The components are described together with the operations that
they have to perform creating a more rigid design. The Preskriptor process
uses an architecture prescription language which tends to be more “high
level”. This allows the designer more freedom to pick a better solution at
a low level. This results in significantly more work for the designer in the
later case.

An other important difference is that the KAOS method offers more
guidance. Two different architects starting from the same requirements spec-
ifications would probably obtain very similar architectures with the KAOS
method while the resulting architectures could be very different with the
Preskriptor Process.

The first method provides a more ’network type’ view showing the var-
ious relationships and interactions between the components. The second
method resulted in a component tree which is more hierarchical in nature.
An additional box-and-line diagram was needed to better explain the com-
ponent interactions. However both views though different were useful. And
the ability to describe an architecture in terms of hierarchical structures

CHAPTER 2. ARCHITECTURE DERIVATION 77

could also be an improvement to the KAOS method.
In both cases a behavioral view of the architecture was not really present.

In the KAOS method, parts of the component behavior are implicitly present
through operations definitions while in the Preskriptor process behavior of
the system is not treated at all.

The mapping from requirements is also quite different since agents are
used in one case and objects in the other one to create components. More-
over the KAOS method uses all the different models of the requirements
specifications while the Preskriptor process only uses the goal and the ob-
ject model.

The way non-functional requirements are addressed is also different. The
KAOS methods uses patterns to ensure them while Preskriptor achieves
them by further constraining the components.

Chapter 3

Toward More Precise
Architecture Derivation

From Section 2.4.2 two areas of improvement for the KAOS method have
been suggested in order to both facilitate the architecture derivation process
and to obtain a more complete and precise architecture description.

On the one hand, the behavioral view of the architecture is essentially
missing and its addition to the KAOS method would complete the structural
view already present.

On the other hand, better descriptions of patterns and styles from the
point of view of their applicability conditions and of the non-functional
goals/architectural constraints they achieved would enable to make the iden-
tification of the suitable pattern/style easier so providing more guidance to
the architect in its choices. Moreover, current patterns descriptions are weak
with respect to fragment of architecture produced by their application. New
components and connectors are introduced but no information describes the
operations they performed, the way they interact with pre-existing compo-
nents. Another important concern with patterns is their application cannot
modify the ability of the system to achieve its functionalities. They have to
achieve some non-functional requirement while keeping all the other func-
tional requirements satisfied. Find a way to check that patterns do not
affect the general behavior of the system would be highly beneficial. In
conclusion architecture description could be more powerful on the one hand
thanks to the addition of a procedure to specify the component behavior as
well as their interactions, and on the other hand via a precise description of
architecture parts resulting from patterns application.

This chapter aims at making the architecture description more precise

78

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 79

and will therefore focused on two improvement areas: first bring a behavioral
view to the architectural descriptions and secondly on describe precisely the
structural and behavioral effects of patterns application. Section 1.2 identi-
fies Architectural Description Languages (ADL) as a good mean to describe
architectures precisely. Indeed they offer formal notations allowing accurate
descriptions of various aspects of the architecture such as its structure, its
behavior, the presence of style and formal reasoning capabilities. The use
of an ADL will therefore be explored to this end.

The comparative study presented in Section 1.2 serves as a basis for the
choice of the ADL. Considering the particular needs of this problem Wright
appears as the best solution. Indeed, the main concern is the behavioral
description of the architecture and Wright allows the description of both
individual component behavior and their interactions through connectors.
Moreover, Wright supports styles and allows some formal reasoning capabil-
ities as for example, the possibility to check the absence of deadlocks in the
architecture. Another element in favor of Wright is its well-known formalism
since it uses a CSP-like notation.

This chapter is structured as follows: Section 3.1 introduces the Wright
architecture description language, Section 3.2 presents ways to derive archi-
tecture descriptions in Wright, Section 3.3 describes the application of the
derivation mechanisms to the power plant supervisory system and Section
3.4 presents a comprehensive description of the two patterns applied to the
power plant supervisory system.

3.1 Wright

In order to provide the reader with the necessary basis to understand this
chapter, Wright will be presented. For further details please refer to [1].
In a first time its syntax will be exposed. Then will be examined the three
architectural abstractions present in Wright, that is, components, connectors
and configurations. Next the semantic of components and connectors will be
informally explained in order to show how the global behavior of the system
is derived from their specifications. Finally the various kinds of possible
analysis will be briefly discussed.

The notation used is a subset of CSP, containing the following elements:

• Processes and Events: A process describes an entity that can en-
gage in communication events. Events may be primitive or they can
have associated data (as in e?x and e!x, representing respectively data

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 80

input and output). The simplest process, STOP, is the one that en-
gages in no events. The event

√
is used to represent the “success”

event. The symbol § is used to denote a successful terminated process,
formally § def

=
√
→ STOP. A distinction is made between initiating an

event and observing an event. Practically an event initiated by a pro-
cess is written with an overbar while an event observed by a process
is written without overbar.

• Prefixing: A process that engages in event e and then becomes pro-
cess P is denoted e → P .

• Deterministic choice: P []Q refers to a process that can behave like
P or Q depending of its environment (the environment relates to the
other processes interacting with the process) .

• Non-deterministic choice: P uQ denotes a process that can behave
like P or Q, the choice being made (non-deterministically) by the
process itself.

• Parallel composition P‖Q refers to the parallel execution of pro-
cesses P and Q.

• Condition: The when operator is used to have a different process
behavior depending on some condition on its state variables.

Pv =
{

Q when A(v)
R otherwise

denotes a process over variable v that be-

haves like Q or R depending on the truth value of A(v).

• Named processes: Process names can be associated with a process
expression through the where operator.

In Wright, the description of a component has two important parts,
the interface and the computation. An interface consists of a number of
ports. Each port represents an interaction in which the component may
participate and describes its behavior at that particular point of interaction.
The computation section explicits what the component actually does. The
computation carries out the interactions described by the ports and shows
how they are tied together to form a coherent whole. It consists of all the
interactions described in the port fields together with internal processing
and combines all these information to provide a full specification of the
component behavior.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 81

A Wright description of a connector divides it into a set of roles and
the glue. Each role specifies the behavior of a single participant in the in-
teraction. The glue specifies how the activities of the different roles are
coordinated. In a similar way to the computation field of components, the
glue consists of all the interactions described in the role field together with
internal processing. It composed these data to specify how the participants
work together to create an interaction so providing the full behavioral spec-
ification.

In order to get a complete system architecture, the components and con-
nectors of a Wright description must be combined into a configuration. A
configuration is a collection of component instances combined via connec-
tors. A configuration consists of the definition of instances and attachments.
Instances are necessary since there may be many components or connectors
of the same type. Attachments define the system topology by linking com-
ponents instances via connectors instances. Note also that Wright supports
hierarchical descriptions.

The behavior of an architectural configuration is constituted by each
behavior of the individual components, each operating independently except
the fact they are coordinated by the glue of the connectors to which they are
attached. The computation of each component forms a part of the overall
behavior, where the order in which the computations occur and the data
transfer from one to the other is coordinated by the connectors.

Wright provides also means to analyze the architecture. Classic checks
include detection of deadlocks, starvation, races conditions. Another im-
portant issue is to check whether attached ports and role are behaviorally
compatible. As Wright uses a subset of the CSP notation, all the analysis
are performed using the FDR[13] model checker.

3.2 Deriving Architectures in Wright

3.2.1 Integration within the KAOS method

Two solutions can be imagined to derive Wright specifications from the
architecture description resulting from the KAOS method. The first one
tightly couples the two derivation processes where Wright specifications are
constructed incrementally on the basis of the intermediate architectures pro-
duced by the KAOS 3 steps process. The second possibility is to derive
Wright specifications only once the whole architectural description has been
built.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 82

The first alternative has been chosen for two reasons. First one can con-
vince that it is far more easy to derive Wright specification from the initial
abstract dataflow architecture than from the final pattern-based architec-
ture. Assuming the existence of well defined transformation rules for pat-
terns and styles, the continuation of the Wright derivation process should not
present any major problems. Secondly incremental construction of Wright
specifications enables to validate the architecture after each transformation
ensuring that this transformation does not prevent from satisfying any func-
tional requirements.

Of course this solution has the drawback to demand more work. Three
Wright specifications are built instead of one. Nevertheless it is believed
that the advantages forementioned largely counterbalance this inconvenient.
Moreover appropriate tools can support the process so as to minimize the
impact of extra work.

As a result from this approach, this subsection will focus on how to derive
a Wright specification from the abstract dataflow architecture produced by
the first step of the KAOS method while Section 3.4 aims at refining this
initial Wright specification by patterns application.

3.2.2 Structure

Even if not the prime objective, architecture structure is an integral part of
a Wright description and must therefore be handled. Structure description
in Wright consists of the identification of the different components and con-
nectors types as well as the description of their interface (via ports and roles,
respectively), and the way those components and connectors are linked so as
to form the system topology (via instances and attachments). It is impor-
tant to note that two levels of description exist. Since there may be many
instances of the same component or connector, the concept of type is in-
troduced. The type describes the properties of the component or connector
while instances are actual examples of them in use. As the structural view
is already present under graphical form in the abstract dataflow architec-
ture and as components and connectors are the main constitutive elements
in both formalisms, the mapping to Wright is straightforward. It can be
expressed by the following rules. Rules 1 and 2 express the correspondences
between components and connectors types in KAOS and Wright. Rules
3 and 4 deal with the instance level. Rule 5 is concerned by the system
topology.

Rule 1 Let CKAOS be a component type in the KAOS architecture descrip-

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 83

tion. Let n be the number of dataflow connectors coming from or to CKAOS.
The translation of CKAOS in Wright is a component CWright with n ports
p1, . . . , pn.

component CWright

port p1
...

...
port pn

Rule 2 The dataflow connector type in the KAOS architecture description
is translated in Wright by a connector type Dataflow with two roles, namely
Producer and Consumer.

connector Dataflow
role Producer
role Consumer

Rule 3 Let CKAOS be a component type in the KAOS architecture descrip-
tion and CWright its correspondence in Wright. For each instance of CKAOS

present in the KAOS architecture description an instance CWright is defined
in the Wright specifications.

Rule 4 For each instance of a dataflow connector in the KAOS architec-
ture description an instance of the Dataflow connector type is defined in the
Wright specifications.

Rule 5 Let CKAOS
1 , CKAOS

2 two components linked by a dataflow connector
DKAOS coming from CKAOS

1 to CKAOS
2 in the KAOS architecture descrip-

tion. Let CWright
1 , CWright

2 be the corresponding Wright components and
Output and Input be the ports used by each one to interact with the other.
Let DataflowWright be the corresponding Wright dataflow connector with its
two roles Producer and Consumer. The corresponding instances cWright

1 ,
cWright
2 and dWright of the components and connectors are attached in Wright

as follows:

attachments cWright
1 .Output as dWright.P roducer

cWright
2 .Input as dWright.Consumer

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 84

Figure 3.1: Fragment of an abstract dataflow architecture

Considering for example two components C1 and C2 linked through
a dataflow connector d. From the graphical representation of Figure 3.1
and with the help of the rules defined, the following Wright specification is
obtained without any difficulty.

configuration Example

component C1

port Output

component C2

port Input

connector Dataflow

role Producer
role Consumer

instances a: C1
b: C2
d: Dataflow

attachments a.Output as d.Producer
b.Input as d.Consumer

end Example

3.2.3 Behavior

Connectors

Since dataflow connectors are the only type of connectors present in the
abstract dataflow architecture, they will be our only concern. A dataflow
connector expresses the interaction of a component providing some data –
the producer – with a component needing this data – the consumer. One
can consider two alternative behaviors: the “push” and the “pull” behavior.
In the push behavior (see Figure 3.2), the producer initiates an event with
data attached to it each time new data have been produced. In the pull
behavior (see Figure 3.3), each time new data are produced, the producer

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 85

Figure 3.2: Example of interaction
scenario for the ”push” behavior

Figure 3.3: Example of interaction
scenario for the ”pull” behavior

notifies the consumer. It is the consumer’s duty to retrieve the data by
sending a request to the Producer.

This leads to the two following specifications for dataflow connectors:

connector Push-Dataflow

role Producer = provide!x → Producer u §
role Consumer = retrieve?x → Consumer [] §
glue = Producer.provide!x → Consumer.retrieve?x → glue [] §

connector Pull-Dataflow

role Producer = dataReady → Producer
[] request?x → send!x → Producer u §

role Consumer = dataReady → request!x → receive?x → Consumer
[] §

glue = Producer.dataReady → Consumer.dataReady
→ Consumer.request!x → Producer.request?x
→ Producer.send!x → Consumer.reveive?x → glue [] §

The choice between the “push” and the “pull” behavior depends on the
particular case. If the consumer could be sometimes overloaded, perhaps it
would be better to chose the “pull” behavior in order to enable it to handle
the new data once it is ready. If the producer cannot keep the produced
data due to a lack of memory, the “push” behavior is more appropriate.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 86

Components

Parts of components behavior are expressed in the architecture description
by the operations a component has to perform. The idea is to use as much
as possible this information so as to extract a global component behavior.
A set of heuristics will be presented in order to derive the Wright specifi-
cation of a component given its operations specifications in temporal logic.
These heuristics result from an attempt to infer generalizations from con-
crete examples. In fact, the system was first specified partially in Wright
and these heuristics are a tentative to structure the derivation process. One
should keep in mind that these are only heuristics and not proven correct
rules. They nonetheless provide a useful help in the derivation of Wright
specifications.

Heuristics are grouped into two main parts. First it is tried to trans-
late a KAOS operation specification in Wright. Secondly the control flow
is inferred so as to combine the different operations to obtain the full be-
havior specification of the component. The presentation of each heuristic
consists of three parts. The first one explains in an intuitive way what is
the justification behind the heuristic. The second part defines the heuristic
as formally as possible. Finally the third part applies the defined heuristic
on examples coming from the power plant supervisory system specification.

Translating a individual operation

Pre-, post- and trigger conditions As explained in Section 1.1.2
operations are defined in KAOS by a set of fields. The input/output fields
define the object(s) received in parameters and modified by the operation
respectively, so defining the operation signature. Domain pre-/post condi-
tions describe the elementary conditions on input and output states in the
domain. Required pre-/post conditions prescribe additional conditions on
input and output states that are necessary for ensuring some goals. Re-
quired trigger conditions capture sufficient conditions on input state that
require the immediate application of the operation.

In Wright two constructs can be used to represent conditions: events, and
conditions preceded by the when operator. As the when operator is used to
describe different behaviors depending on the truth value of some condition,
it is only appropriate to express trigger and preconditions. Postconditions
are therefore always expressed by events. But what about preconditions?
It depends. A precondition of an operation can also be a postcondition of
another operation of the same component. In that case, the precondition

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 87

will be expressed as an event. If it is not the case, two possibilities remain;
either they are postconditions of an operation performed by another com-
ponent or they are only preconditions of that particular operation. The
former case implies some transmission from that other component to the
considered component in order to notify the satisfaction of the condition.
Otherwise the precondition will be forever false since the component will
not know the operation precondition has just become true. Who says trans-
mission says there will be an event coming from one of the ports and the
precondition will thus be represented as an event. The latter case will be
expressed through the when operator. Classical situations include precon-
ditions representing the state of an internal variable or some property of
the environment. The preceding considerations can be summarized by the
definitions of the following heuristics.

Heuristic 1 Let C be a component, Op1,. . . ,Opn be its operations.
The postconditions (required or from the domain) of Op1,. . . ,Opn are ex-
pressed in Wright by events.

Heuristic 2 Let C be a component, Op1,. . . ,Opn be its operations.
The pre-(required or from the domain) and trigger conditions of Op1,. . . ,Opn

can be expressed either by events or by condition preceded by the when op-
erator. Conditions preceded by when are used when the pre- or trigger
conditions refer to the state of an internal variable or some property of the
environment. Events are used otherwise.

These heuristics will now be illustrated with an example. Considering
the operation SwitchSensorOff whose pre- and postconditions are given
by:

DomPre s.Status = on
DomPost s.Status= off
ReqTrig ¬ s.WorkingProperly

The postcondition s.Status=Off will be expressed by the event TurnOff(s)
as prescribed by heuristic 1. Both the pre- and the trigger conditions re-
fer to the environment since the variable s denotes a sensor and Sensor is
an environment agent. They will be therefore expressed by the condition
s.Status=on ∧ ¬ s.WorkingkingProperly as said in heuristic 2.

Limitations of Wright regarding to temporal logic As Wright
does not support temporal logic there is an inevitable loss of semantic re-
sulting from the translation of pre-, trigger and postconditions into Wright

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 88

constructs. The time constraints will be in particular not translated. Nev-
ertheless it is sometimes possible to be more restrictive than asked by the
pre-, trigger and postconditions. Consider the typical example of bounded
achieve goals expressed by A ⇒ ♦≤tsB that produces a trigger condition of
the form ¬BSt−1sA ∧ ¬B. The trigger condition can be enforced to A so
transforming the goal in an immediate achieve instead of a bounded achieve.
The operationalization looses in that case its minimality property but keeps
its completeness and consistency.

Data transmission Data transmission is a particular case of the two
preceding heuristics since Wright has a dedicated construct for data trans-
mission. As explained in Section 3.1 data can be associated to events via
?d for a reception and !d for a transmission. In the abstract dataflow ar-
chitecture, data transmissions are expressed through dataflow connectors.
Assume that a dataflow connector links C1 and C2 via ports P1 and P2
and transmits some data d from C1 to C2, there must be an event in the
specification of C1 specifying the sending of d and an event in the specifica-
tion of C2 specifying the reception of d. This is expressed by the following
heuristic:

Heuristic 3 Let C1, C2 be two components linked by a dataflow connector
via ports p1 and p2, let d be the transmitted data from C1 to C2. There must
be an event e1 of the form p1.e1!d in the specification of C1 and an event e2

of the form p2.e2?d in the specification of C2.

Looking at the abstract dataflow architecture presented in Figure 2.11
one can for example note the dataflow connector between the component
Acquisition Unit and Database carrying sensor information (si). Assum-
ing that ToDB and FromAcq are the ports used by Acquisition Unit
and DB to communicate, there will be an event ToDB.transmit!si and an
event FromAcq.receive?si in the specifications of Acquisition Unit and
DB respectively.

Operations Once the various pre-, trigger and postconditions have
been expressed by events or conditions in Wright, they have to be linked to
form the operation. As pre- and trigger conditions precede postconditions,
there should be a sequential order between them. The pre- and trigger con-
ditions that are expressed by events are therefore linked to the corresponding
postconditions using→ in Wright. The pre- and trigger conditions expressed
by a condition are added through the when operator. Note that in some

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 89

case all the preconditions are expressed by events or by conditions. Conse-
quently three cases should be distinguished:

1. all the pre- and trigger conditions are expressed by events

2. all the pre- and trigger conditions are expressed by conditions

3. the pre- and trigger conditions are expressed by events and conditions

Depending on the case the operation specification can be constructed as
stated by the following heuristic:

Heuristic 4 Let Op be an operation. Let pre be the event expressing pre-
and trigger conditions if there exists. Let cond be the condition expressing
preconditions if there exists. Let post be the event expressing postconditions.
Depending on the case the Wright specification of the process representing
Op is given by:

1. if all the pre- and trigger conditions are expressed by events
pre → post

2. if all the pre- and trigger conditions are expressed by conditions
post when cond

3. if the pre- and trigger conditions are expressed by events and conditions
pre → post when cond

Wright allows to associate a process name with a process expression. A
process in Wright is an entity that can engage in events. Since at least the
postconditions of the operations are expressed by events, operations are thus
processes. In order to make the mapping from the architecture description
resulting from the KAOS method as clear as possible processes correspond-
ing to operations should be associated with the name of the operations.

Heuristic 5 Let Op be an operation.
The process representation of Op in Wright should be associated with the
name of Op.

Continuing with the example of SwitchSensorOff, its complete Wright
specification can be derived using heuristic 4 and the resulting process can
be named SwitchSensorOff as advised by heuristic 5.

SwitchSensorOff = TurnOff(s) when s.Status=on
∧ ¬ s.WorkingkingProperly

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 90

Infering the control flow

Sequential Composition First in order to facilitate the following
explanations two definitions are introduced: the global precondition and
global postcondition. They formalize the fact that in order to perform an
operation, all its preconditions, be they required or from the domain, and at
least one of its trigger condition must hold. Similarly, once an operation has
been performed, all its postconditions, be they required or from the domain,
must hold. The following definitions result from those considerations.

Definition 1 Let Op be an operation, DomPre1,. . . , DomPrem be its asso-
ciate domain preconditions, ReqPre1,. . . , ReqPren be its associate required
preconditions and let ReqTrig1, . . . , ReqTrigp be its associate trigger con-
ditions, DomPost1,. . . , DomPostq be its associate domain postconditions,
ReqPost1,. . . , ReqPostr be its associate required postconditions.

DomPre(Op) =
∧m

i=1 DomPrei

ReqPre(Op) =
∧n

i=1 ReqPrei

Trig(Op) =
∨p

i=1 ReqTrigi

DomPost(Op) =
∧q

i=1 DomPosti
ReqPost(Op) =

∧r
i=1 ReqPosti

Pre(Op) = DomPre(Op) ∧ReqPre(Op) ∧ Trig(Op)
Post(Op) = DomPost(Op) ∧ReqPost(Op)

It will now be attempted to characterize the concept of sequentiality
between two operations. Let C be a component, and Op1 and Op2 two of its
operations. The question is: “Is there any relationship between Post(Op1)
and Pre(Op2) that constraints Op1 to be applied before Op2?”. By definition
of Post(Op1) and Pre(Op2), Post(Op1) holds after the application of Op1

and Pre(Op2) must hold in order to apply Op2. Intuitively Post(Op1) ⊃
Pre(Op2)1 appears directly as a condition since this formula states that
after applying Op1, Pre(Op2) holds since Post(Op1) implies Pre(Op2) and
Op2 can therefore be applied. However this is not the sole case where two
operations must be applied sequentially. Consider the following example:

Post(Op1) : x = 5
Pre(Op2) : x = 5 ∧ y = 6

1⊃ will be used instead of the classical graphic notation for implication → to prevent
any confusion with the Wright operator

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 91

Case Post(Op1) Pre(Op2) ¬Post(Op1) ¬Pre(Op2)
∨Pre(Op2) ∨Post(Op1)

1 x = 5 x = 5 true true
2 x = 5 ∧ y = 6 x = 5 true satisfiable
3 x = 5 x = 5 ∧ y = 6 satisfiable true
4 x = 5 ∨ x = 6 x = 5 satisfiable true
5 x = 5 x = 5 ∨ x = 6 true satisfiable
6 x = 5 ∧ y = 6 x = 5 ∧ z = 7 satisfiable satisfiable
7 x = 5 ∧ y = 6 x = 5 ∨ z = 7 true satisfiable
8 x = 5 ∨ y = 6 x = 5 ∧ z = 7 satisfiable true
9 x = 5 ∨ y = 6 x = 5 ∨ z = 7 satisfiable satisfiable
10 x = 5 y = 5 satisfiable satisfiable

Table 3.1: Cases where Op1 and Op2 must be applied sequentially

In this case, Post(Op1) is a necessary condition for the application of
Op2 even if it is not a sufficient condition. Formally Pre(Op2) ⊃ Post(Op1).
Those two implications can be rewritten using disjunctions:

(1) Post(Op1) ⊃ Pre(Op2) ≡ ¬Post(Op1) ∨ Pre(Op2)

(2) Pre(Op2) ⊃ Post(Op1) ≡ ¬Pre(Op2) ∨ Post(Op1)

The situation is far more complex than just those two cases. Other situ-
ations exist where the fact that Op1 must be applied before Op2 is arguable.
A non exhaustive set of interesting situations is summarized in Table 3.1.

, Case 1 is the simplest case where Post(Op1) is equivalent to Pre(Op2).
In cases 2, 5, and 7 Post(Op1) implies Pre(Op2). Post(Op1) is a sufficient
condition to the application of Op2. In cases 3, 4, and 8, Pre(Op2) implies
Post(Op1). Post(Op1) is a necessary condition to the application of Op2.
One can note that for cases 4 and 8 it is more debatable to state a sequen-
tial order because it is not sure that Post(Op1) will contribute to Pre(Op2).
This is due to the presence of the disjunction in the postconditions. One can
convince oneself that such a situation is unlikely to happen since it would
mean the operation has two different behaviors. Case 6 is also interesting
as Post(Op1) contributes to Pre(Op2) but without any implication in any
direction. Case 10 illustrates a problem that can arise because of different
names. If in Op1 the integer is called x and in Op2 is called y. The impli-
cations will not work even though Post(Op1) is equivalent to Pre(Op2) if
x is renamed in y. This discussion leads to the definition of the following
heuristic.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 92

Heuristic 6 Let C be a component, Op1, Op2 be two of its operations. As-
suming that Post(Op1) and Pre(Op2) are not equal to the constant true or
false. Op1 application precedes Op2 application if there exists a renaming of
variables such as

Post(Op1) ⊃ Pre(Op2) or Pre(Op2) ⊃ Post(Op1)

Two things should be kept in mind: first the heuristic does not say that
application of Op2 takes place straight after Op1 application but only that
Op2 follows Op1 application without saying anything about when exactly
Op2 is applied; secondly other operations can have to be performed sequen-
tially; the heuristic is not exhaustive.

To illustrate this heuristic, the operation SwitchSensorOff already dis-
cussed and its dual operation SwitchSensorOn will be examined. Their
pre-, trigger and postconditions are given by:

Operation SwitchSensorOff
DomPre s.Status = on
DomPost s.Status= off
ReqTrig ¬ s.WorkingProperly

Operation SwitchSensorOn
DomPre s.Status = off
DomPost s.Status= on
ReqPre s.WorkingProperly

One can note that Pre(SwitchSensorOn) ⊃ Post(SwitchSensorOff) and
that Pre(SwitchSensorOff) ⊃ Post(SwitchSensorOn). Heuristic 6 therefore
prescribes that there is a sequential order between the two operations wich
is logical since to turn a sensor off it has to be turned on before and vice
versa. One can also note that although there is a sequential order, the two
operations do not have to be successive. Indeed other operations can slot in
their application.

Direct sequential composition The next heuristic goes further im-
posing a direct succession between two operations. The heuristic bases on
the milestone pattern for goal refinement. It prescribes that some milestone
states are mandatory in order to reach the final one, that is, it imposes that
the milestone state precedes the final state. The intermediate goals this
pattern produces are Achieve goals. These can be operationalized by the
bounded achieve pattern. The two resulting operations must therefore be
executed sequentially. The two patterns are presented in Figure 3.4.

One can note interesting characteristics. DomPost(Op1) is a necessary
condition to Trig(Op2), that is, Trig(Op2) ⊃ �DomPost(Op1)2. It is thus

2the � operator is needed because the ASB operator implies that A has been true but

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 93

Figure 3.4: Milestone refinement pattern with corresponding operational-
izations

logical that Op1 and Op2 are applied successively since the completion of
Op1 triggers the application of Op2 provided the domain precondition holds.

Moreover, if Post(Op1) ⊃ Trig(Op2), then Post(Op1) triggers immedi-
ately the application of Op2. All this results in the following heuristic:

Heuristic 7 Let C be a component, Op1, Op2 be two of its operations,
ReqTrig1, . . . , ReqTrigm be the trigger conditions of Op2, DomPost1, . . . ,
DomPostn be the domain postconditions of Op1, ReqPost1, . . . , ReqPostp be
the required postconditions of Op1. Assuming that none of the conditions is
equal to the constant true or false, Op1 application is directly followed by the
application of Op2 if a renaming of variables exists such as

∃i ∈ [1,m], j ∈ [1, n], k ∈ [1, p]
Post(Op1) ⊃ ReqTrigi

∨
ReqTrigi ⊃ �DomPostj∨

ReqTrigi ⊃ �ReqPostk

The two operations are therefore composed using the → operator in Wright.

not that is still true

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 94

As an example of the application of this heuristic, consider the two oper-
ations RaiseAlarm and SwitchAlarmStatusOn performed by ALARM. Their
simplified specification is given by:

Operation RaiseAlarm
DomPre ¬ Raise(fi,a)
DomPost Raise(fi,a)
ReqTrig @ Transmitted(fi,PRECON,ALARM)

Operation SwitchAlarmStatusOn
DomPre powerPlant.AlarmStatus = off
DomPost powerPlant.AlarmStatus= on
ReqTrig Raise(fi,a)

As DomPost(RaiseAlarm) ⊃ ReqTrig(SwitchAlarmStatusOn) the two
operations must be applied successively as prescribed by heuristic 7.

Parallel composition The preceding heuristic defines a mean to link
two successive operations but not how to compose the others, be they se-
quentially related or not. The remaining operators to compose operations in
Wright are u, [], ‖. Different choices will result in different behaviors. How-
ever one must pay attention to certain important considerations. When two
operations are composed using the ‖ operator, they are executed in parallel
and parallelism can lead to race conditions. Race conditions occur when two
operations try to update the same data at the same time. Although Wright
enables their detection, it might be better to ensure their absence by con-
struction. That is why the use of the parallel composition operator between
two operations is advocated only provided their Output field is different.
Moreover operations that are linked sequentially, be they successive or not,
cannot be executed in parallel. This leads to the following definition and
heuristic.

Definition 2 Let Op be an operation, Obj1, . . . , Objn the objects present
in its output field., the set of objects updated by Op is defined by:

Update(Op)={Obj1, . . . , Objn}

Heuristic 8 Let Op1 and 0p2 be two operations such as Op1 must not pre-
cede Op2 and Op2 must not precede Op1. Op1 and Op2 can be composed
using the parallel composition operator (‖) in Wright only if:

Update(Op1) ∩ Update(0p2) = ∅

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 95

Variable application order For the remaining operations, the choice
between [] and u is essentially guided by the semantic associated to those
operators. If at least one of their preconditions refers to the environment,
for example because the transmission of some data from another component
is needed, then the [] operator is used. If no precondition refers to the
environment, then the u. This is expressed by the following heuristic:

Heuristic 9 Let Op1 and 0p2 be two operations such as Op1 and Op2 are
not successive operations and cannot be executed in parallel. Op1 is composed
with Op2 using the [] operator in Wright if at least one of their preconditions
refers to the environment, otherwise the u operator is used.

Let’s come back to the two operations SwitchSensorOff and Switch-
SensorOn. It has been discussed that they are linked by a sequential order
but no operator linking them has been imposed so far. Since their precondi-
tion typically refer to the environment through Sensor, the [] operator will be
used to compose them. The specification resulting from their composition
is given by:

SwitchSensorOff [] SwitchSensorOn where
SwitchSensorOff = TurnOff(s) when s.Status=on

∧ ¬ s.WorkingkingProperly
SwitchSensorOn = TurnOn(s) when s.Status=off

∧ s.WorkingkingProperly

3.2.4 Elaboration of Scenarios

An important by-product of the Wright description is the ability to gener-
ate scenarios. An animator for CSP (ProBE) can be used to visualize the
behavior of the architectural Wright specification. Of course from a single
Wright specification a lot of scenarios can be generated due to the presence
of the different components running in parallel. Even within a component,
the behavior can lead to many different scenarios because of the presence
of a choice operator (u or []) for example. The scenarios so elaborated can
be compared with the ones envisioned during requirements analysis to see if
they match. This could be used to validate the architecture with respect to
its functional requirements and to detect faults in the translation to Wright.
Depending on the case the requirements or the architecture could be cor-
rected. This outlines that the different phases of the software development
process are interwoven and that this process is iterative rather than sequen-
tial.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 96

3.3 Application to the Power Plant System

This section aims at illustrating the derivation from the abstract dataflow
architecture to a Wright description using the various techniques presented
in Section 3.2. The Wright specification will be elaborated step by step in
order to highlight how the different heuristics can be applied. For briefness
purpose, only the fragment of the architecture dealing with PRECON and
ALARM will be examined as presented in Figure 3.5.

Figure 3.5: Fragment of the dataflow architecture containing PRECON and
ALARM

From the graphical representation a first draft of the Wright specification
can be very easily obtained according to what has been explained in Section
3.2.2. The resulting Wright specification is:

configuration PRECON-ALARM

component PRECON

port ALARMOutput

component ALARM

port PRECONInput

connector Dataflow

role Producer
role Consumer

instances Precon: PRECON
Alarm: ALARM
Precon2Alarm: Dataflow

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 97

Attachements Precon.ALARMOutput as Precon2Alarm.Producer
ALARM.PRECONInput as Precon2Alarm.Consumer

end PRECON-ALARM

Once the basic structure in place, the type of dataflow connector can
be chosen. Since ALARM can be busy with the management of an alarm,
the pull-dataflow is selected. So doing ALARM will only ask for information
on fault when it will be ready to handle them. The specification of the
pull-dataflow connector is given in Section 3.2.3.

The specification of the PRECON and ALARM behavior can now be derived.
PRECON will be considered first. It has to perform the following operations:

1. Calculate

2. DetectFault

3. SwitchFaultStatusOn

4. SwitchFaultSTatusOff

Consider the first operation: Calculate. Its KAOS specification is given
by:

Operation Calculate

Input si: SensorInformation

Output /

DomPre ¬ CalculationDone

DomPost CalculationDone

ReqTrig For CalculationDone
¬ CalculationDone S=1s Transmitted(si,DB,PRECON) ∧ ¬ Cal-
culationDone

PerformedBy PRECON

Heuristic 1 states that postconditions are expressed through events. The
event CalculationDone is so created. Figure 3.5 shows that there is a
dataflow connector between Acquisition Unit and PRECON carrying sen-
sor information. Heuristic 3 states there must be an event e of the form
e?si in PRECON Wright specification. Moreover heuristic 2 states that the

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 98

trigger conditions can be expressed by events. The required trigger condi-
tion is thereby expressed by the event AcquisitionInput.receive?si. One
should note two things: first the formalization of the operation states the
information on sensors have to be transmitted from DB to PRECON and not
from Acquisition Unit, secondly the event does not exactly express all the
trigger conditions.

This first problem has already been discussed in Section 2.3.1. It is
because the dataflow architecture derived does not always reflect the actual
dataflow. The problem is therefore not from the heuristics but from the
abstract dataflow architecture itself. For this reason it will next be assumed
that sensor information are transmitted from Acquisition unit.

The second problem arises from the fact that Wright does not support
temporal constraint specification. Part of the information is consequently
lost.

The application of heuristic 4 enables to link the events representing
the trigger and postconditions of Calculate by the → operator in order
to build the operation specification. In accordance with heuristic 5 the
associate process has Calculate as name. From there a first draft of PRECON
specification can be constructed:

component PRECON

port AcquisitionInput = receive?si → AcquisitionInput

port ALARMOutput = . . .

computation = Calculate . . .where
Calculate = AcquisitionInput.receive?si → calculationDone

Consider now the second operation DetecFault whose KAOS specifica-
tion is:

Operation DetectFault

Input f: Fault, l: Location

Output /

DomPre ¬ Detected(f,l)

DomPost Detected(f,l)

ReqTrig For FaultDetectedWhenCalculationDone
¬Detected(f,l) S=1s CalculationDone ∧Occurs(f,l) ∧ ¬Detected(f,l)

PerformedBy PRECON

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 99

Comparing the trigger condition of Calculate and the postcondition of
Calculate one can note that heuristic 7 applies in this case since

¬ Detected(f,l) S=1s CalculationDone ∧ Occurs(f,l) ∧ ¬ Detected(f,l)
⊃ � CalculationDone

DetectFault should therefore be applied directly after Calculate. A
part of the trigger condition DetectFault matches the postcondition of
Calculate and will therefore be expressed by the same event. Heuristic
2 applies to Occurs(f, l) since it is clearly a property of the environment.
Occurs(f,l) will thus be expressed by a condition using the when operator.
Heuristic 1 enables to express the postcondition Detected(f, l) as an event.
Note that since the pull dataflow connector has been chosen, the event of
detect a fault corresponds to the DataReady event of the connector. In fact,
the interaction between PRECON and ALARM is structured as follows: when
PRECON detects a fault, it notifies ALARM that will subsequently ask for the
corresponding fault information. The event Detected(f, l) has therefore to
be sent on the port AlarmOutput. Heuristics 4 and 5 allow to complete the
specification. The specification of PRECON can be rewritten as follows with
the added operation:

component PRECON

port AcquisitionInput = receive?si → AcquisitionInput

port ALARMOutput = ALARMOutput.Detected(f, l)

computation = Calculate where

Calculate =
{

AcquisitionInput.receive?si → calculationDone
→ DetectFault

DetecFault =
{

ALARMOutput.Detected(f, l) → . . . whenOccurs(f, l)
computation when¬Occurs(f, l)

Since the two following operations – SwitchFaultStatusOn and Switch-
FaultStatusOff are very similar they will be handled simultaneously. Their
specicification is given by:

Operation SwitchFaultStatusOn

Input f: Fault, l: Location, PowerPlant

Output PowerPlant/FaultStatus

DomPre PowerPlant.FaultStatus = off

DomPost PowerPlant.FaultStatus =on

ReqTrig For FaultStatusUpdated
Detected(f,l)

Operation SwitchFaultStatusOff

Input f: Fault, l: Location, PowerPlant

Output PowerPlant/FaultStatus

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 100

DomPre PowerPlant.FaultStatus = on

DomPost PowerPlant.FaultStatus = off

ReqPre For FaultStatusUpdated
¬ Detected(f,l)

Heuristic 7 applies to DetectFault and SwitchFaultStatusOn since the
postcondition and the trigger conditions are equivalent. These two opera-
tions will therefore be composed using the → operator in Wright. Heuristic
6 applies to SwitchFaultStatusOn and SwitchFaultStatusOn, so stating
that there is a sequential order between them. However those two opera-
tions are not successive since heuristic 7 does not apply. In Fact to switch
the fault status off, it must have been turned on before and vice versa. An-
other heuristic must be applied to compose this operations with the three
others that are successive. Heuristic 9 applies here since the precondition
of Calculate refers to the environment and the operations will thus used []
to be composed in Wright. The preconditions of these two operations refer
to the environment and will thus be expressed as conditions as stated in
heuristic 2. Proceeding in a similar way than for the other operations, the
complete specification of PRECON becomes:

component PRECON

port AcquisitionInput = receive?si → AcquisitionInput

port ALARMOutput = ALARMOutput.Detected(f, l)

computation = Calculate [] SwitchFaultStatusOff where

Calculate =
{

AcquisitionInput.receive?si → calculationDone
→ DetectFault

DetecFault =

 ALARMOutput.Detected(f, l)
→ SwitchFaultStatusOn when Occurs(f, l)
computation when¬Occurs(f, l)

SwitchFaultStatusOn =

FaultStatusOn
→ computation when FaultStatusOff
computation when FaultStatusOn

SwitchFaultStatusOff =

FaultStatusOff
→ computation when FaultStatusOn

∧ ¬Occurs(f)

Now that PRECON has been specified, the same has to be done with ALARM.
ALARM has to perform three operations:

1. RaiseAlarm

2. SwitchAlarmStatusOn

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 101

3. SwitchAlarmStatusOff

The first operation specification is given by:

Operation RaiseAlarm

Input fi: FaultInformation

Output a: Alarm

DomPre ¬ Raise(fi,a)

DomPost Raise(fi,a)

ReqTrig For AlarmRaisedWhenFaultInformationTransmitted
¬ Raise(fi,a) S=1s Transmitted(fi,PRECON, ALARM) ∧ ¬ Raise(fi,a)

PerformedBy ALARM

This operation is very similar to the the Calculate operation of PRE-
CON and all what has been said for Calucalte also applies to RaiseAlarm.
Figure 3.5 shows the dataflow connector between PRECON and ALARM. So
heuristic 3 states that there will be an event e of the form e?fi in ALARM speci-
fication. This events corresponds to Transmitted(fi, PRECON,ALARM)
in RaiseAlarm specification. An alarm can only be raised once as it is clearly
stated that the raising of an alarm occurs always after the reception of a
fault information and that a fault information is never received twice. A
first draft of ALARM specification can be derived:

component ALARM

port PRECONInput = Detected(f,l) → request!f → receive?fi →
PRECONInput

computation = RaiseAlarm . . .where
RaiseAlarm = PRECONInput.receive?fi → Raise(fi,a)

SwitchAlarmStatusOn and SwitchAlarmStatusOff are the dual of Switch-
FaultStatusOn and SwitchFaultStatusOff for ALARM. Here are the speci-
fications:

Operation SwitchAlarmStatusOn

Input a: Alarm, fi: FaultInformation,
PowerPlant

Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = off

DomPost PowerPlant.AlarmStatus = on

ReqTrig For AlarmStatusUpdated
Raise(fi,a)

PerformedBy ALARM

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 102

Operation SwitchAlarmStatusOff

Input a: Alarm, fi: FaultInformation,
PowerPlant

Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = on

DomPost PowerPlant.AlarmStatus = off

ReqPre For AlarmStatusUpdated
¬ Raise(fi,a)

PerformedBy ALARM

Because of the similarity with SwitchFaultStatusOn and SwitchFault-
StatusOff the derivation process is essentially the same. Important points
are the sequentiality of SwitchAlarmStatusOn and SwitchAlarmStatus-
On confirmed by heuristic 6 and the direct succession of RaiseAlarm and
SwitchAlarmvStatusOn confirmed by heuristic 7. The final Wright specifi-
cation of ALARM is:

component ALARM

port PRECONInput = Detected(f,l) → request!f → receive?fi →
PRECONInput

computation = RaiseAlarm [] SwitchAlarmStatusOff where
RaiseAlarm = PRECONInput.receive?fi→ Raise(fi,a)→ SwitchAlarm-
StatusOff

SwitchAlarmStatusOn =

AlarmStatusOn
→ computation when AlarmStatusOff
computation when AlarmStatusOn

SwitchAlarmStatusOff =

AlarmStatusOff
→ computation when AlarmStatusOn

∧¬Raise(fi, a)

The architecture fragment demonstrates the use of the different deriva-
tion heuristics presented in Section 3.2. They are all but perfect but nonethe-
less provide a useful help. The heuristics dealing with order of application
are particularly important, especially heuristic 7 that defines a criterion of
direct succession between two operations. Since this heuristic is based on
the milestone refinement pattern and on the bounded achieve operational-
ization pattern it has been extensively used for this system. This example
also enables to pinpoint the weaknesses of Wright. No account is taken of
time and since all the descriptions are formalized in linear temporal logic
there will inevitably be a loss of semantic. A solution to that problem could
be to define an additional constraints field to the component specification
in order to specify formally the time constraints for example. However it
will not be used for formal reasoning. For example the following constraint

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 103

can be added to component ALARM to state that an alarm has to be raised
within one second after the reception of the fault information.

constraints ∀ fi:FaultInformation, ∃ !a:Alarm
Transmitted(fi,PRECON,ALARM) ⇒ ♦≤1s Raise(fi,a)

3.4 Making Architectural Patterns Further Pre-
cise

The description of pattern has been identified as a weak point in the KAOS
method. This section aims at correcting part of this weakness. Wright will
be used to describe precisely the structural and behavioral effects of pattern
application. Two patterns are studied: the fault-tolerant communication
pattern and the observer pattern, as they are the only applied to the power
plant supervisory system. This allows the validation of the pattern descrip-
tion on a real example although the intent of the description is to be general
and applicable to any system.

3.4.1 The Fault-Tolerant Communication Pattern

General Considerations on Fault Tolerance

The aim of this work is certainly not to focus on fault tolerance but some
notions are nevertheless useful. This subsection will explain the foundations
of fault-tolerant distributed computing and set up the underlying model and
hypotheses used further. The interested reader can find a summary in [17].

Fault tolerance aims at making distributed systems more reliable by
handling faults in complex computing environments. There is now an in-
creasing demand for dependable systems, i.e., systems with quantifiable re-
liability properties. This is particularly true in safety and security-critical
applications.

The underlying model used for fault tolerance is the asynchronous system
model. A distributed system is asynchronous if there is no bound on message
delay, clock drift, or the time necessary to execute a step. So no time
assumptions will be made whatsoever.

It is also important to clearly state what kind of faults will be tolerated by
the pattern. Faults are traditionally grouped in fault classes or fault models.
Well-known examples are the crash failure model (in which processors simply
stop executing at a specific point in time) or Byzantine (in which processors

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 104

may behave in arbitrary, even malevolent, ways). The faults handled by the
pattern belong to the crash failure model.

Systems are characterized by two major properties: safety and liveness.
Informally, the safety property states that some specific “bad thing” never
happens. It describes the set of “legal” system configurations, i.e, the invari-
ant. The liveness property claims that some “good thing” will eventually
happen during system execution. A common example of liveness is termi-
nation. For formal definitions, please refer to [17].

Different forms of Fault-Tolerance have been defined according to how
the safety and liveness properties of the distributed system hold over time
in the presence of faults. If a program A still satisfies both its safety and
liveness properties in the presence of faults from a specified fault class F,
then it is said that A is masking fault tolerant for fault class F. This is the
strictest, most costly and most desirable form of fault tolerance because the
program is able to tolerate the faults transparently. This is the form of fault
tolerance this pattern will achieve. The other forms of fault tolerance are
summarized in Table 3.23.

live not live
safe masking fail safe
not safe nonmasking none

Table 3.2: Four Forms of Fault Tolerance

The notion of redundancy is omnipresent in the field of fault tolerance
and it arises for a simple reason: redundancy is a necessary condition to fault
tolerance. Two forms of redundancy can be distinguished, namely in space
and in time. Redundancy in space refers to the superfluous part of the state
of a system, i.e., states never reached when faults do not occur. It is usually
achieved by supplying a component more than once. It will be the case in
this pattern. Redundancy in time refers to superfluous state transitions of
a system, i.e., the superfluous work it performs. Practical examples include
roll-back recovery or reset procedures. Considering the fault handled by the
pattern – process crash – the second one will be used.

Pattern description

Introduction The aim of the pattern is to achieve masking fault-tolerance,
i.e., preserve safety and liveness. The pattern will proceed in a stepwise

3live means satisfying the liveness property and safe means satisfying the safety propery

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 105

manner, achieving first nonmasking fault tolerance and then masking fault
tolerance. This approach is similar to the one described in [3].

The first stage will transform an intolerant component into a nonmasking
one. The fault class considered here is the process crash. Ensuring liveness
for a certain fault class means that when a fault of that class occurs the
component will eventually recover from this fault. So, the pattern has to
ensure that in case of a process crash the process will be restarted. This is
the correction phase.

The second stage will make component masking tolerant. The aim of
this transformation is to ensure safety, i.e., preventing the violation of the
invariant. This can only be done via the fault detection, i.e., the detection
phase.

Important remarks have to been made at this point. Due to the underly-
ing model – the asynchronous system model – the problem of the detection
of a process crash cannot be solved deterministically. Intuitively, it is be-
cause it is impossible to determine whether a process has actually crashed
or is only “very slow”.

Various approaches have been used to solve this problem. Chandra and
Toueg [7] proposed to use what they called unreliable failure detectors, a de-
tection mechanism that can make mistakes. An alternative approach, taken
by the Isis team [25], is based on the assumption that failure detectors rarely
make mistakes. In those cases where a correct process p is falsely suspected
by the failure detector, p is effectively forced “to crash”. The detector forces
the system to conform to its view. From the application’s point of view, this
failure detector looks perfect. This is the approach followed here.

One will concentrate on abstract concepts rather than giving some spe-
cific implementations. The purpose is indeed to help the programmer but
not to substitute to him.

Description A first glance of the pattern is presented in Figure 3.6. As
previously mentioned, the pattern application encompasses two phases, cor-
rection and detection. Each of them will be described further.

Stage 1: Correction phase The aim of this phase is to correct the
occurring faults. To do so, a mechanism of recovery should be introduced.
As the fault considered in this case are process crashes, the designated mech-
anism is naturally reset procedures. However the problem with reset proce-
dures is the time it takes. Some systems can not afford any delay especially
when some time constraints have to be ensured. It is so desirable that the

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 106

Figure 3.6: Fault-tolerant communication pattern

system goes on with working without any delay. To this end a copy of the
component is introduced. Whenever a process crashes, its copy should take
on its role. It is important that only one component should be working at
a time. After a process has been reset it remains inactive until its copy
crashes.

The resulting system has so the following properties.

1. Introduction of reset procedures
A reset mechanism should be introduced to restart any component
that may have crashed.

2. Introduction of copies of components
An exact copy of the components between which the communication
has to become fault-tolerant is added to the system. The two copies
have exactly the same capabilities, i.e, the same specifications in terms
of their ADL descriptions.

3. Switch in case of failure
When, for whatever reasons, a component goes down, its copy should
take on its role. This change of operating component should not result
neither in any error of treatments nor in any loss of information. The
crashed component should also be reset.

4. One at a time
In order to avoid duplicate treatments and so on, only one of the two
copies should work at a time.

Let’s try now to introduce transformations to generics ADL component
specifications to ensure those four properties.

First a reset mechanism has to be added to components. This is not as
simple as it seems. If a process has crashed, it will not reply to any solicita-
tion from the outside. In fact what should be done is killing the process and

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 107

restart it. This leads to some difficulties. The connectors through which
the process communicates have to remain active in order not to disturb
the surrounding processes. Moreover once the process restarted it should
communicate through those connectors. In an aim of simplicity it will be
considered that some reset procedure exists and works even if the process
has crashed saving to deal with all the implementation aspects. The speci-
fications can be modified as followed.

component C

port . . .

computation = compute

component newC

port . . .

computation = compute [] reset → computation

The introduction of copies is straightforward. As the specifications of
the two copies are strictly equal, an extra instance of the component has
simply to be added.

instances x: C1
y: C2

instances x1, x2: C1
y1, y2: C2

The last two properties are tightly linked and so will be the transforma-
tions introduced on the system. In order to have two copies of C1 and C2
and if only one copy can operate at a time, the state of the component must
be stored in some way in the component specification. A component can be
either passive or active. This will be modeled by adding two external events
to which the component will react. Those two events are simply wakeUp
and sleep. A component should never be placed in an inactive state if it did
not crash before. So this change of state should take place after the reset
procedure. The modification can be generalized as follows. The following
modification simply states that either the component operates normally or,
after crashing, it receives a sleep event and will not go on with its duty
unless it receives a wakeUp event.

component C

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 108

port . . .

computation = compute [] reset → computation

component newC

port . . .

computation = compute [] reset→ sleep→ wakeUp→ computation

Afterward it should be ensured that the switch in active component only
takes place in case of failure, that any crashed component will be reset and
that only one copy is working at a time. So to say, the failure should first
be corrected and that correction should not be visible to the surrounding
components. The inherent problem of restarting a component is that it
takes time and that time delay might not be affordable. As soon as the
reset procedure has been called on the crashed component, its copy should
be made active. So the failure triggers first the reset of the component and
then the change of active component. Once the crashed component reset it
receives a sleep signal signifying that it is now the inactive component. One
could suggest to first wake up the safe component before restarting the other
one. But resulting from the asynchronous nature of the underlying model, it
is impossible to detect whether or not a component has crashed. Doing that
it would be possible to have both copies of the components working at the
same time. Resulting from those considerations, a preliminary definition of
the connector linking the two copies can be introduced.

connector copyConnect

role Copy1,2

glue = (Copy1.failure → Copy1.reset → Copy2.wakeUp → Copy1.sleep)
[](Copy2.failure → Copy2.reset → Copy1.wakeUp → Copy2.sleep)

With these transformations the four properties stated above hold. This
completes the first stage of the method – the corrective one.

Stage 2: Detection phase Now that correction mechanisms have
been introduced, mechanisms to detect the occurrence of faults need to
be defined. One should remember that the problem of detecting process
crashes cannot be solved deterministically. This impossibility results from
the inherent difficulty of determining whether a system has actually crashed
or is only “very slow”. The chosen approach to solve this problem is to

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 109

force any suspected process to reset, based on the assumption that the fault
detector rarely makes mistakes. The suspicion of a process will be based on
time-outs. The choice of an adequate time-out value is of great importance
for the global performance of the system. The value should not be too small
to prevent any working process from resetting unnecessarily while it should
not be too long in order not to slow down all the system when a process has
effectively crashed.

Two main properties must be achieved in this phase. First faults have to
be detected and secondly all what has been made so far must be transparent
for all the surrounding components. They should not be aware neither of
the presence of two copy components nor of any process crash nor of any
switch in active components .

A third one states there can be no precedence between the two copies of
a component.

Those properties can be summarized as followed.

1. Introduction of fault detection mechanism
A mechanism to detect process crashes should be added. One should
note that this detection mechanism could suspect correctly working
processes.

2. No precedence between the two copies
There is no master and slave component. The two copies are exactly
equal. This equality results in the following policy: the switch of
operating component occurs only in case of failure. When a component
recovers from a failure it becomes inactive.

3. Transparency of switching The switch in the operating component
should be done in a completely transparent way to other interact-
ing components. They should not even notice that a switch occurred.
Moreover the surrounding components should not be aware of the pres-
ence of duplicate copies of the component they interact with.

As in the previous subsection, those properties will be translated in terms
of concrete transformations to apply to the ADL description of components.

The introduction of a fault detection mechanism leads to some problems.
As previously mentioned the classic solution consists of sending messages to
the processes and if they do not answer within a certain time-out value they
are suspected of having crashed. The difficulty arises from the fact that
Wright does not support such time constraints. However it is possible to
specify it using the when operator in a very understandable way. First the

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 110

connector between the two copies has to send the message to the copies.
Second some answering procedure should be added to the components to
say “Yes I’m alive”. The modified specifications are given below:

connector copyConnect

role Copy1,2

glue = Copy1

Copy1 = Copy1.isAlive →
{

Copy1 when Copy1.ImAlive within t s
Copy1Failure when ¬Copy1.ImAlive within t s

Copy2 = Copy2.isAlive →
{

Copy2 when Copy2.ImAlive within t s
Copy2Failure when ¬Copy2.ImAlive within t s

Copy1Failure =
{

Copy1.reset → Copy2.wakeUp

→ Copy1.sleep → Copy2

Copy2Failure =
{

Copy2.reset → Copy1.wakeUp

→ Copy2.sleep → Copy1

component newC

port Copylink=
{

isAlive → ImAlive → Copylink
[] reset → sleep → wakeUp → Copylink

computation =

compute
[] reset → sleep → wakeUp → computation
[] Copylink.isAlive → Copylink.ImAlive → computation

One can note in the previous specification it has been arbitrarily specified
that Copy1 is the first to be active. As both copies are strictly equivalent
this does not invalidate the no precedence policy between the copies.

When considering transparency, things are getting far more complicated.
Transparency means that first every component interacting with a “double”
component should not even notice this fact and secondly the switch in op-
erating component should also not be noticed. The solution adopted is a
“forked” connector. In fact all the interaction with a “double” component
will be made with the two at the same time, as it was previously ensured only
one will respond as the other will be asleep. It could appear a bit strange
but it is in fact a simple and practical solution. For the components it is
exactly the same situation as before. They just do not know that they use
now a “forked” connector. Of course the specification of the role of the con-
nectors can not change otherwise it will be visible to the component because
the role has to be compatible with the port to have a working specification.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 111

So only the glue will be modified. So two new kinds of connectors will be
introduced. A right-forked connector for the components interacting with a
“double” component that are not “doubled” themselves, a left-forked for the
double components interacting with a single component and a double-forked
connector to link two “double” components. The modified connectors are
defined as follows:

connector oldConnect

role r1

role r2

glue = r1.eventA → r2.eventB → . . .→ glue

connector right-forked

role r1

role Copy1

role Copy2

glue = r1.eventA → (Copy1.eventB ‖ Copy2.eventB) → . . .→ glue

connector left-forked

role r1

role Copy1

role Copy2

glue = (r1Copy1.eventA [] r1Copy2.eventA) → r2.eventB → . . .→
glue

connector double-forked

role r1Copy1

role r1Copy2

role r2Copy1

role r2Copy2

glue = (r1Copy1.eventA [] r1Copy2.eventA) → (r2Copy1.eventB ‖
r2Copy2.eventB) → . . .→ glue

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 112

Figure 3.7: Fault-tolerant communication pattern Transformation rule

The introduction of forked connectors changes the specifications as fol-
lows. If it is the source of an event which is double, the event could be
notified by either one of those two copies depending on the active one. The
event is so marked as a source of each copy and a deterministic choice op-
erator is added between those two events. If the destination of an event is
double, the event is notified to the two copies in a parallel way. The paral-
lel composition operator is so used. For double-forked connectors a similar
procedure is used for both sides of the connectors.

A general graphical view of the transformation rule, including the forked
connectors, is shown in Figure 3.7.

Application of the pattern on PRECON and ALARM

The pattern was applied on PRECON and ALARM as prescribed by the KAOS
method. Starting from the Wright specifications built in Section 3.3, all the
modifications and additions described in this section were made. The result-
ing fragment of architecture was obtained without any difficulty. The Wright
specifications of the initial and of the resulting pattern-refined architecture
fragment can be found in Appendix C.1.

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 113

Figure 3.8: Observer pattern

3.4.2 The Observer Pattern

The aim of the Observer pattern is to maintain consistency between re-
lated objects. When one of these objects undergoes some change, all its
dependents are notified and updated automatically. This should be done by
minimizing interdependencies between objects, so achieving Low Coupling.

One classical use of this pattern is the decoupling of the presentational
aspects from the underlying application data. Consider for example a set of
numerical data. This information can be viewed from different ways, e.g., a
spreadsheet, a bar chart or a pie chart. All these views are related to the
same data and should thereby be coherent and consistent all together. If
any modification is introduced via the spreadsheet for example, it should be
reflected on the related views.

The Observer pattern distinguishes two main concepts : the subject and
the observers. A subject may have any number of dependent observers. All
observers are notified whenever the subject undergoes a change in state. In
response each observer will query the subject to synchronize its state with
the subject’s state.

Description

A graphic overview of the pattern is presented in Figure 3.8 such as suggested
in [27].

Before explaining how the pattern is applied it will first be focused on the
concepts and mechanisms involved in order to have a general idea of what
properties should have the resulting architecture. This description will be
based on the Observer pattern description made by Gamma et al in [15].
There are nonetheless adaptations so as to make it applicable to Wright.

The pattern is composed of two different components types: the subject
and the observers. The subject is what makes the observers dependent from
each other. It is the common data that are either accessed or updated by

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 114

the observers. The subject knows its different observers while the observers
do not know each other. This enables to minimize the interdependencies
between observers so achieving low coupling. Figure 3.9 shows the struc-
ture of the observer pattern, that is, how the subject and the observers are
interconnected together. Note that the observers are not linked together.

Figure 3.9: Observer structure

The collaboration between the different participants is organized as fol-
lows. Whenever the subject undergoes some change, it notifies its dependent
observers since there state could be inconsistent. It is thereafter their duty
to query the subject for information. The observers use this information
to synchronize their state with the subject’s state. Figure 3.10 shows an
example of interaction scenario between a subject and its two observers.

Figure 3.10: Observer behavior

The idea of the pattern is to prevent from having inconsistent data due to
scattered modification among the different components by centralizing the
data itself, the update and the access procedure. Various steps are required
to achieve it.

1. Identification of the subject and of the observers
Both the data updated by the different components and the compo-
nents themselves have to be identified.

2. Creation of the subject component

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 115

Figure 3.11: Identification of the subject and the observers

Once the subject has been identified, the subject component can be
created. More accurately, a generic subject component is instantiated
to suit the particular needs of the data. The subject component should
define in its interface a procedure to enable observers to update and
to obtain its state.

3. Adaptation of the observers behavior
Each time an observer modifies the data, it has to update the subject
state and each time it receives a notification from the subject it has
to get the new state from the object

4. Suppression of the old synchronization mechanisms
The old interactions between the different observers in order to syn-
chronize their data have to be deleted since this is now done through
the subject.

5. Addition of new connectors between the subject and the observers
In order to enable the subject and the observers to communicate, new
connectors have to be added.

The identification of the subject and observers is done without any real
difficulty from the initial fragment. As shown in Figure 3.8 the two observers
are C1 and C2. The subject is the common data updated by both C1 and C2.
It is indicated on the graphical representation by two dataflow connectors,
each one carrying different attributes of the same object. This is illustrated
in Figure 3.11.

The subject component should have three operations: one to allow ob-
server to update its state, one to allow observer to get its state and one to
notify all its observers when some modifications has occured. The Update

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 116

operations should therefore be directly followed by the notify operation. The
component subject can be defined in Wright as follows:

component Subject

port Observer1,2Link =
{

SetState?x → Notify → Observer1,2Link
[] GetState?x → SendState!y → Observer1,2Link

computation = SetState → Notify [] GetState where
SetState=(Observer1.SetState?x [] Observer2.SetState?x)
Notify = (Observer1.Notify ‖Observer2.Notify)→ computation

GetState =

(Observer1.GetState?x → Observer1.SendState!y
→ computation)
[](Observer2.GetState?x → Observer2.SendState!y
→ computation

Thereafter the observers behavior has to be modified so as to ensure
two things. First every update on the observer state is effectively reflected
on subject state. Secondly every notification of a change received from the
subject leads to a query to the subject in order to synchronize observer state
and subject state. In order to support these new characteristics, the Wright
component of the observer can be modified as follows:

component Observer

port ToOtherObserver . . .

computation = compute [] §where
compute = . . .→ Modify(x) → . . .

component NewObserver

port ToOtherObserver . . .

port SubjectLink =
{

SetState!x → SubjectLink
[] Notify → GetState!x → SendState?y → SubjectLink

computation = compute [] Update where
compute = . . .→ Modify(x) → SubjectLink.SetState!x . . .

Update =

Subject.Notify → SubjectLink.GetState!x
→ SubjectLink.SendState?y → SynchronizeV alue
→ computation

All the communications between the observers aiming at keeping the
state of the subject consistent and coherent must be deleted. This may re-
sult in the suppression of a connector and therefore of a port in the Wright

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 117

specification. The two components are so made more independent from
each other. The observer pattern achieves an other non-functional require-
ment than Maintain[AccurateData(C1,C2)], namely Maintain[LowCou-
pling(C1,C2)]. Assuming that the only communication present between
the two observers is for synchronization purpose, the Wright specification
can be modified as follows:

component NewObserver

port ToOtherObserver . . .

port SubjectLink =
{

SetState!x → SubjectLink
[] Notify → GetState!x → SendState?y → SubjectLink

computation = compute [] Update where

compute =
{

. . . T oOtherObserver.receive?x . . . → Modify(x)
→ SubjectLink.SetState!x → ToOtherObserver.Send!x . . .

Update =

Subject.Notify → SubjectLink.GetState!x
→ SubjectLink.SendState?y → SynchronizeV alue
→ computation

component NewObserver

port SubjectLink =
{

SetState!x → SubjectLink
[] Notify → GetState!x → SendState?y → SubjectLink

computation = compute [] Update where
compute = . . .→ Modify(x) → SubjectLink.SetState!x . . .

Update =

Subject.Notify → Subject.GetState!x
→ Subject.SendState?y → SynchronizeV alue
→ computation

Finally, new connectors have to be introduced in order to link the subject
and the observers. Their Wright description is given by:

connector Observer-Subject Link

role Observer =
{

SetState!x → Observer
[] Notify → GetState!x → SendState?y → Observer

role Subject =
{

SetState?x → Notify → Subject
[] GetState?x → SendState!y → Subject

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 118

Figure 3.12: Observer pattern transformation rule

glue =

Observer.SetState!x
→ Subject.SetState?x → Notify where
[]Notify

Notify =

Subject.Notify → Observer.Notify

→ Observer.GetState!x → Subject.GetState?x
→ Subject.SendState!y → Observer.SendState?y → glue

The observer pattern as described here is a bit different from what was
suggested in Figure 3.8 since the connector between C1 and C2 is deleted
(only if its only purpose is to transmit the object x). This enables to achieve
low coupling between C1 and C2 in addition to the initial non-functional re-
quirement (Maintain[AccurateData(C1,C2)]). The graphical representa-
tion of the transformation rule is therefore slightly different and is presented
in Figure 3.12.

Application of the pattern on Acquisition Unit and IMS

The pattern was applied on Acquisition Unit and IMS without any partic-
ular difficulty. The specification of the initial architecture fragment together

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 119

with the architecture specification resulting from the application of the ob-
server pattern can be found in Appendix C.2.

3.5 Discussion

In this chapter, the use of Wright has been examined in order to derive a
more precise architecture. The two goals pursued were the addition of a
behavioral view to the architecture resulting from the KAOS method and
to describe the architecture parts resulting from the application of patterns.

The first objective was reached through the introduction of translation
mechanisms from KAOS architecture descriptions to Wright specifications.
Those mechanisms deal with both the structural and the behavioral aspects.
Rules expressed the former while heuristics the latter. This difference of
power is caused by two facts:

1. The constructs used by KAOS and Wright dealing with the structure
are essentially the same.

2. The behavioral view is only partially present in the KAOS architec-
ture description and the global control flow has to be inferred from
operations specification.

Moreover Wright does not support temporal logic and there is inevitably
a loss of semantic during the translation. Nevertheless Wright specifications
of architecture provide a significantly more precise architecture description.
From the addition of behavior specifications, might follow the possibility to
validate the architecture with respect to the functional requirements. The
animator ProBE[14] available for CSP could be used to visualize the possible
execution traces so enabling to check whether the architecture meets the
functional requirements.

Two patterns have been examined using Wright: the fault-tolerant com-
munication pattern and the observer pattern. Both the resulting architec-
ture fragment and the transformation process have been described. It is now
clear how the application of these patterns modifies the involved components
and connectors specification as well as the exact functionalities performed
by the added ones.

These two areas of improvement have been validated on the power plant
supervisory system. In both cases the results are very encouraging. The
defined rules and heuristics provide a significant help to derive the Wright
specifications from the KAOS architecture description and the application

CHAPTER 3. TOWARD MORE PRECISE DERIVATION 120

of the two patterns does not present any difficulty. The introduced approach
seems very productive.

Conclusion

This thesis evaluated and compared two methods for deriving architecture
from goal-oriented requirements. The KAOS method and the Preskriptor
process were validated via their application on a power plant supervisory
system. The system was developed by ENEL, this Italian electricity com-
pany and its description was extracted from papers reporting the project.

The conducted analysis shows as main result that both approaches seem
effective. The two resulting architectures satisfy all the functional and most
of the non-functional requirements. Performance was for example left un-
handled in both cases. Some weaknesses were nonetheless present. Nei-
ther method produced an architecture description dealing with behavioral
aspects. The descriptions were essentially structural while the way the dif-
ferent components interact with each other remained uncovered. Moreover
the derivation processes in themselves appear to be a bit hazy in certain
aspects. Pattern and styles description with respect to their choice, their
applicability and the architecture resulting from their application is up to
now only suggested by the KAOS method. The treatment of non-functional
requirements in the Preskriptor process is so far only done for particular
examples and does not provide sufficient guidance to be really useful.

The two methods differ greatly by their intent and this is reflected by the
resulting architectures. On the one hand the KAOS method aims at making
the derivation process as automated and clear as possible so as to provide
the maximum level of guidance to the architect. It also targets an archi-
tectural description as precise and complete as possible in order to bring
the maximum support to designers. On the other hand the Preskriptor pro-
cess lets more freedom to the architect and uses the concept of architectural
prescriptions – expressed in the domain language by opposition to classical
descriptions expressed in solution language – so as to make the transition
from requirements as smooth as possible. The resulting architecture is there-
fore less constraining and complete, so letting free the designer to choose the
low level design.

121

CONCLUSION 122

In order to improve the KAOS method the use of an architecture descrip-
tion language was explored. Wright was chosen for its ability to describe
the multiple facets of an architecture and more particularly the behavioral
aspect. Moreover it provides formal reasoning capabilities enabling for ex-
ample to check for absence of deadlock. It has been argued for an integrate
rather than a sequential approach where the Wright specification is derived
incrementally from the intermediate results produced by the KAOS method.
Various mechanisms have therefore been introduced to derive a Wright spec-
ification from the abstract data flow architecture. These include a set of
rules and heuristics enabling to derive the component behavior from KAOS
operations specifications. The one ruling the application order of opera-
tions seems particularly useful. The ability of Wright to describe patterns
thereafter has been examined. Two pattern examples were inspected in de-
tails: the fault-tolerant communication pattern and the observer pattern.
Each of them has been described extensively in terms of the architectural
transformation involved as well as regarding the resulting architecture. It
emerges from their application to the power plant supervisory system that
the introduced approach is highly productive.

The work presented in this thesis contributes to both methods studied
by confronting them to a real safety-critical system whose size is reasonable.
Moreover significant improvements have been made to the KAOS method
by integrating the benefits of architectural descriptions languages.

Nonetheless a lot of questions remain open, leaving space for further
work.

Although styles description was identified as a weakness of the KAOS
method, no improvement has been proposed in this direction. Few styles are
available and both their choice and application are so far very qualitative.
They should therefore be investigated further.

Proposed improvements on patterns do not address all the problems.
When two patterns are applicable, the issue of combining them, provided
they can be combined, is still unclear. Do they keep their efficiency toward
non-functional requirements satisfaction while they are combined? If not,
how to choose the one to apply? Does the order of application matter? Once
one pattern has been applied, will the resulting piece of architecture still
match the applicability condition of the other? In addition, the description
of the applicability condition is up to now very informal. All those concerns
need to be studied.

Wright is currently underused since none of its formal reasoning capa-
bilities have been explored so far. Patterns are not supposed to prevent
satisfaction of any functional goal they should therefore not modify the

CONCLUSION 123

global behavior of the fragment affected by their application. Some further
work should include a validation of the introduced patterns with respect to
that condition.

More globally, the validation of the architecture with respect to func-
tional requirements should be examined. To this end, the use of the existing
animator for CSP (ProBE) should be inspected. The visualization of the
possible execution traces could be a mean to check whether the architecture
meets the functional requirements.

Finally, the architecture derivation process is so far not supported by any
tool. A potential tool should integrate closely with the derivation process,
that is, each step should be supported separately. The support provided at
each step should include a derivation part as well as a validation part. The
derivation part should help the architect both in his choices (e.g., choice
of the suitable style/pattern, application of the correct heuristic) and in
their application. The validation part should include an animator so as to
provide the architect with a graphical mean to explore the system behavior
and a model checker to verify the satisfaction of system properties such as
deadlock freedom.

Bibliography

[1] Allen, R. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon University, May 1997.

[2] Allen, R., and Garlan, D. A formal basis for architectural connec-
tion. ACM Transactions on Software Engineering and Methodology 6,
3 (July 1997), 213–249.

[3] Arora, A., and Kulkarni, S. S. Designing masking fault-tolerance
via nonmasking fault-tolerance. IEEE Transactions On Sofware Engi-
neering 24, 6 (June 1998), 435–450.

[4] Brandozzi, M. From goal oriented requirements specifications to ar-
chitectural prescriptions. Master’s thesis, The University of Texas at
Austin, 2001.

[5] Brandozzi, M., and Perry, D. E. Transforming goal oriented re-
quirement specifications into architectural prescriptions. In Proceedings
of STRAW 2001 - From Software Requirements to Architectures (2001),
Castro and Kramer, Eds., pp. 54–60.

[6] Brandozzi, M., and Perry, D. E. Architectural prescriptions for
dependable systems. In Proceedings of ICSE 2002 - International Work-
shop on Architecting Dependable Systems (Orlando, May 2002).

[7] Chandra, T. D., and Toueg, S. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM 43, 2 (March 1996),
225–267.

[8] Ciapessoni, E., Mirandola, P., Coen-Porisini, A., Mandrioli,
D., and Morzenti, A. From formal models to formally based meth-
ods: an industrial experience. ACM Transactions on Software Engi-
neering and Methodology 8, 1 (January 1999), 79–113.

124

BIBLIOGRAPHY 125

[9] Coen-Porisini, A., and Mandrioli, D. Using trio for designing a
corba-based application. Concurrency: Practical and Experience 12, 10
(August 2000), 981–1015.

[10] Coen-Porisini, A., Pradella, M., Rossi, M., and Mandrioli, D.
A formal approach for designing corba based applications. In Proceed-
ings of the 22nd International Conference on on Software Engineering
- ICSE’2000 (Limerick, June 2000), ACM Press, pp. 188–197.

[11] Darimont, R. Process Support for Requirement Elaboration. PhD
thesis, Université catholique de Louvain, 1995.

[12] Darimont, R., and van Lamsweerde, A. Formal refinement pat-
terns for goal-driven requirements elaboration. In Proceedings of the 4th
ACM Symposium on the Foundations of Software Engineering - FSE’96
(San Fransisco, October 1996), ACM Press, pp. 179–190.

[13] Formal Systems (Europe) Ltd. Failures-Divergence Refinement:
FDR2 User Manual. Oxford, England, May 2003. http://www.fsel.
com.

[14] Formal Systems (Europe) Ltd. Process Behavior Explorer: ProBE
User Manual. Oxford, England, January 2003. http://www.fsel.com.

[15] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design pat-
terns - Elements of reusable object-oriented software. Addison-Wesley,
1995, pp. 293–299.

[16] Garlan, D. Formal modeling and analysis of software architecture:
Components, connectors, and events. In Formal Methods for Software
Architectures, M. Bernardo and P. Inverardi, Eds., vol. 2804 of Lecture
Notes in Computer Science. Springer-Verlag, 2003, pp. 1–24.

[17] Gärtner, F. C. Fundamentals of fault-tolerant distributed computing
in asynchronous environments. ACM Computing Surveys 31, 1 (March
1999), 1–26.

[18] Kramer, J., Magee, J., and Uchitel, S. Software architecture
modeling & analysis: A rigorous approach. In Formal Methods for
Software Architectures, M. Bernardo and P. Inverardi, Eds., vol. 2804
of Lecture Notes in Computer Science. Springer-Verlag, 2003, pp. 44–
51.

http://www.fsel.com
http://www.fsel.com
http://www.fsel.com

BIBLIOGRAPHY 126

[19] Letier, E., and van Lamsweerde, A. Agent-based tactics for goal-
oriented requirements elaboration. In Proceedings of the 24th Interna-
tional Conference of Software Engineering - ICSE’2002 (Orlando, May
2002), ACM Press, pp. 83–93.

[20] Letier, E., and van Lamsweerde, A. Deriving operational soft-
ware specifications from system goals. In Proceedings of the 10th ACM
Symposium on the Foundations of Software Engineering - FSE’2002
(Charleston, November 2002), ACM Press, pp. 119–128.

[21] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specify-
ing distributed software architectures. In Proceedings of the 5th Euro-
pean Software Engineering Conference - ESEC’95 (September 1995),
Springer-Verlag, pp. 137–153.

[22] Manna, Z., and Pnueli, A. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992, ch. 3.

[23] Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor, R. N.
Using object-oriented typing to support architectural design in the c2
style. In Proceedings of the 4th ACM SIGSOFT symposium on Founda-
tions of software engineering - FSE’96 (1996), ACM Press, pp. 24–32.

[24] Perry, D. E., and Wolf, A. L. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering Notes 17, 4
(October 1992), 40–52.

[25] Ricciardi, A. M., and Birman, K. P. Using process groups to
implement failure detection in asynchronous environments. In Proceed-
ings of the tenth annual ACM symposium on Principles of distributed
computing (1991), ACM Press, pp. 341–353.

[26] Shaw, M., and Garlan, D. Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, 1996.

[27] van Lamsweerde, A. From system goals to software architecture. In
Formal Methods for Software Architectures, M. Bernardo and P. Inver-
ardi, Eds., vol. 2804 of Lecture Notes in Computer Science. Springer-
Verlag, 2003, pp. 25–43.

[28] van Lamsweerde, A., Darimont, R., and Letier, E. Managing
conflicts in goal-driven requirements engineering. IEEE Transaction on
Software Engineering 24, 11 (November 1998), 908–926.

BIBLIOGRAPHY 127

[29] van Lamsweerde, A., and Letier, E. Handling obstacles in goal-
oriented requirements engineering. IEEE Transaction on Software En-
gineering 26, 10 (October 2000), 978–1005.

List of Figures

1.1 Preliminary goal graph for the power plant supervisory system 12
1.2 First draft of the object model 13
1.3 Second draft of the object model 13
1.4 Addition of missing goals via WHY elicitation 14
1.5 Addition of missing subgoals via HOW elicitation 15
1.6 Potential agents . 15
1.7 Assigned agents, their interfaces and data dependencies . . . 25
1.8 Derived dataflow architecture 26
1.9 Event-based style transformation rule 27
1.10 Style-based architecture . 27
1.11 The NoReadUpNoWriteDown pattern for condidentiality goals . 29
1.12 The 3 required steps of the Preskriptor process 31
1.13 Step 4 of the Preskriptor process 33

2.1 The ENEL’s supervision and control system[8] 36
2.2 Milestone refinement pattern 39
2.3 General Structure of the goal diagram 40
2.4 Refinement of the goal FaultsDetected 40
2.5 Refinement of the goal AlarmCorrectlyManaged 41
2.6 Communication reliability refinement subtree 42
2.7 Transmission meta-relationship 43
2.8 Bounded achieve opeartionalization pattern 47
2.9 Immediate achieve operationalization pattern 48
2.10 Refinement and obstacles for the goal FaultDetectedWhen-

CalculationDone . 52
2.11 Abstract dataflow architecture 57
2.12 Centralized communication architectural style 58
2.13 Style-based refined architecture 59
2.14 Fault-tolerant refinement pattern 60

128

LIST OF FIGURES 129

2.15 Consistency maintainer refinement pattern 61
2.16 Pattern-based refined architecture 62
2.17 component refinement tree resulting from step 1 63
2.18 Component refinement tree resulting from step 3 67
2.19 Box-and-line diagram . 68

3.1 Fragment of an abstract dataflow architecture 84
3.2 Example of interaction scenario for the ”push” behavior . . . 85
3.3 Example of interaction scenario for the ”pull” behavior 85
3.4 Milestone refinement pattern with corresponding operational-

izations . 93
3.5 Fragment of the dataflow architecture containing PRECON and

ALARM . 96
3.6 Fault-tolerant communication pattern 106
3.7 Fault-tolerant communication pattern Transformation rule . . 112
3.8 Observer pattern . 113
3.9 Observer structure . 114
3.10 Observer behavior . 114
3.11 Identification of the subject and the observers 115
3.12 Observer pattern transformation rule 118

A.1 Functional goal diagram . 132
A.2 Non-functional goal diagram 143
A.3 ObjectDiagram . 144
A.4 Responsibility assignment of the different agents 150
A.5 Agent context diagram . 151
A.6 Modifications brought to the NFG diagram after the obstacle

analysis . 163

List of Tables

1.1 Comparison between C2, Darwin and Wright 23
1.2 Mapping KAOS entities to APL entities[4] 31

2.1 Comparison between the resulting architectures 70

3.1 Cases where Op1 and Op2 must be applied sequentially . . . 91
3.2 Four Forms of Fault Tolerance 104

130

Appendix A

KAOS Specifications

A.1 Goal specifications

A.1.1 Functional goals

The functional goals are listed following an alphabetical order. Figure A.1
shows the functional goal diagram.

1. Goal AlarmCorrectlyManaged

Def The system must raised an alarm each time a fault is de-
tected. In addition, it must trace and keep the state of all
the alarms previously raised.

Concerns Alarm, Fault
AndRefines PerformanceOfThePlantMonitored
RefinedTo AlarmRaisedIffFaultDetected, AlarmTraced, Oper-

atorInterractionManaged

2. Goal AlarmDiagnosisWritten

Def Each time an alarm is raised, information on that alarm
must be kept in the DataBase.

Concerns Alarm, AlarmInformation, FaultInformation
AndRefines AlarmInformationStoredWhenAlarmRaised
RefinedTo AlarmDataTransmittedToDB,

DataCorrectlyUpdated
FormalDef ∀ a: Alarm, ∃ !fi:FaultInformation, ∃ !ai: AlarmIn-

formation, ∃ !ad: AlarmDiagnosis
Raise(fi,a) ⇒ ♦ Stored(ai,DB)∧ Representation(ai,a)
∧ Concerns(ad,fi,ai) ∧ Stored(ad,DB)

131

APPENDIX A. KAOS SPECIFICATIONS 132

Figure A.1: Functional goal diagram

APPENDIX A. KAOS SPECIFICATIONS 133

3. Goal AlarmInformationProvidedUponUserRequest

Def Operators should be able to retrieve informations about all
the alarms previously raised

Concerns Alarm, AlarmInformation
AndRefines AlarmTraced
RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted,

QuerryAnswered
FormalDef ∀ a:Alarm, ∃ !ai:AlarmInformation

Querry(a) ⇒ ♦ Answer(ai) ∧ Representation(ai,a)

4. Goal AlarmInformationStoredWhenAlarmRaised

Def Each time an alarm is raised, information on that alarm
must be kept in the DataBase.

Concerns Alarm, AlarmInformation, PowerPlant/AlarmStatus
AndRefines AlarmTraced
RefinedTo AlarmDiagnosisWritten, AlarmStatusUpdated
FormalDef ∀ a:Alarm, ∃ ! fi: FaultInformation, ∃ !ai: AlarmIn-

formation, ∃ !fd: FaultDiagnosis
Raise(fi,a) ∧ Representation(ai,a) ⇒ ♦ Stored(ai,DB)
∧ Stored(fd,DB) ∧ Concerns(fd,fi,ai)
∧ PowerPlant.AlarmStatus =’on’

5. Goal AlarmNotRaisedIfFaultNotDetected

Def If no fault is detected no alarm can be raised
Concerns Alarm, Fault
AndRefines AlarmRaisedIffFaultDetected
UnderResponsabilityOf ALARM
FormalDef ∀ a:Alarm, ∃ !f:Fault,∃ !l:Location

Raise(f,a) ⇒ � Detected(f,l)

6. Goal AlarmRaisedIffFaultDetected

Def The alarm has to be raised if and only if a fault has been
detected

Concerns Alarm
AndRefines AlarmCorrectlyManaged
RefinedTo FaultInformationTransmittedWhenFaultDetected,

AlarmRaisedWhenFaultInformationTransmitted,
AlarmNotRaisedIfFaultNotDetected

APPENDIX A. KAOS SPECIFICATIONS 134

FormalDef ∀ f:Fault, ∃ !l:Location,∃ !a:Alarm
Detected(f,l) ⇒ ♦ Raise(f,a)∧
∀ a:Alarm, ∃ !f:Fault,∃ !l:Location

Raise(f,a) ⇒ � Detected(f,l)

7. Goal AlarmRaisedWhenFaultInformationTransmitted

Def Each time the ALARM unit receive information on a fault,
an alarm has to be raised

Concerns Alarm, FaultInformation
AndRefines AlarmRaisedIffFaultDetected
UnderResponsabilityOf ALARM
FormalDef ∀ fi:FaultInformation, ∃ !a:Alarm

Transmitted(fi, PRECON, ALARM) ⇒ ♦ Raise(fi,a)

8. Goal AlarmStatusUpdated

Def If there is at least one alarm raised, the AlarmStatus must
be set to on, otherwise it must be set to off.

Concerns Alarm, Fault, PowerPlant/AlarmStatus
AndRefines AlarmInformationStoredWhenAlarmRaised
UnderResponsabilityOf ALARM
FormalDef ∀ a: Alarm, ∃ !fi:FaultInformation

Raise(fi,a) ⇒ ◦ PowerPlant.AlarmStatus=’on’

9. Goal AlarmTraced

Def Informations on alarms previously raised can be retrieved
Concerns Alarm
AndRefines AlarmCorrectlyManaged
RefinedTo AlarmInformationStoredWhenAlarmRaised,

AlarmInformationProvidedUponUserRequest

10. Goal AnalogDataAcquired

Def All the data coming from working analog sensors are ac-
quired

Concerns Sensor, SensorInformation
AndRefines DataAcquiredFromTheField
FormalDef ∀ s: Sensor, si:SensorInformation

s.type =’Analog’ ∧ s.status =’on’ ∧ s.id = si.id ⇒ ♦ Ac-
quired(s) ∧ s.DataValue=si.DataValue

APPENDIX A. KAOS SPECIFICATIONS 135

11. Goal CalculationDone

Def All the calculations needed to detect fault in the Power-
Plant are done

Concerns SensorInformation
AndRefines ChecksPerformedWhenDataAcquired
UnderResponsabilityOf PRECON
FormalDef ∀ si:SensorInformation

Transmitted(si,DB,PRECON) ⇒ ♦ CalculationDone

12. Goal ChecksPerformedWhenDataAcquired

Def Checks must be performed when all the data needed is
available in order to detect faults in the Steam Condenser
or in the Cooling Circuit

Concerns SensorInformation, Fault
AndRefines PeriodicalChecksPerformed
RefinedTo CalculationDone, FaultDetectedWhenCalculation-

Done
FormalDef ∀ f:Fault, si: SensorInformation, l:Location

Occurs(f,l) ∧ Transmitted(si,DB,PRECON)
⇒ ♦≤5min Detected(f,l)∧
¬ Occurs(f,l) ∧ Transmitted(si,DB,PRECON)

⇒ ♦ ¬ Detected(f,l)

13. Goal ComputedVariablesStored

Def The variables resulting from the different calculations need
in order to detect Fault must be stored.

AndRefines ReportWrittenWhenCheckPerformed
RefinedTo DataTransmittedToDB

14. Goal ConsistencyCheckPerformed

Def Consistency checks are performed on all the acquired data
in order to ensure consistency within all the sensor datas

Concerns SensorInformation
AndRefines CorrectDataPersistentlyStored
UnderResponsabilityOf ACQUISITION UNIT
FormalDef ∀ s: Sensor

Acquired(s) ⇒ ♦ Consistent(s)

APPENDIX A. KAOS SPECIFICATIONS 136

15. Goal CorrectDataPersistentlyStored

Def All the data of the system (reports resulting from checks,
alarm information, status of the I/O devices, values of the
sensors,etc.) must be stored persistently)

Concerns AlarmInformation, FaultInformation, SensorInforma-
tion

AndRefines DataAcquired,
AlarmInformationProvidedUponUserRequest

RefinedTo DataAcquiredFromTheField, ConsistencyCheckPer-
formed, DataUpdatedWhenAcquired, ComputedVariablesStored,
DiagnosisWritten, I/OStatusUpdated, AlarmInformationStored-
WhenAlarmRaised

FormalDef ∀ si:SensorInformation, fi:FaultInformation,
ai:AlarmInformation, fd:FaultDiagnosis, ad:AlarmDiagnosis
Stored(si,DB) ∧ Stored(fi,DB) ∧ Stored (ai,DB)
∧ Stored (fd,DB) ∧ Stored (ad,DB)

16. Goal DataAcquired

Def All the data needed are acquired from the field
Concerns Sensor, SensorInformation
AndRefines DataQuerriedUponUserRequest,

PeriodicalChecksPerformed
RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted,

QuerryAnswered
FormalDef ∀ s:Sensor, ∃ ! si: SensorInformation

Querry(s) ⇒ ♦≤2s Transmitted(si,DB,PRECON) ∧ Repre-
sentation(si,s)

17. Goal DataAcquiredFromTheField

Def Data concerning the state of the power plant must be ac-
quired

Concerns Sensor, SensorInformation
AndRefines CorrectDataPersistentlyStored
RefinedTo AnalogDataAcquired, DigitalDataAcquired, Sani-

tyCheckPerformed
FormalDef ∀ s: Sensor, si:SensorInformation

s.type = ’Digital’ ∨ s.type =’Analog’ ∧ s.id=si.id ⇒ ♦ Ac-
quired(s) ∧ s.DataValue= si.DataValue

APPENDIX A. KAOS SPECIFICATIONS 137

18. Goal DataCorrectlyUpdated

Def Each time alarm information is transmitted to the Data-
Base, this information has to be stored

Concerns AlarmInformation, DataBase
AndRefines AlarmInformationStoredWhenAlarmRaised
UnderResponsabilityOf DB
FormalDef ∀ ai:AlarmInformation, ad:AlarmDiagnosis

Transmitted(ai,ALARM,DB) ⇒ ♦ Stored(ai,DB)
Transmitted(ad,ALARM,DB) ⇒ ♦ Stored(ad,DB)

19. Goal DataCorrectlyUpdated

Def Each time fault information is transmitted to the DataBase,
this information has to be stored

Concerns FaultInformation, DataBase
AndRefines FaultDiagnosisWritten, ComputedVariablesStored
UnderResponsabilityOf DB
FormalDef ∀ fi:FaultInformation, fd:FaultDiagnosis

Transmitted(fi,ALARM,DB) ⇒ ♦ Stored(fi,DB)
Transmitted(fd,ALARM,DB) ⇒ ♦ Stored(fd,DB)

20. Goal DataQuerriedUponUserRequest

Def All the data concerning the state of the Power Plant must
be provided upon operators request

Concerns
AndRefines FaultDetectedInSteamCondensor, FaultDetected-

InCoolingCircuit
RefinedTo CorrectDataPersistentlyStored,

QuerryTransmitted, QuerryAnswered
FormalDef ∀ s: Sensor, ∃ ! si: SensorInformation

Querry(s) ⇒ ♦ Answer(si) ∧ Representation(si,s)

21. Goal DataTransmittedToDB

Def Each time an alarm is raised, corresponding information
must be transmitted to the DataBase

Concerns Alarm, AlarmInformation, FaultInformation
AndRefines AlarmInformationStoredWhenAlarmRaised
UnderResponsabilityOf COMMUNICATION

APPENDIX A. KAOS SPECIFICATIONS 138

FormalDef ∀ a:Alarm, ∃ ! fi: FaultInformation,
∃ ! ai:AlarmInformation, ∃ !ad: AlarmDiagnosis
Raise(fi,a) ∧ Representation(ai,a)
⇒ ♦ Transmitted(ai,ALARM,DB) ∧ Transmitted(ad,ALARM,DB)
∧ Concerns(ad,fi,ai)

22. Goal DataTransmittedToDB

Def Each time an fault is detected, corresponding information
must be transmitted to the DataBase

Concerns Fault , FaultInformation, SensorInformation
AndRefines FaultDiagnosisWritten, ComputedVariablesStored
UnderResponsabilityOf COMMUNICATION
FormalDef ∀ f:Fault, ∃ l:Location, ∃ ! fi: FaultInformation,

∃ ! si: SensorInformation ∃ !ad: FaultDiagnosis
Detected(f,l) ∧ Representation(fi,f)
⇒ ♦ Transmitted(fi,PRECON,DB) ∧ Transmitted(fd,ALARM,DB)
∧ Concerns(ad,si,fi)

23. Goal DataUpdatedWhenAcquired

Def When the data have been acquired, they must be stored
correctly

Concerns Sensor, SensorInformation
AndRefines CorrectDataPersistentlyStored
UnderResponsabilityOf DB
FormalDef ∀ si:Sensor

Acquired(s) ∧ Consistent(s) ⇒ ♦ Stored(si,DB)
∧ Representation(si,s)

24. Goal DigitalDataAcquired

Def All the data coming from working digital sensors are ac-
quired

Concerns Sensor, SensorInformation
AndRefines DataAcquiredFromTheField
UnderResponsabilityOf Acquisition Unit
FormalDef ∀ s: Sensor, si:SensorInformation

s.type =’Digital’ ∧ s.status =’on’ ∧ s.id=si.id⇒ ♦ Acquired(s)
∧ s.DataValue=si.DataValue

25. Goal FaultDetected

APPENDIX A. KAOS SPECIFICATIONS 139

Def Faults occurring in any location (i.e.,the steam condenser
or the cooling) circuit must be detected. Fault occur in only
one location at a time.

Concerns SteamCondensor, CoolingCircuit, Fault
AndRefines PerformanceOfThePlantMonitored
RefinedTo FaultDetectedInSteamCondensor,

FaultDetectedInCoolingCircuit
FormalDef ∀ f:Fault, ∃ !l:Location

Occurs(f,l) ⇒ ♦ Detected(f,l)

26. Goal FaultDetectedInCoolingCircuit

Def Faults in the cooling circuit must be detected
Concerns CoolingCircuit, Fault
AndRefines FaultDetected
RefinedTo DataQuerriedUpondUserRequest,

PeriodicalChecksPerformed&RepportsWritten
FormalDef ∀ f:Fault

Occurs(f,CoolingCircuit) ⇒ ♦ Detected(f,CoolingCircuit)

27. Goal FaultDetectedInSteamCondenser

Def Faults in the steam condenser must be detected
Concerns SteamCondenser, Fault
AndRefines FaultDetected
RefinedTo DataQuerriedUpondUserRequest,

PeriodicalChecksPerformed&RepportsWritten
FormalDef ∀ f:Fault

Occurs(f,SteamCondenser)⇒ ♦ Detected(f,SteamCondenser)

28. Goal FaultDetectedWhenCalculationDone

Def When the calculations are done, all the faults present ei-
ther in the cooling circuit or in the steam condenser must be
detected

Concerns Fault, SteamCondenser, CoolingCircuit
AndRefines ChecksPerformedWhenDataAcquired
UnderResponsabilityOf PRECON
FormalDef ∀ f:Fault,l:Location

CalculationDone ∧ Occurs(f,l) ⇒ ♦ Detected(f,l)∧
CalculationDone ∧ ¬ Occurs(f,l) ⇒ � ¬ Detected(f,l)

APPENDIX A. KAOS SPECIFICATIONS 140

29. Goal FaultDiagnosisWritten

Def Each time a fault is detected, informations concerning the
fault and the diagnosis must be written

Concerns SensorInformation, Fault
AndRefines ReportWrittenWhenChecksPerformed
RefinedTo DataTransmittedToDB, DataCorrectlyUpdated
FormalDef ∀ f:Fault, ∃ !l: Location, ∃ !fi:FaultInformation,

∃ si:SensorInformation, ∃ !fd:FaultDiagnosis
Detected(f,l) ⇒ ♦ Store(fi,DB) ∧ Representation(fi,f)
∧ Stored(fd,DB) ∧ Concerns(ds, di,si)

30. Goal FaultInformationTransmittedWhenFaultDetected

Def Each time a Fault is detected, information on that fault
has to be transmitted to the ALARM unit

Concerns Alarm
AndRefines AlarmRaisedIffFaultDetected
UnderResponsabilityOf COMMUNICATION
FormalDef ∀ f:Fault, ∃ !l:Location, ∃ !fi:FaultInformation

Detected(f,l) ∧ Representation(fi,f)
⇒ ♦ Transmitted(fi, PRECON, ALARM)

31. Goal FaultStatusUpdated

Def If there is a least one fault detected, the FaultStatus must
be set to on, otherwise it must be set to off

Concerns Fault, PowerPlant/FaultStatus
AndRefines ReportWrittenWhenChecksPerformed
UnderResponsabilityOf PRECON
FormalDef ∀ f:Fault, ∃ !l :Location

Detected(f,l) ⇒ ◦ PowerPlant.FaultStatus = ’on’

32. Goal Maintain[SensorCorrectValue]

Def The values of the variables measured by the sensor should
be equal to the actual values of the variables.

Concerns Sensor
AndRefines DataAcquiredFromTheField
UnderResponsabilityOfSensor Sensor

APPENDIX A. KAOS SPECIFICATIONS 141

FormaDef ∀ s:Sensor, l:Location
Monitors(s,l) ∧ s.DataType=Temperature
⇒ � s.DataValue=l.Temperature∧

Monitors(s,l) ∧ s.DataType=Pressure
⇒ � s.DataValue=l.Pressure

33. Goal PowerPlantSupervised

Def The system must continuously supervise the power plant
in order to detect faults in the steam condenser or in the
cooling circuit and to raise appropriate alarms in case of fault
detection. Moreover, it supports the operators suggesting
remedy actions.

Concerns PowerPlant, SteamCondensor, CoolingCircuit
RefinedTo FaultDetected, RemedyActionSuggestedWhenFault-

Detected, AlarmCorrectlyManaged

34. Goal PeriodicalChecksPerformed&ReportWritten

Def A check must be carried out every 5 minutes in order to
detect faults and a report must be written.

Concerns
AndRefines FaultDetectedInSteamCondensor, FaultDetected-

InCoolingCircuit
RefinedTo DataAcquired, ChecksPerformedWhenDataAcquired,

ReportWrittenWhenChecksPerformed
FormalDef ∀ f: Fault, ∃ ! l:Location

Occurs(f,l) ⇒ ♦≤5min Detected(f,l)

35. Goal QueryTransmitted

Def Each time the operator queries informations on an alarm,
the query has to be transmitted to the DataBase

Concerns Alarm, AlarmInformation
AndRefines AlarmInformationProvidedUponUserRequest
UnderResponsabilityOf COMMUNICATION
FormalDef ∀ a:Alarm

Querry(a) ⇒ Transmitted(a,ALARM,DB)

36. Goal RemedyActionsSuggestedWhenFaultDetected

Def Remedy actions must be suggested to the operators each
time a fault is detected.

APPENDIX A. KAOS SPECIFICATIONS 142

Concerns SteamCondensor, CoolingCircuit, Fault
AndRefines PerformanceOfThePlantMonitored
UnderResponsabilityOf PRECON

37. Goal ReportWrittenWhenChecksPerformed

Def Whether a fault is detected or not, all the results of the
check must be stored.

Concerns SensorInformation, Fault, FaultInformation
AndRefines PeriodicalChecksPerformed
RefinedTo ComputedVariablesStored, DiagnosisWritten,

FaultStatusUpdated
FormalDef ∀ f: Fault, ∃ !fi: FaultInformation, ∃ !l:Location,

∃ ! fd: FaultDiagnosis,∃ !si:SensorInformation
Detected(f,l) ⇒ ♦ Stored(fi,DB) ∧ Representation(fi,f)
∧ Stored(fd,DB) ∧ Concerns(fd,si,fi)

38. Goal SanityCheckPerformed

Def Sanity checks are performed in order to ensure that all
working sensors work correctly

Concerns Sensor
AndRefines DataAcuiredFromTheField
FormalDef ∀ s:Sensor

s.workingProperly = false ∧ s.status = ’on’
⇒ ◦ s.status = ’off’∧

s.workingProperly = true ∧ s.status =’off’
⇒ ◦ s.status = ’on’

A.1.2 Non-functional goals

Non-functional goals are listed by category. Figure A.2 shows the NFG
diagram.

• Reliability goals

Goal NoDataIntroduced

FormalDef ∀ x:Data, X:P(Data)1, A1,A2:Agent
Transmitted(X,A1,A2) ∧ x ∈ Transmitted(X,A1,A2) ⇒ x ∈
X

1P(Data) denotes the set of subsets of Data

APPENDIX A. KAOS SPECIFICATIONS 143

Figure A.2: Non-functional goal diagram

Goal NoDataLost

FormalDef ∀ x:Data, X:P(Data),A1,A2:Agent
x ∈ X ∧ Transmitted(X,A1,A2)⇒ x ∈ Transmitted(X,A1,A2)

Goal SequencePreserved

FormalDef ∀ x,y: Data, X:P(Data), A1,A2:Agent, ∃ u,v: Data
x,y ∈ X ∧ Before (x,y,X) ∧ Transmitted(X,A1,A2)
⇒ u,v ∈ Transmitted(X,A1,A2) ∧ Before(u,v,Transmitted(X,A1,A2))
∧ x =u ∧ y=v

• Performance goals

Goal CommunicationEfficiency2

FormalDef ¬ Transmitted(fi,PRECON,ALARM)⇒ ♦≤1s Trans-
mitted(fi,PRECON,ALARM)

A.2 Object Specifications

The objects are listed in alphabetical order. Figure A.3 shows the object
diagram.

1. Entity Alarm

2The goal is actually the instantiation of a more general one in the particular case of
the transmission of a FaultInformation between PRECON and ALARM

APPENDIX A. KAOS SPECIFICATIONS 144

Figure A.3: ObjectDiagram

APPENDIX A. KAOS SPECIFICATIONS 145

Def An alarm is raised when a fault is detected
Has AlarmID: Integer

Type:
Priority: Low, Medium, High, Critical
ActivationTime: Time
DeactivationTime: Time
Activated: Boolean
Description: String

DomInvar ActivationTime ¡ DeactivationTime
Activated = true ⇒ DeactivationTime = null
Activated = false ⇒ DeactivationTime 6= null

DomInit Activated = true
DeactivationTime = null

2. Entity AlarmInformation

Def representation of the Alarm
Has AlarmID: Integer

Type:
Priority: Low, Medium, High, Critical
ActivationTime: Time
DeactivationTime: Time
Activated: Boolean
Description: String

DomInvar ActivationTime ¡ DeactivationTime
Activated = true ⇒ DeactivationTime = null
Activated = false ⇒ DeactivationTime 6= null

DomInit Activated = true
DeactivationTime = null

3. Entity CoolingCircuit

Def cools the power plant. It is a component of the power
plant. It accounts for temperature, desired temperature and
a range, similarly pressure, a desired pressure and a pressure
range.

IsA Location
Has Inherited from Location

Temp: Temperature
DesiredTemp: Temperature
MinTemp: Temperature

APPENDIX A. KAOS SPECIFICATIONS 146

MaxTemp: Temperature
Press: Pressure
DesiredPress: Pressure
MinPress: Pressure
MaxPress: Pressure

DomInvar MinTemp ≤ Maxtemp
MinPress ≤ MaxPress

DomInit /

4. Entity Fault

Def Faults can occur in the cooling circuit or in the steam con-
denser. When each fault is detected, an ID, type, priority,
description and detection time are associated with it. Mea-
sures are then taken ot correct the fault.

Has FaultID: Integer
Type: Temperature, Pressure
Priority: Low, Medium, High, Critical
DetectionTime: Time
CorrectionTime: Time
Corrected: Boolean
Description: String

DomInvar DetectionTime ¡ CorrectionTime
Corrected = true ⇒ CorrectionTime 6= null
Corrected = false ⇒ CorrectionTime = null

DomInit DetectionTime = currentTime
Corrected = false
CorrectionTime = null

5. Entity FaultInformation

Def representation of the fault
Has FaultID: Integer

Type: Temperature, Pressure
Priority: Low, Medium, High, Critical
DetectionTime: Time
CorrectionTime: Time
Corrected: Boolean
Description: String

DomInvar DetectionTime ¡ CorrectionTime
Corrected = true ⇒ CorrectionTime 6= null
Corrected = false ⇒ CorrectionTime = null

APPENDIX A. KAOS SPECIFICATIONS 147

DomInit DetectionTime = currentTime
Corrected = false
CorrectionTime = null

6. Entity Location

Def represent a location in the power plant
Has Temp: Temperature

DesiredTemp: Temperature
MinTemp: Temperature
MaxTemp: Temperature
Press: Pressure
DesiredPress: Pressure
MinPress: Pressure
MaxPress: Pressure

DomInvar MinTemp ≤ Maxtemp
MinPress ≤ MaxPress

DomInit /

7. Entity PowerPlant

Def Defines the power plant system. Its components include
steam condenser and cooling circuit.

Has PowerPlantID: Integer
Type: Hydrolic, Nuclear, Petrol, Gas, Coal
Power: MegaWatt
Location: Address
FaultStatus: on,off
AlarmStatus: on,off

DomInvar ∀ p:PowerPlant
p.faultStatus = on ⇔ (∃ f:Fault,∃ l:Location)(Occurs(f,l) ∧
PartOf(l,p) ∧ f.Corrected = false
p.alarmStatus = on⇔ (∃ a:Alarm,∃ l:Location,∃ f:Fault)(Occurs(f,l)
∧ PartOf(l,p) ∧ Raise(f,a) ∧ f.Activated = true

DomInit FaultStatus = off
AlarmStatus = off

8. Entity Sensor

Def it obtains information from the power plant using physically
placed sensors. Informations obtained includes data type and
its value. Sensors are also checked to ensure that they are
working correctly

APPENDIX A. KAOS SPECIFICATIONS 148

Has SensorID: Integer
Status: on,off
Type: Digital, Analog
DataValue: Float
DataType: Temperature, Pressure
WorkCorreclty: Boolean

DomInvar forall s: Sensor
s.workingProperly = false ∧ s.status = on ⇒ ◦ s.status = off
s.workingProperly = true ∧ s.status = off ⇒ ◦ s.status = on

DomInit status = on
workingProperly = true

9. Entity SensorInformation

Def representation of the sensor
Has SensorID: Integer

Status: on,off
Type: Digital, Analog
DataValue: Float
DataType: Temperature, Pressure
WorkCorreclty: Boolean
Consistent: Boolean

DomInvar forall s: Sensor
s.workingProperly = false ∧ s.status = on ⇒ ◦ s.status = off
s.workingProperly = true ∧ s.status = off ⇒ ◦ s.status = on

DomInit status = on
workingProperly = true
Consistent = true

10. Entity SteamCondenser

Def condenses steam. It accounts for temperature, desired tem-
perature and a range, similarly pressure, a desired pressure
and a pressure range.

IsA Location
Has Inherited from Location

Temp: Temperature
DesiredTemp: Temperature

APPENDIX A. KAOS SPECIFICATIONS 149

MinTemp: Temperature
MaxTemp: Temperature
Press: Pressure
DesiredPress: Pressure
MinPress: Pressure
MaxPress: Pressure

DomInvar MinTemp ≤ Maxtemp
MinPress ≤ MaxPress

DomInit /

A.3 Agents Specifications

The agents are listed by alphabetical order. Figure A.4 shows the respon-
sibility assignment of the different agents and Figure A.5 shows the agents
interfaces in terms of its monitored and controlled variables.

The agents are listed by alphabetical order. Figure A.4 shows the re-
sponsibility assignment of the different agents.

1. Agent Acquisition Unit

Def An agent that acquires data from the various sensors mon-
itoring the power plant

Has /
Monitors Sensor/ID, Sensor/Status, Sensor/Type, Sensor/DataValue,

Sensor/DataType
Controls SensorInformation/ID, SensorInformation/Status, Sen-

sorInformation/Type, SensorInformation/DataValue, Sensor-
Information/DataType

ResponsibleFor AnalogDataAcquired, DigitalDataAcquired
DependsOn Sensor
Perfoms Acquire Analog Data, Acquire Digital Data

2. Agent ALARM

Def An agent that controls the status of the alarm
Has AlarmID, Type, Priority, ActivationTime, Deactivation-

Time, Activated, Description
Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, Fault-
Information/CorrectionTime, FaultInformation/Corrected, Fault-
Information/Description

APPENDIX A. KAOS SPECIFICATIONS 150

Figure A.4: Responsibility assignment of the different agents

APPENDIX A. KAOS SPECIFICATIONS 151

Figure A.5: Agent context diagram

APPENDIX A. KAOS SPECIFICATIONS 152

Controls Alarm/AlarmID, Alarm/Type, Alarm/Priority, Alarm/ActivationTime,
Alarm/DeactivationTime, Alarm/Activated, Alarm/Description

ResponsibleFor AlarmRaisedWhenFaultInfoTransmitted, Alarm-
NotRaisedIfFaultNotDetected, AlarmStatusUpdated

DependsOn PRECON
Perfoms Raise Alarm When Alarm Info Transmitted, Update

alarm status, Not Raise Alarm if Fault Not Detected

3. Agent COMM

Def Handles communication between the different objects
Has /
Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, Fault-
Information/CorrectionTime, FaultInformation/Corrected, Fault-
Information/Description, AlarmInformation/AlarmID, AlarmIn-
formation/Type, AlarmInformation/Priority, AlarmInforma-
tion/ActivationTime, AlarmInformation/DeactivationTime,
AlarmInformation/Activated, AlarmInformation/Description,
SensorInformation/SensorID, SensorInformation/Status, Sen-
sorInformation/Type, SensorInformation/DataValue, Sensor-
Information/DataType, SensorInformation/WorkCorrectly

Controls /
ResponsibleFor NoDataIntroduced, NoDataLost, SequenceP-

reserved, DataTransmittedInTime, FaultInfoTransmittedWhen-
FaultDetected

DependsOn Sensor, PRECON, ALARM, Database
Perfoms Transmit Query, Transmit Data to DB, Transmit Fault

Info When Fault Detected

4. Agent DB

Def Stores, updates and returns queries on sensor, fault and
alarm information

Has Size
Monitors FaultInformation/FaultID, FaultInformation/Type, Fault-

Information/Priority, FaultInformation/DetectionTime, Fault-
Information/CorrectionTime, FaultInformation/Corrected, Fault-
Information/Description, AlarmInformation/AlarmID, AlarmIn-
formation/Type, AlarmInformation/Priority, AlarmInforma-
tion/ActivationTime, AlarmInformation/DeactivationTime,

APPENDIX A. KAOS SPECIFICATIONS 153

AlarmInformation/Activated, AlarmInformation/Description,
SensorInformation/SensorID, SensorInformation/Status, Sen-
sorInformation/Type, SensorInformation/DataValue, Sensor-
Information/DataType, SensorInformation/WorkProperly

Controls Database/Size
ResponsibleFor DataCorrectlyUpdated, QueryAnswered
DependsOn Communication, PRECON, ALARM, Sensor
Perfoms Update Data Correctly, Answer Query

5. Agent Instrumentation Maintenance System(IMS)
Def Ensures efficient working of the sensors, checks consistency

in data obtained from the sensors
Has /
Monitors SensorInformation/SensorID, SensorInformation/Type,

SensorInformation/DataValue, SensorInformation/DataType,
SensorInformation/WorkProperly

Controls SensorInformation/Status, SensorInformation/Consistent
ResponsibleFor SanityChecksPerformed, ConsistencyChecksPer-

formed
DependsOn Sensor
Perfoms Perform Sanity Check, Perform Consistency Check

6. Agent OPERATOR

Def Represents user who interacts with the system
Has /
Monitors Alarm/AlarmID, Alarm/Type, Alarm/Priority, Alarm/ActivationTime,

Alarm/DeactivationTime, Alarm/Activated, Alarm/Description
Controls /
ResponsibleFor OperatorInteractionsManaged
DependsOn /
Perfoms Manages Operator Interaction

7. Agent PRECON

Def Detects faults from the data and handles fault status
Has /
Monitors SensorInformation/SensorID, SensorInformation/Status,

SensorInformation/Type, SensorInformation/DataValue, Sen-
sorInformation/DataType, SensorInformation/WorkCorrectly,
SensorInformation/Consistent

APPENDIX A. KAOS SPECIFICATIONS 154

Controls FaultInformation/FaultID, FaultInformation/Type, Fault-
Information/Priority, FaultInformation/DetectionTime, Fault-
Information/ CorrectionTime, FaultInformation/Corrected,
FaultInformation/Description

ResponsibleFor CalculationDone, FaultDetectedWhenCalcu-
lationDone, RemedyActionSuggestedWhenFaultDetected, Fault-
StatusUpdated

DependsOn DataBase
Perfoms Do Calculation, Detect Fault When Calculation is

Done, Suggest Remedy Action When Fault Detected, Up-
date Fault Status

8. Agent Sensor

Def Physical sensors provide plant information
Has SensorId, Status, Type, DataValue, DataType, WorkCor-

rectly
Monitors SteamCondensor/Temperature, SteamCondensor/DesiredTemp,

SteamCondensor/MinTemp, SteamCondensor/MaxTemp, Steam-
Condensor/Pressure, SteamCondensor/DesiredPress, Steam-
Condensor/ MinPress, SteamCondensor/MaxPress, Cooling-
Circuit/Temperature, CoolingCircuit /DesiredTemp, Cool-
ingCircuit /MinTemp, CoolingCircuit /MaxTemp, Cooling-
Circuit /Pressure, CoolingCircuit /DesiredPress, CoolingCir-
cuit /MinPress, CoolingCircuit /MaxPress, Sensor/Status,

Controls Sensor/SensorID, Sensor/Type, Sensor/DataValue, Sen-
sor/DataType

ResponsibleFor Maintain[SensorCorrectValue]

A.4 Operations specifications

Operations are listed by alphabetical order.

1. Operation AcquireAnalogData

Def Acquire the data coming from an analog device
Input s:Sensor,si:SensorInformation
Output si:SensorInformation/Value
DomPre s.value 6= si.value
DomPost s.value = si.value

APPENDIX A. KAOS SPECIFICATIONS 155

ReqTrig for AnalogDataAcquired
s.value 6= si.value S=9s s.Type = ’Analog’ ∧ s.ID=si.ID ∧
s.Value 6= si.Value

PerformedBy Acquisistion Unit

2. Operation AcquireDigitalData

Def Acquire the data coming from an digital device
Input s:Sensor,si:SensorInformation
Output si:SensorInformation/Value
DomPre s.value 6= si.value
DomPost s.value = si.value
ReqTrig For DigitalDataAcquired

s.value 6= si.value S=9s s.Type = ’Digital’ ∧ s.ID = si.ID ∧
s.Value 6= si.Value

PerformedBy Acquisition Unit

3. Operation AnswerAlarmQuery

Def Answer to a alarm query
Input a: Alarm
Output ai: AlarmInformation
DomPre ¬ Transmitted(ai,DB,ALARM)
DomPost Transmitted(ai,DB,ALARM)
ReqTrig For AlarmQueryAnswered

¬ Transmitted(ai,DB,ALARM) S=1s Transmitted(a,ALARM,DB)∧
Query(a)∧ Stored(ai) ∧ ai.ID = a.ID ∧ ¬ Transmitted(ai,DB,ALARM)

PerformedBy DB

4. Operation AnswerSensorQuery

Def Answer to a sensor query
Input s: Sensor
Output si: SensorInformation
DomPre ¬ Transmitted(si,DB,PRECON)
DomPost Transmitted(si,DB,PRECON)
ReqTrig For SensorQueryAnswered

¬ Transmitted(si,DB,PRECON) S=1s Transmitted(s,PRECON,DB)∧
Query(s)∧ Stored(si) ∧ si.ID = s.ID ∧ ¬ Transmitted(si,DB,PRECON)

PerformedBy DB

APPENDIX A. KAOS SPECIFICATIONS 156

5. Operation Calculate

Def calculate all needed things in order to detect faults
Input si: SensorInformation
Output /
DomPre ¬ CalculationDone
DomPost CalculationDone
ReqTrig For CalculationDone

¬ CalculationDone S=1s Transmitted(si,DB,PRECON) ∧ ¬
CalculationDone

PerformedBy PRECON

6. Operation DetectFault

Def detect Fault
Input f: Fault, l: Location
Output /
DomPre ¬ Detected(f,l)
DomPost Detected(f,l)
ReqTrig For FaultDetectedWhenCalculationDone

¬ Detected(f,l) S=1s CalculationDone ∧ Occurs(f,l) ∧ ¬ De-
tected(f,l)

PerformedBy PRECON

7. Operation RaiseAlarm

Def Raise the alarm
Input fi: FaultInformation, a: Alarm
Output a: Alarm
DomPre ¬ Raise(fi,a)
DomPost Raise(fi,a)
ReqTrig For AlarmRaisedWhenFaultInformationTransmitted

¬ Raise(fi,a) S=1s Transmitted(fi,PRECON, ALARM) ∧ ¬
Raise(fi,a)

PerformedBy ALARM

8. Operation SwitchAlarmStatusOff

Def switch the Alarm Status off
Input a: Alarm, fi: FaultInformation, PowerPlant
Output PowerPlant/AlarmStatus

APPENDIX A. KAOS SPECIFICATIONS 157

DomPre PowerPlant.AlarmStatus = on
DomPost PowerPlant.AlarmStatus = off
ReqPre For AlarmStatusUpdated

¬ Raise(fi,a)
Operationalizes AlarmStatusUpdated
PerformedBy ALARM

9. Operation SwitchAlarmStatusOn

Def switch the Alarm Status on
Input a: Alarm, fi: FaultInformation, PowerPlant
Output PowerPlant/AlarmStatus
DomPre PowerPlant.AlarmStatus = off
DomPost PowerPlant.AlarmStatus = on
ReqTrig For AlarmStatusUpdated

Raise(fi,a)
Operationalizes AlarmStatusUpdated
PerformedBy ALARM

10. Operation SwitchFaultStatusOff

Def switch the Fault Status off
Input f: Fault, l: Location, PowerPlant
Output PowerPlant/FaultStatus
DomPre PowerPlant.FaultStatus = on
DomPost PowerPlant.FaultStatus = off
ReqPre For FaultStatusUpdated

¬ Detected(f,l)
PerformedBy PRECON

11. Operation SwitchFaultStatusOn

Def switch the Fault Status on
Input f: Fault, l: Location, PowerPlant
Output PowerPlant/FaultStatus
DomPre PowerPlant.FaultStatus = off
DomPost PowerPlant.FaultStatus =on
ReqTrig For FaultStatusUpdated

Detected(f,l)
PerformedBy PRECON

APPENDIX A. KAOS SPECIFICATIONS 158

12. Operation SwitchSensorOff

Def Turn the sensor off
Input s:Sensor
Output s:Sensor/Status
DomPre s.Status = ’on’
DomPost s.Status = ’off’
ReqTrig For SanityCheckPerformed

¬ s.WorkingProperly
PerformedBy ACQUISITION UNIT

13. Operation SwitchSensorOn

Def Turn the sensor on
Input s:Sensor
Output s:Sensor/Status
DomPre s.Status = ’off’
DomPost s.Status = ’on’
ReqPre For SanityCheckPerformed

s.WorkingProperly
Operationalizes SanityCheckPerformed
PerformedBy ACQUISITION UNIT

14. Operation TransmitAlarmData

Def Transmit the alarm data to the DataBase
Input fi: FaultInformation, a: Alarm, ai: AlarmInformation,

ad: AlarmDiagnososis
Output /
DomPre ¬ Transmitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB)

∨ ¬ Concerns(ad,fi,ai)
DomPost Transmitted(ai,ALARM,DB) ∧ Transmitted(ad,ALARM,DB)

∧ Concerns(ad,fi,ai)
ReqTrig For AlarmDataTransmitted

¬ Transmitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB)
∨ ¬ Concerns(ad,fi,ai) S=1s Raise(fi,a) ∧ a.ID = ai.ID ∧

(
¬

Transmitted(ai,ALARM,DB) ∨ ¬ Transmitted(ad,ALARM,DB)
∨ ¬ Concerns(ad,fi,ai)

)
PerformedBy COMMUNICATION

APPENDIX A. KAOS SPECIFICATIONS 159

15. Operation TransmitAlarmQuery

Def transmit a alarm query to the DataBase
Input a: Alarm
Output /
DomPre ¬ Transmitted(a,ALARM,DB)
DomPost Transmitted(a,ALARM,DB)
ReqTrig For AlarmQuerryTransmitted

¬ Transmitted(a,ALARM,DB) S=1s Query(a) ∧ ¬ Transmit-
ted(a,ALARM,DB)

PerformedBy COMMUNICATION

16. Operation TransmitDiagnosisData

Def Transmit the data concerning the diagnosis of a fault to
the DataBase

Input f: Fault, l: Location, fi: FaultInformation, si: SensorIn-
formation, fd: FaultDiagnosis

Output /
DomPre ¬ Transmitted(fi,PRECON,DB) ∨ ¬ Transmitted(ad,PRECON,DB)

∨ ¬ Concerns(ad,si,fi)
DomPost Transmitted(fi,PRECON,DB) ∧ Transmitted(ad,PRECON,DB)

∧ Concerns(ad,si,fi)
ReqTrig For DiagnosisDataTransmitted

¬ Transmitted(fi,PRECON,DB) ∨ ¬ Transmitted(ad,PRECON,DB)
∨ ¬ Concerns(ad,si,fi) S=1s Detected(f,l) ∧ f.ID = fi.ID ∧

(
¬

Transmitted(fi,PRECON,DB) ∨ ¬ Transmitted(ad,PRECON,DB)
∨ ¬ Concerns(ad,si,fi)

)
PerformedBy COMMUNICATION

17. Operation TransmitFaultInformation

Def Transmit Fault Information to The ALARM Management
unit

Input f: Fault, l: Location, fi: FaultInformation
Output /
DomPre ¬ Transmitted(fi,PRECON, ALARM)
DomPost Transmitted(fi,PRECON, ALARM)
ReqTrig For FaultInformationTransmittedWhenFaultDetected

¬ Transmitted(fi,PRECON, ALARM) S=1s Detected(f,l) ∧
f.ID = fi.ID ∧ ¬ Transmitted(fi,PRECON, ALARM)

APPENDIX A. KAOS SPECIFICATIONS 160

PerformedBy COMMUNICATION

18. Operation TransmitSensorData

Def Transmit the data to the DataBase
Input si: SensorInformation
Output /
DomPre ¬ Transmitted(si,ACQUISITION,DB)
DomPost Transmitted(si,ACQUISITION,DB)
ReqTrig For SensorDataTransmitted

¬ Transmitted(si,ACQUISITION,DB) S=1s si.Consistent ∧
¬ Transmitted(si,ACQUISITION,DB)

PerformedBy COMMUNICATION

19. Operation TransmitSensorQuery

Def transmit a sensor query to the DataBase
Input s: Sensor
Output /
DomPre ¬ Transmitted(s,PRECON,DB)
DomPost Transmitted(s,PRECON,DB)
ReqTrig For SensorQuerryTransmitted

¬ Transmitted(s,PRECON,DB) S=1s Query(s) ∧ ¬ Trans-
mitted(s,PRECON,DB)

PerformedBy COMMUNICATION

20. Operation UnValidateData

Def Unvalidate the sensor data if they are not considered plau-
sible

Input si: SensorInformation
Output si: SensorInformation/Consistent
DomPre si.Consistent
DomPost ¬ si.Consistent
ReqTrig For ConsistencyChecksPerformed

(si.DataType = ’Temperature’ ∧ (si.Value < minTemp ∨
si.Value > maxTemp))
∨ (si.DataType = ’Pressure’ ∧ (si.Value < minPres ∨ si.Value
> maxPres))

PerformedBy ACQUISITION UNIT

APPENDIX A. KAOS SPECIFICATIONS 161

21. Operation UpdateAlarmData

Def Update Alarm data in the DataBase
Input ai: AlarmInformation, ad: AlarmDiagnosis
Output /
DomPre ¬ Stored(ai) ∨ ¬ Stored(ad)
DomPost Store(ai) ∧ Stored(ad)
ReqTrig For AlarmDataCorrectlyUpdated

¬ Stored(ai) ∨ ¬ Stored(ad) S=1s Transmitted(ai,ALARM,DB)
∧ Transmitted(ad,ALARM,DB) ∧ (¬ Stored(ai) ∨ ¬ Stored(ad)
)

PerformedBy

22. Operation UpdateDiagnosisData

Def Store the data concerning a detected fault in the DataBase
Input fi: SensorInformation, fd: FaultDiagnosis
Output /
DomPre ¬ Stored(fi) ∨ ¬ Stored(fd)
DomPost Stored(fi) ∧ Stored(fd)
ReqTrig For DiagnosisDataUpdated

¬ Stored(fi) ∨ ¬ Stored(fd) S=1s Transmitted(fd,PRECON,DB)
∧ Transmitted(fi,PRECON,DB) ∧ (¬ Stored(fi) ∨ ¬ Stored(fd))

PerformedBy DB

23. Operation UpdateSensorData

Def Update the data in the DataBase
Input si: SensorInformation
Output /
DomPre ¬ Stored(si)
DomPost Stored(si)
ReqTrig For SensorDataUpdated

¬ Stored(si) S=1s Transmitted(si,ACQUISITION,DB)∧ ¬ Stored(si)
PerformedBy DB

24. Operation ValidateData

Def Validate the sensor data if they are considered plausible
Input si: SensorInformation
Output si: SensorInformation/Consistent

APPENDIX A. KAOS SPECIFICATIONS 162

DomPre ¬ si.Consistent
DomPost si.Consistent
ReqPre For ConsistencyChecksPerformed

(si.DataType = ’Temperature’ ∧ (minTemp ≤ si.Value ≤
maxTemp))
∨ (si.DataType = ’Pressure’ ∧minPres≤ si.Value≤maxPres))

PerformedBy ACQUISITION UNIT

A.5 Modifications resulting from the obstacle anal-
ysis

Figure A.6 shows the modifications brought to the NFG diagram. Modifi-
cations are highlighted through thicker lines. The following goals have been
added:

• Safety goals

Goal Avoid[AllSensorOff]

Def There must always be at least one sensor working
Concerns Sensor
FormalDef � ¬ ∀ s:Sensor

s.status=off

Goal Avoid[LocationNotMonitored]

Def Every location must always be monitored by at least a sen-
sor

Concerns Sensor
FormalDef � ¬ ∃ l:Location, ∀ s:Sensor

¬ Monitor(s,l)

• Reliability goals

Goal Maintain[FaultTolerantCommunication(PRECON,ALARM)]

Def The communication between PRECON and ALARM should
be fault-tolerant

• Accuracy Goals

Goal Maintain[AccurateData(Acquisition Unit,IMS)]

APPENDIX A. KAOS SPECIFICATIONS 163

Figure A.6: Modifications brought to the NFG diagram after the obstacle
analysis

APPENDIX A. KAOS SPECIFICATIONS 164

Def The Sensor informations possessed by the agents Acquisi-
tion Unit an IMS should always be equal

Concerns SensorInformation

Goal Maintain[AccurateRepresentation(ai,a)]

Def The software representation of an alarm should always re-
flect the alarm state

Concerns Alarm, AlarmInformation
FormalDef ∀ a:Alarm, ∃! ai:AlarmInformation

a.id=ai.id ⇒ � (a.Type = ai.Type ∧ a.Priority = ai.Priority
∧ a.ActivationTime = ai.ActivationTime
∧ a.CorfectionTime = ai.CorrectionTime
∧ a.Corrected = ai.Corrected
∧ a.Description = ai.Description)

Goal Maintain[AccurateRepresentation(fi,f)]

Def The software representation of a Fault should always reflect
the fault state

Concerns Fault, FaultInformation
FormalDef ∀ f:Fault, ∃! fi:FaultInformation

f.id=fi.id ⇒ � (f.Type = fi.Type ∧ f.Priority = fi.Priority
∧f.DetectionTime = fi.DetectionTime
∧ f.CorfectionTime = fi.CorrectionTime
∧ f.Corrected = fi.Corrected
∧ f.Description = fi.Description)

Goal Maintain[AccurateRepresentation(si,s)]

Def The software representation of a sensor should always re-
flect the sensor state

Concerns Fault, FaultInformation
FormalDef ∀ s:Sensor, ∃! si:SensorInformation

s.id=si.id ⇒ � (s.Status=si.Status ∧ s.Type = si.Type
∧ s.DataValue = si.DataValue ∧ s.DataType = si.DataType
∧ s.WorkingCorrectly = si.WorkingCorrectly)

Appendix B

Architectural Prescriptions

B.1 Initial Prescriptions

Preskriptor Specification: PowerPlant Monitoring System

Problem Goals Specifications: PowerPlant Monitoring Process

Components:

1. Component PowerPlantSupervisingSystem[1,1]
Type Processing
Constraints PerformancOfThePlantMonitored
Composed of PRECON

ALARM
DataBase
Communication

Uses /

2. Component PRECON[1,1]
Type Processing
Constraints FaultDetected

RemedyActionSuggested
PeriodicalChecksPerformed&ReportWritten

Composed of FaultDetectionEngine
FaultInformation
FaultDiagnosis

165

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 166

SensorInformation
SensorConnect

Uses /

3. Component ALARM[1,1]
Type Processing
Constraints AlarmCorrectlyManaged

AlarmRaisedIffFaultDetected
AlarmTraced

Composed of AlarmManager
AlarmInformation
AlarmDiagnosis
InteractionManager

Uses /

4. Component Database[1,1]
Type Processing
Constraints CorrectDataPersistentlyStored
Composed of QueryManager

UpdateManager
Uses /

5. Component Communication[1,1]
Type Connector
Constraints NoDataIntroduced

NoDataLost
SequencePreserved
DataTransmittedInTime
DataTransmittedToTheDB
QueryTransmitted
FaultInformationTransmittedWhenFaultDetected

Composed of UpdateDBConnect
QueryDBConnect
FaultDetectionEngineAlarmManagerConnect

Uses /

6. Component FaultDetectionEngine[1,1]
Type Processing
Constraints CalculationDone

FaultDetectedWhenCalculationDone
FaultStatusUpdated

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 167

CheckPerformedWhenDataAcquired
ReportWrittenWhenCheckPerformed

Composed of /
Uses SensorConnect to interract with SensorInformation

FaultDetectionEngineAlarmManagerConnect to interract
with AlarmManager
UpdateDBConnect to interact with UpdateManager

7. Component FaultInformation[0,n]
Type Data
Constraints FaultInformationTransmittedWhenFaultDetected
Composed of /
Uses FaultDetectionEngineAlarmManagerConnect to inter-

ract with AlarmManager
UpdateDBConnect to interact with UpdateManager

8. Component FaultDiagnosis[0,n]
Type Data
Constraints DiagnosisWritten

ComputedVariablesStored
Composed of /
Uses UpdateDBConnect to interact with DBUpdateMan-

ager

9. Component SensorInformation[l,n]1

Type Data
Constraints AnalogDataAcquired

DigitalDataAcquired
SanityCheckPerformed
ConsistencyCheck

Composed of /
Uses UpdateDBConnect to interact with DB

SensorConnect to interact with FaultDetectionEngine

10. Component SensorConnect[1,1]
Type Connector
Constraints DataAcquiredFromTheField
Composed of /

1To achieve the non-functional goal Avoid[LocationNotMonitored] there must be at
least l sensors where l is the number of locations

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 168

Uses /

11. Component UpdateDBConnect[1,1]
Type Connector
Constraints Secure

TimeConstraint = 2s
Composed of /
Uses /

12. Component QueryDBConnect[1,1]
Type Connector
Constraints TimeConstraint = 5s
Composed of /
Uses /

13. Component FaultDetectionEngineAlarmManagerConnect[1,1]
Type Connector
Constraints Maintain[FaultTolerantCommunication(PRECON,ALARM)]

Secure
TimeConstraint = 1s

Composed of /
Uses /

14. Component AlarmManager[1,1]
Type Processing
Constraints AlarmRaisedWhenFaultInformationTransmitted

FaultInformationTransmitted
AlarmStatusUpdated
AlarmNotRaisedIfFaultNotDetected

Composed of /
Uses FaultDetectionEngineAlarmManagerConnect to inter-

ract with FaultDetectionEngine UpdateDBConnect to in-
teract with UpdateManager

15. Component AlarmInformation[0,n]
Type Data
Constraints AlarmInformationStoredWhenAlarmRaised
Composed of /
Uses UpdateDBConnect to interact with UpdateManager

16. Component AlarmDiagnosis[0,n]

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 169

Type Data
Constraints DiagnosisWritten
Composed of /
Uses UpdateDBConnect to interact with UpdateManager

17. Component InteractionManager[1,1]
Type Processing
Constraints OperatorInteractionManaged
Composed of /
Uses QueryDBConnect to interact with QueryManager

18. Component QueryManager[1,1]
Type Processing
Constraints QueryAnswered

DataQueriedUponUserRequest
AlarmInformationProvidedUponUserRequest
DataAcquired

Composed of /
Uses QueryDBConnect to interact with InteractionMan-

ager

19. Component UpdateManager[1,1]
Type Processing
Constraints DataCorrectlyUpdated DataUpdatedIfConsis-

tent
Composed of /
Uses SensorConnect to interact with SensorInformation

UpdateDBConnect to interact with FaultDetectionEngine
UpdateDBConnect to interact with FaultDiagnosis
UpdateDBConnect to interact with AlarmManager
UpdateDBConnect to interact with AlarmDiagnosis

B.2 Prescriptions resulting from step 4

Definition of the new constraints

1. Constraint Achieve[SwitchInCaseOfFailure]

Informal Def : Every time a component fails (PRECON or ALARM),
the copy should take te relay

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 170

Formal Def : ∀ x:Component (x.type = PRECON ∨ x.type =
ALARM) ∧ x.Status = failure ⇒ ∃ y:Component x.type =
y.type ∧ y.Status = working ∧ ◦ (y.Work ∧ ¬ x.Work)

2. Constraint Maintain[OneActiveComponent]

Informal Def : Only one component (PRECON or ALARM)
should be working at a time

Formal Def : ∀ x:Component (x.type = PRECON ∨ x.type =
ALARM) ∧ x.Work ⇒ ¬ ∃ y:Component x.type=y.type ∧
¬ x = y ∧ y.Work

3. Constraint Maintain[NoPrecedenceRelation]

Informal Def : There is no difference in importance between
the copies. So the switch should only occur in case of a
failure

Formal Def : • ¬ x.Work ∧ x.Work ⇒ ∃ y • y.status=working
∧ y.status=failure ∧ x.type=y.type ∧ ¬ x = y ∧ x ≡ y

4. Constraint Achieve[TransparencyOfSwitching]

Informal Def : A failure of PRECON or ALARM should not
affect the other. The other should continue to work fine

Formal Def : ∃ x:Component • x.Status = working ∧ x.Status=failure
⇒ (∀ y:Component x.type 6= y.type ∧ • y.Satus=working ⇒
y.Status =woking)

Prescriptions of the modified components

The modifications are highlighted in bold.

1. Component FaultDetectionEngine[2,2]
Type Processing
Constraints CalculationDone

FaultDetectedWhenCalculationDone
FaultStatusUpdated
CheckPerformedWhenDataAcquired
ReportWrittenWhenCheckPerformed

Composed of /
Uses SensorConnect to interract with SensorInformation

FaultDetectionEngineAlarmManagerConnect to interract with
AlarmManager
UpdateDBConnect to interact with UpdateManager

APPENDIX B. ARCHITECTURAL PRESCRIPTIONS 171

2. Component AlarmManager[2,2]

Type Processing
Constraints AlarmRaisedWhenFaultInformationTransmitted

FaultInformationTransmitted
AlarmStatusUpdated
AlarmNotRaisedIfFaultNotDetected

Composed of /
Uses FaultDetectionEngineAlarmManagerConnect to interract

with FaultDetectionEngine UpdateDBConnect to interact with
UpdateManager

3. Component FaultDetectionEngineAlarmManagerConnect[1,1]

Type Connector
Constraints Maintain[FaultTolerantCommunication(PRECON,ALARM)]

Secure
TimeConstraint = 1s
Achieve[SwitchInCaseOfFailure]
Maintain[OneActiveComponent]
Maintain[NoPrecedenceRelation]
Achieve[TransparencyOfSwitching]

Composed of /
Uses /

Appendix C

Wright Specifications

C.1 The Fault-Tolerant Communication Pattern

C.1.1 Initial Wright Specification

component PRECON

port AcquisitionInput = receive?si → AcquisitionInput

port ALARMOutput = ALARMOutput.Detected(f, l)

computation = Calculate [] SwitchFaultStatusOff where
Calculate = AcquisitionInput.receive?si → calculationDone

DetecFault =

 ALARMOutput.Detected(f, l)
→ SwitchFaultStatusOn when Occurs(f, l)
computation when¬Occurs(f, l)

SwitchFaultStatusOn =

FaultStatusOn
→ computation when FaultStatusOff
computation when FaultStatusOn

SwitchFaultStatusOff =

FaultStatusOff
→ computation when FaultStatusOn

∧ ¬Occurs(f)

component ALARM

port PRECONInput = Detected(f,l) → request!f → receive?fi →
PRECONInput

computation = RaiseAlarm [] SwitchAlarmStatusOff where
RaiseAlarm = PRECONInput.receive?fi→ Raise(fi,a)→ SwitchAlarm-
StatusOff

172

APPENDIX C. WRIGHT SPECIFICATIONS 173

SwitchAlarmStatusOn =

AlarmStatusOn
→ computation when AlarmStatusOff
computation when AlarmStatusOn

SwitchAlarmStatusOff =

AlarmStatusOff
→ computation when AlarmStatusOn

∧¬Raise(fi, a)

constraints ∀ fi:FaultInformation, ∃ !a:Alarm
Transmitted(fi,PRECON,ALARM) ⇒ ♦≤1s Raise(fi,a)

connector Pull-Dataflow

role Producer = dataReady → Producer
[] request?x → send!x → Producer u §

role Consumer = dataReady → request!x → receive?x → Consumer
[] §

glue = Producer.dataReady→ Consumer.dataReady → Consumer.request!x
→ Producer.request?x→ Producer.send!x→ Consumer.reveive?x
→ glue [] §

instances Precon: PRECON
Alarm: ALARM
Precon2Alarm: PullDataflow

attachements Precon.ALARMOutput as Precon2Alarm.Producer
Alarm.PRECONInput as Precon2Alarm.Consumer

C.1.2 Resulting Wright Specification

component PRECON

port AcquisitionInput = receive?si → AcquisitionInput

port ALARMOutput = ALARMOutput.Detected(f, l)

port Copylink=
{

isAlive → ImAlive → Copylink
[] reset → sleep → wakeUp → Copylink

computation =

compute
[] reset → sleep → wakeUp → computation
[] Copylink.isAlive → Copylink.ImAlive → computation where

compute = Calculate [] SwitchFaultStatusOff
Calculate = AcquisitionInput.receive?si → calculationDone

APPENDIX C. WRIGHT SPECIFICATIONS 174

DetecFault =

 ALARMOutput.Detected(f, l)
→ SwitchFaultStatusOn when Occurs(f, l)
computation when¬Occurs(f, l)

SwitchFaultStatusOn =

FaultStatusOn
→ computation when FaultStatusOff
computation when FaultStatusOn

SwitchFaultStatusOff =

FaultStatusOff
→ computation when FaultStatusOn

∧ ¬Occurs(f)

component ALARM

port PRECONInput = Detected(f,l) → request!f → receive?fi →
PRECONInput

port Copylink=
{

isAlive → ImAlive → Copylink
[] reset → sleep → wakeUp → Copylink

computation =

compute
[] reset → sleep → wakeUp → computation
[] Copylink.isAlive → Copylink.ImAlive → computation where

compute= RaiseAlarm [] SwitchAlarmStatusOff
RaiseAlarm = PRECONInput.receive?fi→ Raise(fi,a)→ SwitchAlarm-
StatusOff

SwitchAlarmStatusOn =

AlarmStatusOn
→ computation when AlarmStatusOff
computation when AlarmStatusOn

SwitchAlarmStatusOff =

AlarmStatusOff
→ computation when AlarmStatusOn

∧¬Raise(fi, a)

constraints ∀ fi:FaultInformation, ∃ !a:Alarm
Transmitted(fi,PRECON,ALARM) ⇒ ♦≤1s Raise(fi,a)

connector Pull-Dataflow

role ProducerCopy1 = dataReady → Producer
[] request?x → send!x → Producer u §

role ProducerCopy2 = dataReady → Producer
[] request?x → send!x → Producer u §

role ConsumerCopy1 = dataReady→ request!x→ receive?x→ Con-
sumer [] §

APPENDIX C. WRIGHT SPECIFICATIONS 175

role ConsumerCopy2 = dataReady→ request!x→ receive?x→ Con-
sumer [] §

glue =

ProducerCopy1.dataReady[]ProducerCopy2.dataReady

→ (ConsumerCopy1.dataReady ‖ ConsumerCopy2.dataReady)
→ (ConsumerCopy1.request!x [] ConsumerCopy2.request!x)
→ (ProducerCopy1.request?x ‖ ProducerCopy2.request?x)
→ (ProducerCopy1.send!x [] ProducerCopy2.send!x)
→ (ConsumerCopy1.reveive?x ‖ ConsumerCopy2.reveive?x)
→ glue [] §

connector copyConnect

role Copy1,2

glue = Copy1

Copy1 = Copy1.isAlive →
{

Copy1 when Copy1.ImAlive within t s
Copy1Failure when ¬Copy1.ImAlive within t s

Copy2 = Copy2.isAlive →
{

Copy2 when Copy2.ImAlive within t s
Copy2Failure when ¬Copy2.ImAlive within t s

Copy1Failure =
{

Copy1.reset → Copy2.wakeUp

→ Copy1.sleep → Copy2

Copy2Failure =
{

Copy2.reset → Copy1.wakeUp

→ Copy2.sleep → Copy1

instances Precon1, Precon2: PRECON
Alarm1, Alarm2: ALARM
Precon2Alarm: PullDataflow
Alam2Alarm, Precon2Precon: copyConnect

attachements Precon1.ALARMOutput as Precon2Alarm.ProducerCopy1

Precon2.ALARMOutput as Precon2Alarm.ProducerCopy2

Precon1.CopyLink as Precon2Precon.Copy1

Precon2.CopyLink as Precon2Precon.Copy2

Alarm1.PRECONInput as Precon2Alarm.ConsumerCopy1

Alarm2.PRECONInput as Precon2Alarm.ConsumerCopy2

Alarm1.CopyLink as Alarm2Alam.Copy1

Alarm2.CopyLink as Alarm2Alam.Copy2

APPENDIX C. WRIGHT SPECIFICATIONS 176

C.2 The Observer Pattern

C.2.1 Initial Wright Specification

component Acquisition Unit

port ToIMS = transmitted!si → ToIMS
port FromIMS = receive?si → FromIMS
computation = (AcquireAnalog [] AcquireDigital) [] Update where

AcquireAnalog =

Update(si.value)
→ ToIMS.transmitted!si
→ computation when s.value 6= si.value

∧si.Type = Analog
∧si.Status = on

AcquireDigital =

Update(si.value)
→ ToIMS.transmitted!si
→ computation when s.value 6= si.value

∧si.Type = Digital
∧si.Status = on

Update = FromIMS.receive?si→ Synchronize(si)→ computation

component IMS

port ToAcquisition = transmitted!si → ToAcquisition
port FromAcquisition = receive?si → FromAcquisition

computation =
{

SwitchSensorOff [] SwitchSensorOn
[]V alidateData [] UnV alidateData[]Update where

SwitchSensorOff =

TurnOff(s) → Update(si.status)
→ ToAcquisition.transmitted!si when ¬s.WorkingProperly

∧s.Status = on

SwitchSensorOn =

TurnOn(s) → Update(si.status)
→ ToAcquisition.transmitted!si when s.WorkingProperly

∧s.Status = off

ValidateData=

Update(si.consistent)
→ ToAcquisition.transmitted!si when s.value /∈ PossibleRange

∧¬si.consistent

UnValidateData=

Update(si.consistent)
→ ToAcquisition.transmitted!si when s.value ∈ PossibleRange

∧si.consistent

Update = FromAcquisition.receive?si→ Synchronize(si)→ computation

APPENDIX C. WRIGHT SPECIFICATIONS 177

connector Push-Dataflow

role Producer = provide!x → Producer u §
role Consumer = retrieve?x → Consumer [] §
glue = Producer.provide!x → Consumer.retrieve?x → glue [] §

instances Acq: Acquisition Unit
Ims: IMS
Ims2Acq: PushDataflow
Acq2Ims: PushDataflow

attachements Acq.ToIMS as Acq2Ims.Producer
Ims.FromAcquisition as Acq2Ims.Consumer
Acq.FromIMS as Ims2Acq.Consumer
Ims.ToAcquisisition as Ims2Acq.Producer

C.2.2 Resulting Wright Specification

component Acquisition Unit

port SubjectLink =
{

SetState!x → SubjectLink
[] Notify → GetState!si → SendState?si → SubjectLink

computation = compute [] Update where
compute= AcquireAnalog [] AcquireDigital

AcquireAnalog =

Update(si.value)
→ SubjectLink.SetState!si
→ computation when s.value 6= si.value

∧si.Type = Analog
∧si.Status = on

AcquireDigital =

Update(si.value)
→ SubjectLink.SetState!si
→ computation when s.value 6= si.value

∧si.Type = Digital
∧si.Status = on

Update =

Subject.Notify → Subject.GetState!x
→ Subject.SendState?y → SynchronizeV alue
→ computation

component IMS

APPENDIX C. WRIGHT SPECIFICATIONS 178

port SubjectLink =
{

SetState!x → SubjectLink
[] Notify → GetState!si → SendState?si → SubjectLink

computation = compute [] Update where

compute =
{

SwitchSensorOff [] SwitchSensorOn
[]V alidateData [] UnV alidateData

SwitchSensorOff =

TurnOff(s) → Update(si.status)
→ SubjectLink.SetState!si when ¬s.WorkingProperly

∧s.Status = on

SwitchSensorOn =

TurnOn(s) → Update(si.status)
→ SubjectLink.SetState!si when s.WorkingProperly

∧s.Status = off

ValidateData=

Update(si.consistent)
→ SubjectLink.SetState!si when s.value /∈ PossibleRange

∧¬si.consistent

UnValidateData=

Update(si.consistent)
→ SubjectLink.SetState!si when s.value ∈ PossibleRange

∧si.consistent

Update =

Subject.Notify → Subject.GetState!x
→ Subject.SendState?y → SynchronizeV alue
→ computation

component Subject

port Observer1,2Link =
{

SetState?x → Notify → Observer1,2Link
[] GetState?x → SendState!y → Observer1,2Link

computation = SetState → Notify [] GetState where
SetState=(Observer1.SetState?x [] Observer2.SetState?x)
Notify = (Observer1.Notify ‖Observer2.Notify)→ computation

GetState =

(Observer1.GetState?x → Observer1.SendState!y
→ computation)
[](Observer2.GetState?x → Observer2.SendState!y
→ computation

connector Observer-Subject Link

role Observer =
{

SetState!x → Observer
[] Notify → GetState!x → SendState?y → Observer

role Subject =
{

SetState?x → Notify → Subject
[] GetState?x → SendState!y → Subject

APPENDIX C. WRIGHT SPECIFICATIONS 179

glue =

Observer.SetState!x
→ Subject.SetState?x → Notify where
[]Notify

Notify =

Subject.Notify → Observer.Notify

→ Observer.GetState!x → Subject.GetState?x
→ Subject.SendState!y → Observer.SendState?y → glue

instances Acq: Acquisition Unit
Ims: IMS
SensorInformation : Subject
Ims2SensorInformation: Observer-Subject Link
Acq2SensorInformation: Observer-Subject Link

attachements Acq.SubjectLink as Acq2SensorInformation.Observer
SensorInformation.Observer1Link as Acq2SensorInformation.Subject
Ims.SubjectLink as Ims2SensorInformation.Observer
SensorInformation.Observer2Link as Ims2SensorInformation.Subject

	Introduction
	Background
	Goal-oriented Requirements Engineering
	Introduction
	KAOS: A Goal-Oriented Requirement Engineering Method

	Architecture Description Languages
	Software Architecture
	ADLs

	From System Goals to Software Architecture
	The KAOS Method
	The Preskriptor Process

	Architecture derivation for a Power Plant Supervisory System
	Informal Description of the Problem
	Requirements Analysis
	Requirements Elaboration
	Obstacle Analysis

	Architecture Derivation
	Using the KAOS Method
	Using the Preskriptor Process
	Comparing the Resulting Architectures

	Discussion
	Evaluating the Methods
	Opportunities for Improvements
	Comparing the Methods

	Toward More Precise Architecture Derivation
	Wright
	Deriving Architectures in Wright
	Integration within the KAOS method
	Structure
	Behavior
	Elaboration of Scenarios

	Application to the Power Plant System
	Making Architectural Patterns Further Precise
	The Fault-Tolerant Communication Pattern
	The Observer Pattern

	Discussion

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	KAOS Specifications
	Goal specifications
	Functional goals
	Non-functional goals

	Object Specifications
	Agents Specifications
	Operations specifications
	Modifications resulting from the obstacle analysis

	Architectural Prescriptions
	Initial Prescriptions
	Prescriptions resulting from step 4

	Wright Specifications
	The Fault-Tolerant Communication Pattern
	Initial Wright Specification
	Resulting Wright Specification

	The Observer Pattern
	Initial Wright Specification
	Resulting Wright Specification

