Experience report: Deriving Architecture
Specifications from KAOS Specifications

Divya Jani
Damien Vanderveken

December 12, 2003

Contents

1 Introduction 4
2 Requirements derivation using the KAOS method 5
2.1 Goal Model 5
2.1.1 Goal model elaboration)
2.1.2 Goal model characteristics 6
2.2 Object Model 8
2.2.1 Object Model Elicitation 8
2.2.2 Object Model Characteristics 8
2.3 Agent Model 9
2.3.1 Agent Model Elaboration 9
2.3.2 Agent Model characteristics 9
24 Operation Model o L 10
2.4.1 Operation Model Elaboration 10
2.4.2 Operation Model Characteristics 11
3 Architecture derivation 13
3.1 First method: Axel van Lamsweerde 13

3.1.1 Step 1: From software specifications to abstract dataflow
architectures Lo 13

3.1.2 Step 2: Style-based architectural refinement to meet ar-
chitectural constraints 14

3.1.3 Step 3: Pattern-based architecture refinement to achieve
non-functional requirements 15
3.2 Second method: Dewayne Perry and Manuel Brandozzi 16
321 Firststep 17
3.22 Secondstep 17
323 Thirdstep. 18
3.2.4 achieving non-functional requirements 20
3.25 Boxdiagramo 20
3.3 Problems and Issues 20
3.3.1 Architecture 1 oL 21
3.3.2 Architecture 2o 22
3.4 Comparison between the two methods 24

Conclusion

KAOS specifications

A.1 Goal specifications Lo oo
A.2 Object Specifications o o oo
A.3 Agents Specifications L
A4 Operations specifications oL

B Architecture description: method 1

C Architecture description: method 2

C.1 Architecture Prescriptions L.

C.2 Additional constraints on the system

C.2.1 Constraints on the Database
C.2.2 Constraints on the connector between ALARM & PRE-
CON (i.e., FaultDetectionEngineAlarmManagerConnect)

25

28
28
39
44
48

56

60
60
65
65

65

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5

Al
A2
A3

B.1
B.2
B.3

C.1
C.2

Milestone refinement pattern 6
Communication refinement subtree 7
Bounded achieve operationalization pattern 10
Immediate achieve operationalization pattern 11
Centralized communication architectural style 14
Fault-tolerant refinement pattern 15
Consistency maintainer refinement pattern 16
Interoperability refinement pattern 21
Fault-tolerant refinement pattern 22
Goal diagram oL 29
Object diagram 40
Agent diagram oL 45
Step 1: dataflow architecture 57
Step 2: style-based refined architecture 58
Step 3: pattern-based refined architecture 59
Component refinment tree 0oL 61
Box diagram of the architecture 66

Chapter 1

Introduction

The most difficult step in the design process of a system is clearly the transition
from the requirements to the architecture. Requirements obtained from the
various stakeholders are transformed to an architecture that can be understood
by developers. There are several different ways to derive an architecture and
two of those ways are explored here.

The system we used throughout this report was a power plant that was
obtained from [4, 5]. Our first step was to create a goal-oriented requirement
specifications from the information available. The KAOS requirement specifi-
cation language is used [9, 7, 6]. The power plant description was not complete
so we often had to do with inadequate data.

The first method used was developed by Axel van Lamsweerde (University
of Louvain - Belgium) and is described in [10]. The various steps are explained
in detail in one of the following sections of this report. We have also described
some of the problems encountered during the derivation process.

The second method results from the work of Dewayne Perry and Manuel
Brandozzi (University of Texas at Austin). Their work is presented in [2, 3, 1].
The resulting architecture and some of the derivation issues are described in the
report.

After obtaining both architectures we have attempted to compare them and
suggest some further work.

Chapter 2

Requirements derivation
using the KAOS method

2.1 Goal Model

2.1.1 Goal model elaboration

Given the fact KAOS is a goal-oriented requirement specification method we
logically began by trying to extract the goals of the system. A definition of the
system was implicitly given in [4]. However the description of the powerplant
monitoring system provided was partial and lacked details. So, throughout the
requirement extraction process, we had to rely on our engineering skills, on pro-
fessor Perry’s advices and on our common sense in order to gather requirements
as realistic as possible.

The following steps were followed in order to build the goal model. First of
all, the informal definition of goals that are mentioned in [4] were carefully writ-
ten down. From that, a first goal refinement tree was built. This first draft was
all but complete. This tree was completed thanks to a refinement/abstraction
process. The version we obtained at that point was still totally informal. Tem-
poral first-order logic [8] was then used to remove this weakness. It enabled us
to ensure our refinement tree was correct, complete and coherent. The use of
refinement patterns as described in [9] served as a guidance. The milestone-
driven pattern in particular was applied numerous times. It prescribes that
some milestone states are mandatory in order to reach the final one. This pat-
tern is presented in fig 2.1. The patterns were a great help to track and correct
incompleteness and incoherence. Furthermore they enabled us to save a huge
amount of time by freeing us to do the tedious proof work.

Because of the iterative nature of the requirements gathering process, the
goal model underwent subsequent changes. The reasons for that were vari-
ous,e.g., coherence between the different models forming the KAOS specifica-
tions, enhancements, simplifications,etc.

A=W S M=eT

Figure 2.1: Milestone refinement pattern

2.1.2 Goal model characteristics

The goal refinement tree is globally structured in two parts. This shape reflects
the two main goals the system has to ensure to monitor the powerplant. The
occuring faults have to be detected and the alarms resulting from those faults
have to be managed. The roots of the two resulting subtrees are respectively
FaultDetected and AlarmCorrecltyManaged. They are subsequently refined us-
ing the various patterns until the leaf goals are assignable to a single agent -
from the environment or part of the software.

As an illustration of the use of the milestone refinement pattern — the most
widely used — the following example will be developed. Let’s consider the goal
AlarmRaisedIfFaultDetected with its formal definition

(Vf : Fault,3! : Location, 3'a : Alarm) (Detected(f,1) = ORaise(f,a)) (2.1)

This goal is refined using the milestone refinement pattern presented in fig
2.1 by instanciating the parameters as follows:

A : (Yf: Fault,31 : Location) (Detected(f,1)) (2.2)
M (Elfz' : FaultInformation) (f = fi A Transmitted(fi, PRECON, ALAR(]BZZ))
T : (Yfi:FaultInformation,3la : Alarm)(Raised(fi,a)) (2.4)

The application of that pattern in particular results here from the fact that
the information concerning the detected faults has to be transmitted to the
ALARM to enable it to raise the proper alarm. This intermediate state is a
necessary step to reach the final state, i.e., the raising of the alarm.

In order to have a system as robust as possible various goals have been
added to the goal diagram. Among these a first class takes care of the cor-
rect working of all the sensors and ensures the data provided is consistent and
coherent. The goals SanityCheckPerformed and ConsistencyCheckPerformed
belong to this class. The second category — represented by the goal DataCor-
rectlyUpdata — makes sure the updates are well performed by the database. The
purpose of some goals is to maintain the powerplant in a consistent state (e.g.,

FaultStatusUpdated, AlarmStatusUpdated). The communication has also been
constrained in order to prevent any transmission problems.

The refinement of the goal DataTransmitted ToDB is the result of that policy.
The goal was refined as shown in Fig. 2.2

/éataTransmittedToD?/

/NoDataIntroduced// NoDataLost // SequencePreserved //DataTransmittedInTim¥

Figure 2.2: Communication refinement subtree

The three first subgoals ensure the corectness of the transmission while the
last one sets a time limit. This constraint varies througout the system depending
on the importance of the communication channel. The FaultInformation has
to be transmitted from PRECON to ALARM within 1 second while answer a
request can take a little longer — 5 seconds. The three first subgoals have been
formally refined as followed ':

NoDatalIntroduced : (Y : Data)(Transmitted(X,_,) Az € Transmitted(_) = z € X)))
NoDataLost : (Vx:Data)(x € X A Transmitted(X,_,_) = « € Transmitted(-)))
SequencePreserved (Va:, y : Data,3u,v : Data) (m, y € X ATransmitted(X, -,) A Before(z,2X)
= u,v € Transmitted(X) A Be fore(u,v, Transmitted(X)) A&z = u A y <)

They prescribe that no alteration has occured on the data transmitted,i.e.,
no data has been introduced or lost and the sequential order has been preserved.

The formal definition of the last subgoal depends on the time constraint. If
we consider for example the transmission of a FaultInformation — which has the
strongest time constraint — the formalization is:

DataTransmittedWithinTimeConstraint : —Transmitted(fi, PRECON,ALARM) (2.9)
= O<1sTransmitted(fi, PRECON, ALARALD)

IX stands for SensorInformation, FaultInformation, AlarmInformation, FaultDiagnosis
and AlarmDiagnosis

2.2 Object Model

2.2.1 Object Model Elicitation

Entities present in the objects were first derived from the informal definition of
the goals. All the concepts of importance were modelized either under the form
of an object or of a relationship. Attributes were then added to the different
entities in order to characterize them. Some of the attributes were extracted
from the problem definition but most of them just reflect a necessity. This
necessity arises from two main reasons.

First certain goal definitions need the presence of specific attributes. For
example the attribute WorkCorrectly of Sensor was needed by the goal Sanity-
CheckPerformed.

Second the definition of the properties of the various entities — expressed by
invariants — requires specific attributes. As an illustration consider the following
invariant of the object Alarm which expresses that all the alarms still active
cannot have a deactivation time:

Activated = true = DeactivationT'ime = null (2.11)

The purpose of certain attributes is to prepare for change. The reconfigura-
tion function was finally not taken into account in the elaboration of the different
models due to lack of time. However we believe that basically the only effect
will be to modify the allowed range of temperature and pressure. Attributes
representing the minimum, the maximum and desired value of both pressure
and temperature were consequently added to the objects SteamCondenser and
CoolingCircuit.

Last, a few attributes were just added in order to build a more complete
model. The justification was just common sense. Among these are the attributes
Type and Power of the object PowerPlant.

The last step of the elaboration of the goal model was the formalization
of the domain invariants characterizing the differents entities. The model was
refined many times due to the iterative nature of the requirement extraction
process.

2.2.2 Object Model Characteristics

The main characteristic of the model is the presence of two different levels
of representations for the concepts Sensor, Fault and Alarm. The first level
refers to the object in itself while the second one refers to its representation
in the software. This distinction was introduced for robustness reasons. In
fact it enables us to manage the case where the representation of the object
is not correct which would be unfortunate but can happen. The two levels
are constrained by an invariant prescribing that all the attributes have to be
identical.

The representation of the three main concepts — Sensor, Fault and Alarm
— are linked together by a diagnosis relationship. The information provided by

the sensor permits the detection of the faults and the description of a fault is
the rationale for the raising of an alarm. Consequently the relationship Fault-
Diagnosis links SensorInformation and FaultInformation while AlarmDiagnosis
links FaultInformation and AlarmInformation. Those two relationships are one-
one. It is a modelization choice. We chose that a fault is the result of one and
only one error detected by one sensor and that each fault raises one and only
one alarm. The reason for that is the resulting simplicity and the easiness of
traceability.

2.3 Agent Model

2.3.1 Agent Model Elaboration

The definition of the agents was extracted mostly from [4, 5]. We drew inspira-
tion from the existing agents. Each leaf goal from the Goal Model was assigned
to one of the agents. We made sure that every agent has the capacity to assume
the responsibility of the goal. By capacity we mean that every agent could
monitor or control, depending on the case, every single variable appearing in
the formal definition of a goal the agent has to ensure. For further details please
refer to [6].

However a new agent was introduced : the MANAGEMENT UNIT. Its purpose is
to ensure that all the sensors are working properly. It was added in a robustness
concern.

Finally the operations needed to operationalize the differents goals were
assigned to the responsible agent. This step will be explained later in the Op-
eration Model section.

2.3.2 Agent Model characteristics

As it was already said, most of the agents come from the existing system. This
is the case for PRECON, ALARM, COMM, DB and Sensor. The name used in [4] may
be different but basically the functions performed are the same.

PRECON is in charge of the detection of all the faults that might occur ei-
ther in the cooling circuit or in the steam condenser. ALARM takes care of the
alarm management. COMM ensures the reliability and the performance of all
the communcication throughout the system. DB stores all the data persistently
and answers all the request concerning current values of the sensors, faults and
alarms. The Sensor agent acquires the data from the field.

The additional agent — MANAGEMENT UNIT — has to check the sensors to see
if they work properly.

The agents belong to two different categories; they can be either part of the
sofware-to-be or part of the environment. For example, PRECON belongs to the
first class while Sensor belongs to the second one. This distinction in agents
results also in a goal differentiation. In fact the goals assigned to environment
agent are expectations while the others are requirements. This leads us to the in-

troduction of the MANAGEMENT UNIT agent. Sensor is an environment agent and
so all the goals assigned to it are expectations. But obviously we canot assume
that the goals SanityCheckPerformed and ConsistencyCheckPerformed will
be true without the intervention of a reliable software device. Moreover those
kind of tests should not be the responsibitlity of the Sensor from a conceptual
point of view.

2.4 Operation Model

2.4.1 Operation Model Elaboration

The operation model was the the last one to be constructed because it relies on
a precise formal definition of the goals in order to be derived automatically. The
operations contained in the model were derived in such a way that they oper-
ationalize some goal present in the goal model. A complete operationalization
of a goal is a set of operations (described by their pre-, trigger- and postcondi-
tions) that guarantee the satisfaction of that goal if the operations are applied.
That is where all the difficulty lies: finding complete operationalizations. We
did an extensive use of the operationalization patterns described in [7] in order
to derive complete operation specifications. It enabled us to save a lot of time
on proofs. It is even more true than for the goal refinement pattern because we
found the application of the operationalization very systematic.

Two patterns were in particular useful and we used them numerous times.
The first one is the bounded achieve pattern described in Fig. 2.3. Its appli-
cabilty condition (i.e., C' = O<4T') makes it very popular. In fact most of our
system’s goals have that form. The operation specification prescribes that =7
becomes 7" as soon as C A—T holds for d—1 time units. It is then straightforward
to see that such a specification operationalizes the goal C' = Q<47 .

Operation Op

DomPre —T

DomPostT

ReqTrig for RootGoal:
=T S=d-1 :{:- M= T:

Figure 2.3: Bounded achieve operationalization pattern

The second most useful pattern was the immediate achieve pattern described
in Fig. 2.4. Its applicability condition prescribes here that the final state T has
to be reached as soon as C becomes true. In this case it is a bit more difficult
to see why the satisfaction of the two operations guarantee the satisfaction of

10

the goal. We will give a short intuition explaining why but the interested reader
can find a complete proof in [7]. The first operation prescribes that as soon C
becomes true the operation must be applied if =7 holds in order to reach the
final state T'. The second operation may be applied when C' does not hold if
the precondition 7' is true, making the postcondition =7 true.

Operation Cp1 Operation Op2

DomPre—T DomPre T
DomPost T DomPost =T
ReqTrig for RootGoal: ReqPre for RootGoal:

[- C

Figure 2.4: Immediate achieve operationalization pattern

Once all the operations were derived the were assigned to the agent respon-
sible for the goal operationalized by those operations.

2.4.2 Operation Model Characteristics

We will presented in this section an illustration of the two operationalization
patterns mentionned in the previous section.

For the first pattern, we will examine the operationalization of the goal
FaultInformationTransmittedWhenFaultDetected. Its formal defintion is
given by

(Vf : Fault,3! : Location, ! fi : FaultInformation)
(Detected(f,1) A f.ID = fi.ID = O<isTransmitted(fi, PRECON, ALARM)
We can instantiate the pattern presented in Fig 2.3 with the following pa-
rameters.

C : Detected(f,1)A f.ID = fi.ID (2.12)
T : Transmitted(fi, PRECON, ALARM) (2.13)

The operation resulting from the application of the pattern is:
Operation TransmitFaultInformation
DomPre - Transmitted(fi, PRECON,ALARM)
DomPost Transmitted(fi, PRECON,ALARM)

ReqTrig for FaultInformationTransmittedWhenFaultDetected
- Transmitted (i, PRECON,ALARM) S—1ms Detected(f,l) A f£ID=f.ID A
- Transmitted (fi, PRECON,ALARM)

11

Note that as d — 1 time units makes here zero we simply took a smaller time
unit.

To illustrate the second pattern consider the goal SanityCheckPerformed
whose formal defintion is given by

(Vs : Sensor)
(—ls.workingProperly A s.status =' on' = os.status =' off’)
The instantiation of the immediate achieve pattern presented in Fig. 2.4 is
straightforward.

C : =sworkingProperly A s.status =" on’ (2.14)
T : s.status="off’ (2.15)

The first operation derived thanks to application of the pattern is

Operation SwitchSensorOff
DomPre s.status=’on’
DomPost s.status=’off’

ReqTrig for SanityCheckPerformed
- s.workingProperly

and the second one is
Operation SwitchSensorOn
DomPre s.status=’off’
DomPost s.status=’on’

ReqPre for SanityCheckPerformed
s.workingProperly

12

Chapter 3

Architecture derivation

3.1 First method: Axel van Lamsweerde

The architecture derived in this section will be derived using the method devel-
opped by Axel van Lamsweerde in [10]. The method prescribes the use of three
different steps. The first step consists of the derivation of a abstract dataflow
architecture from the KAOS specifications. This first draft is next refined using
style in order to meet architecturals constraints. The architecture obtained is fi-
nally refined using design patterns so as to achieve non-functional requirements.
One section will be devoted to each step. After that the issues encountered will
be discussed.

3.1.1 Step 1: From software specifications to abstract dataflow
architectures

The first architecture is obtained from data dependencies between the different
agents. The agents become software components while the data dependencies
are modelized via dataflow connector. The procedure followed is divided into
two sub-steps.

1. Each agent that assumes the responsibility of a goal assigned to the
software-to-be becomes a software component together with its operations.

2. For each pair of components C1 and C2, drive a dataflow connector be-
tween C1 and C2 if

DataFlow(d,C1,C2) & Controls(C1,d) A Monitors(C2,d) (3.1

This step is very systematic. The result is shown in Fig. B.1.

One can note certain features. Due to the fact that the COMM agent does not
control any variables no arrow comes from it. In fact COMM carries all the data
among the different components but does not do any modifications. Moreover

13

there is a dataflow connector between PRECON and ALARM while the real dataflow
goes through COMM. This situation also happen between Sensor and Precon. The
real dataflow pass through DB but there is no dataflow derived.

We believe that the underlying cause is the presence of low-level agents — DB
and COMM — performing low-level functionalities — storage and transmission of
data respectively — in the requirements. They were however needed to achieve
certain goals. It results from that a strange architecture.

3.1.2 Step 2: Style-based architectural refinement to meet
architectural constraints

In this step, the architectural draft obtained from step 1 is refine by imposing a
“suitable” style, that is, a style whose underlying goal match the architectural
constraint. The main architectural constraint of our system [4], [5] is that all the
components should be distributed. In fact, in the real system, only PRECON had
to be built and it has to integrate in a pre-existing architecture characterized
by centralized communications and by distributed components.

The only transformation rule mentionned in [10] did not match our architec-
tectural constraints so we had to design a new one considering what we thought
we should obtain. The resulting transformations rule is shown in Fig. 3.1.

CentralizedCommunicationVia (C)

‘hasTheResponsabitlyOf Distributed(C1,C2)

h |

/ Transmitted(d,C1,C2) /

d d
C1l C c2

Figure 3.1: Centralized communication architectural style

This style was applied on our architectural draft and the result is shown in

14

Fig. B.2

As you can see, the architecture looks now closer to what we expected. Every
single communication is achieved in a centralized way through the communica-
tion module. The architectural constraints are now met.

3.1.3 Step 3: Pattern-based architecture refinement to
achieve non-functional requirements

Th purpose of this last step is to refine further the architecture in order to
achieve the non-functionnal requirements. Those can belong to two different
categories; they can be either quality-of-service or developemnt goals. Quality-
of-service goals include, among others, security, accuracy an usability. Develop-
ment goals encompass desirable qualities of software such as MinimumCoupling,
MazimumCohesion and reusabilty.

This step refines the architecture in a more local way than the previous one.
Patterns are used instead of styles. The procedure to follow could be divided
further into two intermediary steps.

1. for each NFG @, identify all the connectors and components G may con-
strain and, if necessary, instantiate G to those connectors and constraints.

2. apply the refinement pattern matching the NFG to the constrained com-
ponents. If more than one is applicable, select one using some qualitative
technique (e.g., NFG prioritization).

Two refinement patterns were used on our system. The first one is presented
in Fig. 3.5. We wanted to have a fault-tolerant communication between PRECON
and ALARM because it is the core of the system. The most critical functions
(i.e., the fault detection and the alarm managemnet) are performed in those
two component. That’s why we wanted to make those modules as resistant
as possible to any kinds of failure. One could note than the pattern was not
applied exactly like it is defined in Fig. 3.5. The presence of the component
COMM between PRECON and ALARM was however ignored because we believed it
has no influence on the capacity of the pattern to achieve its goal.

Maintain [FaultTolerantCommunication (C1, C2)]

[Gb—da]

Figure 3.2: Fault-tolerant refinement pattern

The second refinement pattern we used is shown in Fig. 3.3. It was intro-
duced because both Sensor and Management Unit access and modify the same

15

data — SensorInformation. We wanted to make sure that all the modifications
made from both sides are consistent.

/ Maintain [AccurateData (C1, C2)] //

[Gb—da] T

O
() ConsistencyMaintainer{
(e.g.. observer)

Figure 3.3: Consistency maintainer refinement pattern

The final architecture is presented in Fig. B.3.

3.2 Second method: Dewayne Perry and Manuel
Brandozzi

The second method converts the goal oriented requirement specifications of
KAOS into architectural prescriptions.

The components in an architecture prescription can be of three different
types - process, data or connector. Processing components perform transfor-
mation the data components. The data components contain the necessary in-
formation. The connector components, which can be implemented by data or
processing components, hold the system together. All components are charac-
terized by goals that they are responsible for. The interactions and restrictions
of these components characterize the system. The following is a sample compo-
nent -

Component PRECON
Type Processing

Constraints FaultDetected
RemedyActionSuggested
Periodical ChecksPerformed&Report Written

Composed of FaultDetectionEngine
FaultInformation
FaultDiagnosis
SensorInformation
SensorConnect

Uses /

This example shows a component called PRECON. Type denotes that the
component is a processing type component. The constraints are the various

16

goals realized by PRECON. It thereby defines the constraints on the compo-
nent. Composed of illustrates the sub components that implement PRECON
in the next refinement layer. The last attribute Uses, indicated what are the
components used by this component. It also specifies the connectors used for
the interaction.

There are well defined steps to go from KAOS entities to APL entities. The
following table illustrates this relationship

KAOS entities APL entities

Agent Process component / Connector component

Event -

Entity Data component

Relationship Data component

Goal Constraint on the system / on a subset of the system

One or more additional processing, data or connector components.
In this method we create a component refinement tree for the architecture
prescription from the goal refinement tree of KAOS. This is a three step process
and may be iterated.

3.2.1 First step

In the first step we derive the basic prescription from the root goal of the system
and the knowledge of the other systems that it has to interact with. In this case
the software system is responsible for monitoring the power plant. Thus the
root goal is defined as ”PowerPlantMonitoringSystem”.

This goal is then refined into PRECON, ALARM, DataBase and Communi-
cation components. These refinements are obtained by selecting a specific level
of the goal refinement tree. If we only take the root of the goal refinement tree,
the prescription would end up being too vague. On the other hand if we pick
the leaves, we may end up with a prescription that is too constrained. Therefore
we pick a certain level of the tree which we feel allows us to create a very well
defined prescription while preventing a specification that constrains the lower
level designs.

3.2.2 Second step

Once the basic architecture is in place, we obtain potential sub components of
the basic architecture. These are obtained from the objects in KAOS specifica-
tion. We derive data, processing and connector components that can implement
PRECON, ALARM, DataBase and Communication components. If in the third
step we don’t assign any constraints to these components, they won’t be a part
of the system’s prescription.

The following are Preskriptor specifications of some candidate objects from
the requirement specifications.

Component Fault

17

Type Data
Constraints

Composed of

Component FaultInformation
Type Data
Constraints

Composed of

Component SensorConnect
Type Connector
Constraints

Composed of

Component QueryManager
Type Processing
Constraints

Composed of

Since all the components derived from KAOS’ specification are data, we
need to define various processing and connector components at this stage. At
the next step we decide which of these components would be a part of the final
prescription.

3.2.3 Third step

In this step we determine which of the sub goals are achieved by the system and
assign them to the previously defined components. With the goal refinement tree
as our reference, we decide which of the potential components of step two would
take responsibilities of the various goals. Note that this is a design decision
made by the architect based on the way he chooses to realize the system. The
components with no constraints are discarded, and we end up with the first
complete prescription of the system.

Components like Fault were discarded from the prescription because they
were not necessary to achieve the sub goals of the system. Instead of the Fault
component we chose to keep FaultInformation. Different architects may use
different approaches.

It is interesting to note that in our first iteration of the prescription Com-
munication was a leaf connector with no subcomponents. It was responsible for
realizing the necessary communication of the system. However the power plant

18

communication was not uniform throughout the system. Different goals had
different time, connection and security constraints for communication. In our
first iteration we assumed that Communication component could handle these
varying types of requirements on it. However then we realized that creating sub
components for Communication component was a step that helped illustrate
these differences. Therefore we created the sub components - UpdateDBCon-
nect, FaultDetectionEngineAlarmManagerConnect and QueryDBConnect. As
the names suggest, each of these were responsible for the communication in
different parts of the system. Therefore it was easier to illustrate the different
time and security constraints needed for each of these.
The following are the prescriptions for the sub components

Component UpdateDBConnect
Type Connector

Constraints Secure
TimeConstraint = 2 s

Composed of /
Uses /

Component QueryDBConnect
Type Connector

Constraints TimeConstraint = 5 s
Composed of /

Uses /

Component FaultDetectionEngineAlarmManagerConnect
Type Connector

Constraints Fault Tolerant
Secure
TimeConstraint = 1 s

Composed of /
Uses /

19

3.2.4 achieving non-functional requirements

An additional fourth step in the prescription design process focuses on the non
functional requirements. Goals like reusability, reliability etc can be achieved
by refining the prescription. This step is iterated till all the non domain goals
are achieved.

For this system we introduced additional constraints on the Database and
the connector between Alarm and Precon (FaultDetectionEngineAlarmMan-
agerConnect).

In case of Database an additional copy of the Database was introduced to
ensure fault tolerance. With the introduction of a copy additional issues arise.
For example, we need to ensure that if the main database recovers from a failure,
all the changes made on the second database since the failure should now be
made on the main database. Once that’s done the control should be shifted
to the main database. This an several other additional constraints were thus
defined.

As a second step, we also defined two copies of Alarm and Precon. This again
created additional constraints. For example, each time one copy of Precon fails,
the other one should take over without affecting the functioning of Alarm.

A comprehensive list of additional constraints can be found with the pre-
scription of the system.

3.2.5 Box diagram

Once the architecture was created we also added a box diagram illustrating the
various components and connectors. The component tree created as a result of
the three steps did not show how the various components are linked through
the connectors. The box diagram helps in visualizing this and thus gives a more
complete view of the architecture.

3.3 Problems and Issues

The following section provides an overview of some of the problems encountered
while working on the architecture.

There were some issues common to both architectures. Firstly neither archi-
tecture has means of addressing fault tolerance, reliability etc as architectural
constraints. The architectures are derived only from the goal oriented require-
ments, and there is a possibility that for some cases fault tolerance etc may be
introduced for architectural reasons. Neither method has a well defined way of
dealing with this. Secondly, we often had to work with inadequate information
on the functioning of the power plant. We were unable to find any information
on certain requirements like performance. Therefore performance was not in-
cluded. However in a real world power plant system performance is very critical
to the functioning.

Next we describe the problems encountered specific to each architecture.

20

3.3.1 Architecture 1

Once the requirements are finalized, the first step is to obtain an abstract
dataflow architecture. Dataflow architecture is obtained by using functional
goals assigned to software agents. The agents become architectural components
and then dataflow connectors are derived from input/output dependencies.

In the next stage architectural styles are applied. At this point there were
only a few sample styles to look at. The power plant architecture was relatively
small and we were unable to apply many of these styles to the architecture.

The third step requires the use of patterns to achieve non functional require-
ments. There were various sample patterns given, however the small size of the
power plant architecture limited the choice of patterns to apply.

An other issue with the architecture was the creation of new components
during the course of the derivation that had no operations. We also had to
create some new connectors that did not have a complete definition.

In some cases the patterns were not well documented so it was difficult to
understand their application.

On the other hand there were cases where it was required to apply two or
more patterns to the same components. It was difficult to decide how to combine
the patterns to realize this.

The following two figures show how to apply patterns to achieve interoper-
ability and fault tolerance between components. However it is difficult to see
how the patterns would be applied if say components C1 and C2 needed to
achieve both interoperability and fault tolerance. An other consideration would
be if the order in wich we apply these patterns to achieve a combination matters.
There were no clear guidelines provided to realize this.

Maintain [FaultTolerantCommunication {C1, C2)]

Figure 3.4: Interoperability refinement pattern

We were unable to find suitable patterns for some other non functional re-
quirements. The power plant architecture required certain time constraints on
different functions, however it was not possible to illustrate these time con-
straints with the architecture.

In order to achieve fault tolerance some components were made redundant
as illustrated in the pattern. It was difficult to determine which and how many
components should be redundant. There wasn’t enough information available
on the functioning of the power plant to assign higher priority to some compo-

21

Maintain [FaultTolerantCommunication (C1, C2)]

Figure 3.5: Fault-tolerant refinement pattern

nents and lower to others. The final decision was made based on the limited
information provided.

An additional problem was illustrating the need to ensure consistency be-
tween the two redundant components. The communication between the com-
ponents would change with the introduction of redundant components however
it was difficult to explain how.

Alarm component was made redundant since it was critical to ensure smooth
functioning of the power plant. However we could not define the method of
communication between the two copies of alarm, and the method used to ensure
consistency. It was also difficult to determine how the communication between
Alarm-Operator, Alarm-Communication would change with the presence of an
additional component and how this would change the current connector.

We could not determine the need for interoperability due to the lack of
detailed system information.

The final architecture obtained used a communication component to facil-
itate all communication for the system. However the communication between
components often had different features and constraints. There were hardware
connections, software connections, redundant components, different time con-
straints and different reliability constraints. It was not possible to illustrate
these differences in communication with the architecture. One possibility dis-
cussed was to define communication as a connector instead of a component.

Alternative
One alternative discussed was to obtain the dataflow architecture using objects
instead of agents.

3.3.2 Architecture 2

This method takes as input the requirement specifications in KAOS and provides
as output an architecture specification in an architectural prescription language
(APL) - Preskriptor. Creating the architecture is a three step process where in
the first step the basic prescription is derived from the root goal for the system
and the knowledge of the other systems it has to interact with. In the second
step objects in the KAOS specification are used to are used to derive components
that are potential sub components of the basic architecture. In the third step

22

an appropriate degree of refinement of the goal refinement tree is selected. At
this point the sub goals that are achieved by the system are assigned to the
sub components created in step two. This defines the basic architecture of the
system. Further refinement can then be done to achieve various non functional
properties. We were unable to find sufficient guidance on the various steps in the
process. There was no example where we could find both the complete goal tree
and the complete component tree. This would have allowed us to compare the
trees and understand better the progression required to create the architecture.
Therefore our first hurdle was the very first step. It was difficult to determine
how to start and how much to try to do in the first step. It was also difficult
to realize how much leeway was allowed for each of the steps. Some of the
questions that came up were -

e What decisions regarding the architecture are made at step 1. Do we
simply assign a root goal or do we need to anticipate the next steps and
have a basic structure thought out?

e Is it possible to have refinement where the tree had more than three levels?

e If all the sub goals (of a root goal) are realized by a component, does the
root goal (for those sub goals) still need to be assigned to a component?

e Ideally in the second step KAOS objects are used to create sub compo-
nents. However was it possible to use agents in this step also? Sensor
Management Unit was an agent that we though could be made a subcom-
ponent. However finally we used SensorInformation (which was an object)
instead.

e Is it possible for a goal (and thus constraints) to be shared between sub
components

Once the architecture was created we also added a box diagram illustrating
the various components and connectors. The component tree created as a result
of the three steps did not show how the various components are linked through
the connectors. The box diagram helps in visualizing this and thus gives a more
complete view of the architecture.

Once we obtained the component tree and the box diagram it provided us
with different views. The tree seems to indicate a hierarchy whereas the actual
structure is quite different. The box diagram helps us realize the architecture
as a network. Therefore there were different views of the system and structure
based on the way we chose to look at it.

Additionally there were some components in the architecture that had no
connectors. For example the AlarmInformation component under Alarm is a
data component with various constraints on it, however it does not have a
connector.

In the component tree and the resulting architecture there is no way to tell
the data that is being passed through a connector. This makes the architec-
ture more difficult to understand. This information is particularly critical to

23

describing the connectors. An alternative discussed for this problem was the
possibility of having data as a constraint for a connector.

We also considered ways to explore the richness of connectors. Connectors
can have different responsibilities like mediation, transformation and coordina-
tion. It would lead to a better design if we could portray this in the architecture.

3.4 Comparison between the two methods

In this section we compare the two architecture derivation methods and the
resulting architectures . The most significant difference is that the first ar-
chitecture is more low level. The components are described together with the
operations that they have to perform creating a more rigid design. The second
method uses a architecture prescription language which tends to be more high
level. This allows the designer to pick a better solution at a low level. However
at the same time it provides less guidance in getting to the solution.

The first method provides a more network type’ view showing the various
relationships and interactions between the components. The second method re-
sulted in a component tree which was more hierarchical in nature. We needed an
additional box diagram to better explain the component interaction. However
both views though different were useful.

The first method was more systematic in the beginning. There was a clearly
laid out approach for going from requirements to an architecture. The initial
steps were simple enough to consider the possibility of automation in the future.
However in the second method one of our biggest hurdles was getting past the
first step. It was difficult to determine the basic composition with which to
start. This was probably due to the high level nature of this method.

As we continued with the architecture derivation the first method got a
little more confusing. We had problems choosing the appropriate patterns, and
applying combination of patterns. There was inadequate documentation on
them to help in the process. On the other hand the second method became
more manageable once we decided on an initial design.

An interesting difference was that in the first method there were no con-
straints on the various connectors. Instead the focus was on the data that is
passed through those connectors. On the other hand, in the second method
we were able to specify various constraints for each of the connector, however
there was no way of specifying the data that is passed through. In both cases
we were unable to specify the differences possible in the nature of various types
of connectors. For example, connectors fault tolerant components may have
mediation type connectors. There was no way to specify this in either case.

As concerns non functional requirements, in the first method we applied
them by choosing the appropriate pattern. However in the second method we
created additional constraints on the components for the same.

24

Chapter 4

Conclusion

In this report we have taken a real world example of a power plant system and
systematically obtained goal-oriented requirement specifications. We have then
created two different architectures that satisfy the requirements. We analyzed
and compared the results. Both architectures provide us with different but
nonetheless useful views of the system. We hope our example contributes to
creating further well defined derivation methods making this critical step of the
system design process easier.

Some of the possible further work in the area includes using data flow and
constraints as a basis for logical description on connectors. The connectors were
not defined adequately in both architecture approaches, therefore this would be a
useful enhancement. We can also look at the kinds of non functional constraints
that might apply to data flow elements. We can further explore methods to
apply non functional requirements, and study how these requirements affect the
architecture. Non functional requirements constitute an important part of a
system and this would benefit both designs. For the first method the patterns
need to be documented better. It would also be useful to study ways to apply
combinations of patterns. For the second method it is still unclear how the non
functional requirements would transform the architecture.

25

Bibliography

[1]

2]

[4]

[5]

[6]

[7]

(8]

BRrRANDOZZI, M. From goal oriented requirements specifications to archi-
tectural prescriptions. Master’s thesis, The University of Texas at Austin,
2001.

BrANDOZZI, M., AND PERRY, D. E. Transforming goal oriented require-
ment specifications into architectural prescriptions. In STRAW 2001 - From
Software Requirements to Architectures (2001), Castro and Kramer, Eds.,
pp- 54-60.

BrANDOZZI, M., AND PERRY, D. E. Architectural prescriptions for de-
pendable systems. In ICSE 2002 - International Workshop on Architecting
Dependable Systems (Orlando, May 2002).

COEN-PORISINI, A., AND MANDRIOLI, D. Using trio for designing a corba-
based application. Concurrency: Practical and Experience 12, 10 (August
2000), 981-1015.

COEN-PORISINI, A., PRADELLA, M., Rossi, M., AND MANDRIOLI, D. A
formal approach for designing corba based applications. In ICSE 2000 -
22nd International Conference on on Software Engineering (Limerick, June
2000), ACM Press, pp. 188-197.

LETIER, E., AND VAN LAMSWEERDE, A. Agent-based tactics for goal-
oriented requirements elaboration. In ICSE 2002 - 24th International Con-
ference of Sofware Engineering (Orlando, May 2002), ACM Press, pp. 83—
93.

LETIER, E., AND VAN LAMSWEERDE, A. Deriving operational software
specifications from system goals. In F'SE-10 - 10th ACM Symposium on the
Foundations of Sofware Engineering (Charleston, November 2002), ACM
Press, pp. 119-128.

MANNA, Z., AND PNUELI, A. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, 1992, ch. 3.

MASSONET, PH., AND VAN LAMSWEERDE, A. Formal refinement patterns
for goal-driven requirements elaboration. In FSE-4 - Jth ACM Symposium

26

on the Foundations of Sofware Engineering (San Fransisco, October 1996),
ACM Press, pp. 179-190.

[10] vAN LAMSWEERDE, A. From system goals to software architecture. In
Formal Methods for Software Architectures, M. Bernardo and P. Inverardi,
Eds., vol. 2804 of Lecture Notes in Computer Science. Springer-Verlag,
2003, pp. 25—43.

27

Appendix A

KAOQOS specifications

A.1 Goal specifications

The goals are listed following a breadth-first traversal of the goal graph shown
in Fig. A.1.

PerformanceOf The PlantMonitored

Def The system must continuously monitor the performance of the plant
in order to detect faults in the steam condenser or in the cooling cir-
cuit. Moreover, it supports the operators suggesting remedy actions.

Concerns PowerPlant, SteamCondensor, CoolingCircuit

RefinedTo FaultDetected, RemedyActionSuggested WhenFaultDetected,
AlarmCorrectlyManaged

FaultDetected

Def Faults in the steam condenser and in the cooling circuit must be
detected

Concerns SteamCondensor, CoolingCircuit, Fault

AndRefines PerformanceOfThePlantMonitored

RefinedTo FaultDetectedInSteamCondensor, FaultDetectedInCooling-
Circuit

FormalDef Vf: Fault,3! : Location
Occurs(f,1) = ODetected(f,1)

RemedyActionsSuggested WhenFaultDetected

Def Remedy actions must be suggested to the operators each time a
fault is detected.

Concerns SteamCondensor, CoolingCircuit, Fault

28

sury:

pea3TusTRIIRIEG \\ [\\ - \\ S — \

sutIul
ps33TUSURIIRIE

\ penzesazgeouenbas \ \ Jy— \ \ peonpoxaurEIRAON \

/

pa3epdnA130811008 38 \\
\ perepdniTa0s100e A \ [——————

ut

|

eaeareathia

gozpeaaTusuEILEIEd \“
pauiogied \\ paxtnboy

\ sxoauphaTues

/

poxtnboy
e3eqboTRUY

r
’
i

I
I
I
I
I
i1
©3803091300 '
’
B s Gl
1
1
' poaepdn uoaITIN
! snaeas wreTy stsoubetq
powIoIIedsHORYOUSMY
paxrnboyeleqUayy
| / uel3TaIMaTOdey POWI0FIRASAOIYD
e

ue33TIN
stsouseta

pozoas
saqeTIEApeINdU)

poaepdn
snaeas aned

Ju93STSU0D
3TPo3ePdneae

PpowIoITegsHORUD proTaouINOTs
AoueasTsuop pexTnboyelea

i
|
'
-

€001pa33 TUSURILEIRd

po3epdndT3oeaIodeIEa

A

pa103SATIUSISTSIRG

suoqUOTIETNSTEDUSYM
pe30eIsaITNEL

1

/[

paxemsuyATEND \ poaTusURILATEND \

Log—

pezoagATausIsTsed

roqu

ELNEELEEL

TaeInoTEd

/[

P23993203 [NRAUSYM
P210935030N3 TNRATT 1senbawrssnuodn POS TRNWIR [YUSUM PPa33TuSURILOFUIIINES pellTUSULL
PposTERIONUTETY DEPTAOIgUOTIBMIOTUTIIETY PaI03SUCTIPUIOFUTUIRTY USUMPOS TRRUIBTY oFuIITnes \ us33TaMITodEuy 1senbsuzssnuodn
v pouzos. TeoTPOTIRG paTazENdEIEq
pebeuRl Ppe3da3edaTNEd
uot3oeIIejUIIOIRISd0 peoeIISUIRTY 3I3TPeSTRNUILTY 3TROITHBUTTO0DUT Z0SUSPUOIWEIISUT
pe3veIeaITned Ppe3veILaI TR

D33053203 [NeUSUM
pa3saBBnssuOTIovADSwS

peBeueATIoRTTODUTE TY ps3093303 TNEL

\ 99103 TUOHAE T4OULJOPOURUIOF 10d \

iagram

Goal d

Figure A.1

AndRefines PerformanceOfThePlantMonitored
UnderResponsabilityOf PRECON

o AlarmCorrectlyManaged

Def The system must raised an alarm each time a fault is detected. In
addition, it must trace and keep the state of all the alarms previously
raised.

Concerns Alarm, Fault

AndRefines PerformanceOfThePlantMonitored

RefinedTo AlarmRaisedIffFaultDetected, AlarmTraced, OperatorInter-
ractionManaged

e FaultDetectedInSteamCondenser

Def Faults in the steam condenser must be detected
Concerns SteamCondenser, Fault
AndRefines FaultDetected
RefinedTo DataQuerriedUpondUserRequest, PeriodicalChecksPerformed&RepportsWritten
FormalDef Vf: Fault
Occurs(f, SteamCondenser) = {Detected(f, SteamCondenser)
e FaultDetectedInCoolingCircuit

Def Faults in the cooling circuit must be detected
Concerns CoolingCircuit, Fault
AndRefines FaultDetected
RefinedTo DataQuerriedUpondUserRequest, PeriodicalChecksPerformed& RepportsWritten
FormalDef Vf: Fault
Occurs(f,CoolingCircuit) = {QDetected(f, CoolingCircuit)
o AlarmRaisedIffFaultDetected

Def The alarm has to be raised if and only if a fault has been detected
Concerns Alarm
AndRefines AlarmCorrectlyManaged

RefinedTo FaultInformationTransmitted WhenFaultDetected, AlarmRaised-
WhenFaultInformationTransmitted, AlarmNotRaisedIfFaultNotDetected

FormalDef Vf: Fault,3! : Location,la : Alarm
Detected(f,l) = ORaise(f,a)
AVa : Alarm,3f : Fault,3! : Location
Raise(f,a) = #Detected(f,1)

o AlarmTraced

30

Def Informations on alarms previously raised can be retrieved

Concerns Alarm

AndRefines AlarmCorrectlyManaged

RefinedTo AlarmInformationStoredWhenAlarmRaised, AlarmInforma-
tionProvidedUponUserRequest

DataQuerriedUponUserRequest

Def All the data concerning the state of the Power Plant must be pro-
vided upon operators request

Concerns

AndRefines FaultDetectedInSteamCondensor, FaultDetectedInCooling-
Circuit

RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted, Quer-
ryAnswered

FormalDef Vs: Sensor,3!si: SensorInformation
Querry(s) = QAnswer(si) A s = si

Periodical ChecksPerformed€é Report Written

Def A check must be carried out every 5 minutes in order to detect faults
and a report must be written.

Concerns

AndRefines FaultDetectedInSteamCondensor, FaultDetectedInCooling-
Circuit

RefinedTo DataAcquired, ChecksPerformedWhenDataAcquired, ReportWrit-
tenWhenChecksPerformed

FormalDef Vf: Fault,3! : Location
Occurs(f,1) = O<sminDetected(f,1)

FaultInformation Transmitted WhenFault Detected

Def Each time a Fault is detected, information on that fault has to be
transmitted to the ALARM unit

Concerns Alarm

AndRefines AlarmRaisedIffFaultDetected

UnderResponsabilityOf COMMUNICATION

FormalDef Vf: Fault,3! : Location, ! fi : FaultInformation
Detected(f,1) A f = fi = OTransmitted(fi, PRECON, ALARM)

AlarmRaised WhenFaultInformation Transmitted

Def Each time the ALARM unit receive information on a fault, an alarm
has to be raised

31

Concerns Alarm, FaultInformation

AndRefines AlarmRaisedIffFaultDetected

UnderResponsabilityOf ALARM

FormalDef Vfi: Faultinformation,3la : Alarm
Transmitted(fi, PRECON, ALARM) = QRaise(fi,a)

AlarmNotRaisedIfFaultNotDetected

Def If no fault is detected no alarm can be raised
Concerns Alarm, Fault
AndRefines AlarmRaisedIffFaultDetected
UnderResponsabilityOf ALARM
FormalDef Va: Alarm,3f : Fault, 3 : Location
Raise(f,a) = #Detected(f,1)
AlarmlInformationStored When AlarmRaised
Def Each time an alarm is raised, information on that alarm must be
kept in the DataBase.
Concerns Alarm, AlarmInformation, PowerPlant/AlarmStatus
AndRefines AlarmTraced
RefinedTo AlarmDiagnosisWritten, AlarmStatusUpdated

FormalDef Va : Alarm,3!fi: FaultInformation,lai : AlarmIn formation,3!fd :
FaultDiagnosis
Raise(fi,a)Aa = ai = QStored(ai, DB)AStored(fd, DB)AConcerns(fd, fi,ai)A
PowerPlant.AlarmStatus =" on’

AlarmlInformationProvided UponUserRequest

Def Operators should be able to retrieve informations about all the
alarms previously raised

Concerns Alarm, AlarmInformation

AndRefines AlarmTraced

RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted, Quer-
ryAnswered

FormalDef Va : Alarm,3lai : AlarmlInformation
Querry(a) = QAnswer(ai) Aa = ai

DataAcquired

Def All the data needed are acquired from the field
Concerns Sensor, SensorInformation

AndRefines DataQuerriedUponUserRequest, PeriodicalChecksPerformed

32

RefinedTo CorrectDataPersistentlyStored, QuerryTransmitted, Quer-
ryAnswered

FormalDef Vs : Sensor,3!si: SensorInformation
Querry(s) = O<aTransmitted(si, DB, PRECON) A s = si
ChecksPerformed WhenDataAcquired

Def Checks must be performed when all the data needed is available
in order to detect faults in the Steam Condenser or in the Cooling
Circuit

Concerns SensorInformation, Fault

AndRefines PeriodicalChecksPerformed

RefinedTo CalculationDone, FaultDetected WhenCalculationDone

FormalDef Vf : Fault,si: SensorInformation,l : Location
Occurs(f,1)ATransmitted(si, DB, PRECON) = O<sminDetected(f,1)
A=Occurs(f,l)NTransmitted(si, DB, PRECON) = {-Detected(f,1)

Report Written WhenChecksPerformed

Def Whether a fault is detected or not, all the results of the check must
be stored.

Concerns SensorInformation, Fault, FaultInformation

AndRefines PeriodicalChecksPerformed

RefinedTo ComputedVariablesStored, DiagnosisWritten, FaultStatusUp-
dated

FormalDef Vf : Fault,3fi : FaultInformation,3 : Location ! fd :
FaultDiagnosis, Alsi : SensorInformation Detected(f,l) = OStored(fi, DB)A
f = fi A Stored(fd, DB) A Concerns(fd, si, fi)

AlarmDiagnosis Written

Def Each time an alarm is raised, information on that alarm must be
kept in the DataBase.

Concerns Alarm, AlarmInformation, FaultInformation

AndRefines AlarmInformationStoredWhenAlarmRaised

RefinedTo AlarmDataTransmittedToDB, DataCorrectlyUpdated

FormalDef Va : Alarm,3!fi: FaultInformation,ai : AlarmIn formation,3ad :
AlarmDiagnosis
Raise(fi,a) = OStored(ai, DB) A a = ai A Concerns(ad, fi,ai) A
Stored(ad, DB)

AlarmStatus Updated
Def If there is at least one alarm raised, the AlarmStatus must be set to

on, otherwise it must be set to off.

33

Concerns Alarm, Fault, PowerPlant/AlarmStatus

AndRefines AlarmInformationStoredWhenAlarmRaised

UnderResponsabilityOf ALARM

FormalDef Va : Alarm,3!fi: FaultInformation
Raise(fi,a) = oPowerPlant.AlarmStatus =" on’

o DataTransmittedToDB

Def Each time an alarm is raised, corresponding information must be
transmitted to the DataBase

Concerns Alarm, AlarmInformation, FaultInformation

AndRefines AlarmInformationStoredWhenAlarmRaised

RefinedTo NoDataLost, NoDatalntroduce, SequencePreserved, Data-
Transmitted WithinTimeConstraints

UnderResponsabilityOf COMMUNICATION

FormalDef Va : Alarm,3!fi: FaultInformation,dlai : AlarmlIn formation,dlad :
AlarmDiagnosis
Raise(fi,a)Aa = ai = OTransmitted(ai, ALARM, DB)ATransmitted(ad, ALARM, DB)A
Concerns(ad, fi,at)

e DataCorrectlyUpdated
Def Each time alarm information is transmitted to the DataBase, this
information has to be stored
Concerns AlarmInformation, DataBase
AndRefines AlarmInformationStoredWhenAlarmRaised
UnderResponsabilityOf DB

FormalDef Vai: AlarmInformation,ad : AlarmDiagnosis
Transmitted(ai, ALARM,DB) = ¢Stored(ai, DB)
Transmitted(ad, ALARM, DB) = {Stored(ad, DB)

o QueryTransmitted

Def Each time the operator queries informations on an alarm, the query
has to be transmitted to the DataBase
Concerns Alarm, AlarmInformation
AndRefines AlarmInformationProvidedUponUserRequest
UnderResponsabilityOf COMMUNICATION
FormalDef Va: Alarm
Querry(a) = Transmitted(a, ALARM,DB)

e CorrectDataPersistentlyStored

34

Def All the data of the system (reports resulting from checks, alarm
information, status of the I/O devices, values of the sensors,etc.)
must be stored persistently)

Concerns AlarmInformation, FaultInformation, SensorInformation
AndRefines DataAcquired, AlarmInformationProvidedUponUserRequest

RefinedTo DataAcquiredFromTheField, Consistency CheckPerformed, DataUp-
datedWhenAcquired, ComputedVariablesStored, DiagnosisWritten,
I/OStatusUpdated, AlarmInformationStored WhenAlarmRaised

FormalDef Vsi: SensorInformation, fi : FaultInformation,ai: AlarmInformation, fd :
FaultDiagnosis,ad : AlarmDiagnosis
Stored(si, DB)AStored(fi, DB)AStored(ai, DB)AStored(fd, DBA
Stored(ad, DB

CalculationDone
Def All the calculations needed to detect fault in the PowerPlant are
done
Concerns SensorInformation
AndRefines ChecksPerformedWhenDataAcquired
UnderResponsabilityOf PRECON
FormalDef Vsi: Sensorlnformation
Transmitted(si, DB, PRECON) = ({CalculationDone
FaultDetected When CalculationDone
Def When the calculations are done, all the faults present either in the
cooling circuit or in the steam condenser must be detected
Concerns Fault, SteamCondenser, CoolingCircuit
AndRefines ChecksPerformedWhenDataAcquired
UnderResponsabilityOf PRECON

FormalDef Vf: Fault,l: Location
CalculationDone A Occurs(f,1) = QDetected(f,1)
A CalculationDone A =Occurs(f,l) = O—Detected(f,1)

DataAcquiredFromTheField

Def Data concerning the state of the power plant must be acquired
Concerns Sensor
AndRefines CorrectDataPersistentlyStored

RefinedTo AnalogDataAcquired, DigitalDataAcquired, SanityCheckPer-
formed

FormalDef Vs : Sensor
s.type =" Digital' V s.type =" Analog' = ¢ Acquired(s)

35

e ConsistencyCheckPerformed
Def Consistency checks are performed on all the acquired data in order
to ensure consistency within all the sensor datas
Concerns SensorInformation
AndRefines CorrectDataPersistentlyStored
UnderResponsabilityOf ACQUISITION UNIT
FormalDef Vs : Sensor
Acquired(s) = ¢Consistent(s)
e DataUpdatedWhenAcquired

Def When the data have been acquired, they must be stored correctly
Concerns Sensor, SensorInformation
AndRefines CorrectDataPersistentlyStored
UnderResponsabilityOf DB
FormalDef Vsi: Sensor
Acquired(s) A Consistent(s) = OStored(si, DB) A s = si
o ComputedVariablesStored

Def
Concerns
AndRefines
RefinedTo
FormalDef
e FAultDiagnosis Written
Def Each time a fault is detected, informations concerning the fault and
the diagnosis must be written
Concerns SensorInformation, Fault
AndRefines ReportWrittenWhenChecksPerformed
RefinedTo DataTransmittedToDB, DataCorrectlyUpdated

FormalDef Vf : Fault,3! : Location, 3 fi : FaultInformation,3si :
SensorInformation,fd : FaultDiagnosis
Detected(f,1) = OStore(fi, DB)Af = fiAStored(fd, DB)AConcerns(ds, di, si)

o FaultStatusUpdated

Def If there is a least one fault detected, the FaultStatus must be set to
on, otherwise it must be set to off

Concerns Fault, PowerPlant/FaultStatus

36

AndRefines ReportWritten WhenChecksPerformed
UnderResponsabilityOf PRECON
FormalDef Vf: Fault,3! : Location
Detected(f,l) = oPowerPlant.FaultStatus =" on'
DataTransmittedToDB
Def Each time an fault is detected, corresponding information must be
transmitted to the DataBase
Concerns Fault , FaultInformation, SensorInformation
AndRefines FaultDiagnosisWritten, Computed VariablesStored

RefinedTo NoDataLost, NoDatalntroduce, SequencePreserved, Data-
Transmitted WithinTimeConstraints

UnderResponsabilityOf COMMUNICATION

FormalDef Vf : Fault,3l : Location,3'fi : FaultInformation,3'si :
SensorInformationdlad : FaultDiagnosis
Detected(f,1)Nf = fi = OTransmitted(fi, PRECON, DB)ATransmitted(fd, ALARM,DB)A
Concerns(ad, si, fi)

DataCorrectlyUpdated

Def Each time fault information is transmitted to the DataBase, this
information has to be stored

Concerns FaultInformation, DataBase

AndRefines FaultDiagnosisWritten, Computed VariablesStored

UnderResponsabilityOf DB

FormalDef Vfi: FaultInformation, fd: FaultDiagnosis
Transmitted(fi, ALARM,DB) = {Stored(fi, DB)
Transmitted(fd, ALARM,DB) = {Stored(fd, DB)

AnalogDataAcquired

Def All the data coming from working analog sensors are acquired
Concerns Sensor
AndRefines DataAcquiredFromTheField
FormalDef Vs: Sensor

s.type =" Analog' A s.status =" on' = @ Acquired(s)
DigitalDataAcquired

Def All the data coming from working digital sensors are acquired
Concerns Sensor

AndRefines DataAcquiredFromTheField

37

FormalDef Vs : Sensor
s.type =" Digital' A s.status =" on' = Q Acquired(s)

SanityCheckPerformed

Def SanityChecks are performed in order to ensure that all working sen-
sors work correctly

Concerns Sensor

AndRefines DataAcuiredFromTheField

FormalDef Vs : Sensor
s.workingProperly = false A es.status =' on' = os.status =" of f’
A s.working Properly = true A es.status =" of f' = os.status =' on'

NoDataLost

Def No data can be lost during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation
AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef Vsi: SensorInformation, fi: FaultInformation,ai : AlarmInformation, fd :
FaultDiagnosis,ad : AlarmDiagnosis,x : Data
z € si A Transmitted(si,_,.) = © € Transmitted(si)
Az € fi AN Transmitted(fi,-,-) = x € Transmitted(fi)
Az € ai A Transmitted(ai, -, -) = x € Transmitted(ai)
Az € fd A\ Transmitted(fd,_,) = = € Transmitted(fd)
Az € ad A Transmitted(ad, -, -) = = € Transmitted(ad)

NoDatalntroduce

Def No data can be introcue during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation
AndRefines DataTransmittedToDB

UnderResponsabilityOf COMMUNICATION

FormalDef Vsi: SensorInformation, fi: FaultInformation,ai: AlarmInformation, fd :
FaultDiagnosis, ad : AlarmDiagnosis,x : Data
Transmitted(si, -,) A x € Transmitted(si) = z € si
A Transmitted(fi,_,) AN x € Transmitted(fi) = x € fi
A Transmitted(ai, -,) A x € Transmitted(ai) = x € ai
A Transmitted(fd,_,) A x € Transmitted(fd) = = € fd
A Transmitted(ad, -, -) A x € Transmitted(ad) = = € ad

SequencePreserved

Def The order of the data must be preserved during the transmission

Concerns SensorInformation, FaultInformation, AlarmInformation

38

AndRefines DataTransmittedToDB
UnderResponsabilityOf COMMUNICATION

FormalDef Vsi: SensorInformation, fi: FaultInformation,ai: AlarmInformation, fd :
FaultDiagnosis, ad : AlarmDiagnosis,z,y : Data,Ju,v : Data
x,y € siNTransmitted(si, -,)ABefore(x,y, si) = u,v € Transmitted(si)A
Before(u,v,si) Ax =uANy=wv
Az,y € finTransmitted(fi,_,)ABefore(z,y, fi) = u,v € Transmitted(fi)A
Before(u,v, fi)y N\ e =uAy=v
Az, y € aiNTransmitted(ai, -,)ABefore(z,y,ai) = u,v € Transmitted(ai)A
Before(u,v,gi) N\t =uAy =v
A x,y € fd A Transmitted(fd,_,-) N Before(x,y, fd) = u,v €
Transmitted(fd) A Before(u,v, fd) NA\e =uAy=v
Az,y € aiNTransmitted(ad, -,)ABefore(z,y,ad) = u,v € Transmitted(ad)\
Before(u,v,ad) N\e =uAy=v

e DataTransmitted Within TimeConstraints

Def All the data that need to be transmittend are effectively transmitted
to their destination within 2 s

Concerns SensorInformation, FaultInformation, AlarmInformation
AndRefines DataTransmittedToDB
UnderResponsabilityOf COMMUNICATION

FormalDef Vsi: SensorInformation, fi : FaultInformation,ai : AlarmInformationm, fd :
FaultDiagnosis,ad : AlarmDiagnosis
O<asTransmitted(si, _, _)
A O<asTransmitted(fi, _,)
A Q<o Transmitted(ai, -, -)
A Q<o Transmitted(fd, , -)
A O<asTransmitted(ad, _,)

A.2 Object Specifications

e PowerPlant

Def Defines the power plant system. Its components include steam con-
denser and cooling circuit.

Has PowerPlantID: Integer
Type: Hydrolic, Nuclear, Petrol, Gas, Coal
Power: MegaWatt
Location: Address
FaultStatus: on,off
AlarmStatus: on,off

39

abexols

T obe1o3ls N° T
o3Agebs :9zZTS+
T
asedeleq
T
T
obexols
o

Putils :uotadriosag+
uesTood :P9IBATIOV+
SWIL :SWILUOTILATIOESH
SWTL :SWTLUOTIEATIOVH

T3e3fiosaads

UeST00g :3UD93STSUOD+

uesatood :AT3ID9ITIODNIOM+

{1sansssxg ‘sanjexsdwsy}:edAreiea+
JeoT3 enTepelRa+

{Boteuy ‘te3arbra} :odAL+

{330 ‘uo} :snaeas+| T
Ieb93url :gIIOSUSS+

uoleWwI0julIoSuUSS

{1e0T3TID ‘UBTH ‘WnTpSW ‘MOT} :A3TIOTAG+

BuTtils :uotadraosag+

uesTood :DP9IRATIOV+

SWTI :SWILUOTIeATIORS +

SWTL :SWTIUOTIBATIOV+

{TeoTatad ‘ybTH ‘wnTpsW ‘moT} :A3TIOTIGH

uotjejuasaxdey

uesToog

T309IX0DIOM+
{sansssag ‘sanjexsdusy}:sdirejeq+
3eoT3
{Boteuy ‘tearbra} :odAL+

ianrepeledH

T {330 ‘uo} :snaeas+
Iebo3ul :gIIosSusS+
10suas
ButiojlTUOn BYTIO]TUON

Teoseq :SsoidxeWt
Tedsed :SS8IJUTW+
Teosed :Ss2IdpaiTsad+
Teosed :aInssaid+
uTAToN :dwsLXen+
utaTay dWSIUTW+
utaTey :dwslpaiTsadg+
UuTATSY :aanjexsdwsr+

Teosed :SsSoXdxen+t
Teosed :SS9IJUTW+
TeosBy :SS2IgpaITsSad+
Foseg :oanssexg+
utaTay :dwsIXen+
UuTtATOY AWSIUTH+
utaTey :dwerpeITSaa+
uTtATS) :sanjersdusl+

1n211p6U100D

lasusapuo)duwesls

—

T

A

]

odAz+| T odAr+
I9bo3ul :QIWIeTY+ I9b93ul QIWIRTY+
uonewiojujw.ie|y wie|y
T T
sTsoubeTquIeTY sTsoubergatned ostRy
SIN020
T
T
butijs :uoT3idraonsada+| 1 butiis :uoTadraonssa+
ueaTo0d :P9IDSAIOD+ ueaTO0d :POIDSAIOD+
SWIL :SWLLUOTIDDIIODH 1 ooyogozds SWIL :OWTLUOTIDBAIOD+N" "0
SWTJ :SWTLUOTID9ISd+ SWIJ :SWILUOT3IDD3ISd+
{TeoTaTad ‘UBTH ‘wnTpeW ‘moT} :A3TIOTIGH {TeoTaTaD ‘UyBTH ‘wnTpsW ‘moT} :A3TIOTIGH
{sansssag ‘sanjexsdwsr} :odAr+| T {eansssag ‘sanjexsdusy} :odAL+
I9b93ul :QI3TnNed+ I9b93ul :QI3Tned+
uoljew.Jojujiineq 1ne4 o

Aﬁmoo ‘sep ‘Toxlsd ‘aesTonN ‘oﬂHOMv>mv sodAL+
I9b693UI :@IIueRTdILaMOd+

JJO U0} :sSnNjejswiery+
Jjo'uo

:snjejsaTned+
SSSIPPY :UOTILDOT+
J3eMebs :asmod+

jue|dJomod

$IN020

iagram

: Object di

Figure A.2

DomlInvar V p:PowerPlant
p.faultStatus = on < (3 f:Fault,3 l:Location)(Occurs(f,1) A PartOf(1,p)
A f.Corrected = false
p.alarmStatus = on < (3 a:Alarm,3 l:Location,3 f:Fault)(Occurs(f,1)
A PartOf(1,p) A Raise(f,a) A f.Activated = true

Domlnit FaultStatus = off
AlarmStatus = off

SteamCondenser

Def condenses steam. It accounts for temperature, desired temperature
and a range, similarly pressure, a desired pressure and a pressure
range.

Has Temperature: Kelvin
DesiredTemp: Kelvin
MinTemp: Kelvin
MaxTemp: Kelvin
Pressure: Pascal
DesiredPress: Pascal
MinPress: Pascal
MaxPress: Pascal

DomlInvar MinTemp < Maxtemp
MinPress < MaxPress

DomlInit /
SteamCondenser

Def cools the power plant. It is a component of the power plant. It
accounts for temperature, desired temperature and a range, similarly
pressure, a desired pressure and a pressure range.

Has Temperature: Kelvin
DesiredTemp: Kelvin
MinTemp: Kelvin
MaxTemp: Kelvin
Pressure: Pascal
DesiredPress: Pascal
MinPress: Pascal
MaxPress: Pascal

DomlInvar MinTemp < Maxtemp
MinPress < MaxPress

Domlnit /
Sensor

Def it obtains information from the power plant using physically placed
sensors. Informations obtained includes data type and its value. Sen-
sors are also checked to ensure that they are working correctly

41

Has SensorID: Integer
Status: on,off
Type: Digital, Analog
DataValue: Float
DataType: Temperature, Pressure
WorkCorreclty: Boolean

DomlInvar forall s: Sensor
s.workingProperly = false A s.status = on = o s.status = off
s.workingProperly = true A s.status = off = o s.status = on

Domlnit status = on
workingProperly = true

o Fault

Def Faults can occur in the cooling circuit or in the steam condenser.
When each fault is detected, an ID, type, priority, description and
detection time are associated with it. Measures are then taken ot
correct the fault.

Has FaultID: Integer
Type: Temperature, Pressure
Priority: Low, Medium, High, Critical
DetectionTime: Time
CorrectionTime: Time
Corrected: Boolean
Description: String

DomlInvar DetectionTime j CorrectionTime
Corrected = true = CorrectionTime # null
Corrected = false = CorrectionTime = null

DomlInit DetectionTime = currentTime
Corrected = false
CorrectionTime = null

o Alarm

Def An alarm is raised when a fault is detected

Has AlarmID: Integer
Type:
Priority: Low, Medium, High, Critical
ActivationTime: Time
DeactivationTime: Time
Activated: Boolean
Description: String

DomlInvar ActivationTime j DeactivationTime
Activated = true = DeactivationTime = null
Activated = false = DeactivationTime # null

42

Domlnit Activated = true
DeactivationTime = null

e SensorInformation

Def representation of the sensor

Has SensorID: Integer
Status: on,off
Type: Digital, Analog
DataValue: Float
DataType: Temperature, Pressure
WorkCorreclty: Boolean
Consistent: Boolean

DomlInvar forall s: Sensor
s.workingProperly = false A s.status = on = o s.status = off
s.workingProperly = true A s.status = off = o s.status = on

Domlnit status = on
workingProperly = true
Consistent = true

o FaultInformation

Def representation of the fault

Has FaultID: Integer
Type: Temperature, Pressure
Priority: Low, Medium, High, Critical
DetectionTime: Time
CorrectionTime: Time
Corrected: Boolean
Description: String

DomlInvar DetectionTime j CorrectionTime
Corrected = true = CorrectionTime # null
Corrected = false = CorrectionTime = null

Domlnit DetectionTime = currentTime
Corrected = false
CorrectionTime = null

o AlarmInformation

Def representation of the Alarm

Has AlarmID: Integer
Type:
Priority: Low, Medium, High, Critical
ActivationTime: Time

43

DeactivationTime: Time
Activated: Boolean
Description: String

DomlInvar ActivationTime j DeactivationTime
Activated = true = DeactivationTime = null
Activated = false = DeactivationTime # null

Domlnit Activated = true
DeactivationTime = null
e DataBase
Def A storage unit that hold SensorInformation, AlarmInformation and
FaultInformation
Has Size: Megabytes
DomlInvar /

Domlnit Size = O

A.3 Agents Specifications

e ALARM

Def An agent that controls the status of the alarm

Has AlarmID, Type, Priority, ActivationTime, DeactivationTime, Acti-
vated, Description

Monitors FaultInformation/FaultID, FaultInformation/Type, FaultIn-
formation/Priority, FaultInformation/DetectionTime, FaultInforma-
tion/CorrectionTime, FaultInformation/Corrected, FaultInformation /Description

Controls Alarm/AlarmID, Alarm/Type, Alarm/Priority, Alarm/ActivationTime,
Alarm/DeactivationTime, Alarm/Activated, Alarm/Description

ResponsibleFor AlarmRaisedWhenFaultInfoTransmitted, AlarmNotRaised-
IfFaultNotDetected, AlarmStatusUpdated

DependsOn PRECON
Perfoms Raise Alarm When Alarm Info Transmitted, Update alarm
status, Not Raise Alarm if Fault Not Detected
e OPERATOR

Def Represents user who interacts with the system
Has /

Monitors Alarm/AlarmID, Alarm/Type, Alarm/Priority, Alarm/ActivationTime,
Alarm/DeactivationTime, Alarm/Activated, Alarm/Description

Controls /

44

WHOD

WHOD

sutiut

porzessgeousnbas \\ Py—— \\ [—— \

PpeonpoIIUTEIRAON

swrzur
pajaTusTEILEIR]

peazesaigeouenbag

[e]
WHOD

\ paaepdnATa091100838q \ gqorpeaaTUSURILEIEq \

NODEHA

swrIuL
pajaTusueizeIeq \ poszesazgeousnbas

LINO INAWIDUNYIW _ _ MOSNAS _ YOSNES _
pa3epdndT3osazoneed ggoLpelTusuRILR R / /
pswtozed poxtnboy paxtnboy
sxosuDAaTURS eaeareathia eqeqbOTRUY

LINQ INSWEOYNYN

poaepdn w3 TN po103s
sn3e3sITned stsoubeta seTqeTIEAPRINANO)

Jue3sTSUOD

NOD#E¥d -
31peaepdneEaza

DAWI0IIBdSHIAUD pIaTdeyIuoIg

Aousastsucy paxtnboyesed

Hao1pe33TusuRILEIeq

poaepdniT1092100R1RQ

S

; peroashrausastszsa ! suoquoTaeTNOTEDUSUM

PpeIoeIsaITnEL

suoquotaETNoTED

peroIgATIURISTEIRA
e3e03082100

\ pozamsuyAzeny

PaWI0FIdSHOBYIUSM

po3epdn US3ITIM ue33TIMITOdey

snaeas wreTy stsoubera

paatnboyesequayy
PWTOFT2gSHOBUD

1
1
1
1
1
h ®3eqI08110D r!
1
1
1
1
1
1

poIITUsURILATOND \

\ poTemsUATIND \

!
T
! _ WY _ _ WHOD. _
1
L

/d\ .
po39938aI [NRd
P539935Q3I0NITNRATT 1senbawrssnuodn poSTeNWIRTYUSOUM PpeIITWSURITOFUTITNEL oumpon sttt

pesTeRIONURIETY PePTACIJUOTIBMIOJUTIIETY PpeIoISUOTIBWIOTUTNIETY uSYMPas TERUTE TY o3uIitnea us33TIMITOdeuY senbayzesnuodn

) PaWI0]T34SHOBUD TEOTPOT IS paTIzENORIEq
¥OLY¥Ed0
pebeuRl Ppe30e3egITNed
uot3oRITSIUIIOIRISA0 peoeIISWIRTY FITPOSTRNUIRTY S TroxrobuT[000uT [
PpeIvaieaITned Ppo3da3RqI TR

NODEEA

D23093803 [NRJUSUM
poaseBbnssuUOTIovApSWS

pe3oeIeaITned

peBeuenATIoTTODUTETY

\ 29703 TUONAB T4SULIOPOURUIOF Tad \

iagram

Agent di

Figure A.3

ResponsibleFor OperatorInteractionsManaged

DependsOn /

Perfoms Manages Operator Interaction

DB

Def Stores, updates and returns queries on sensor, fault and alarm in-
formation

Has Size

Monitors FaultInformation/FaultID, FaultInformation/Type, FaultIn-
formation/Priority, FaultInformation/DetectionTime, FaultInforma-
tion/CorrectionTime, FaultInformation/Corrected, FaultInformation/Description,
AlarmInformation/AlarmID, AlarmInformation/Type, AlarmInfor-
mation/Priority, AlarmInformation/ActivationTime, AlarmInforma-
tion/DeactivationTime, AlarmInformation/Activated, AlarmInforma-
tion/Description, SensorInformation /SensorID, SensorInformation/Status,
SensorInformation/Type, SensorInformation/DataValue, SensorInfor-
mation/DataType, SensorInformation/WorkProperly

Controls Database/Size

ResponsibleFor DataCorrectlyUpdated, Query Answered
DependsOn Communication, PRECON, ALARM, Sensor
Perfoms Update Data Correctly, Answer Query

PRECON

Def Detects faults from the data and handles fault status
Has /

Monitors SensorInformation/SensorID, SensorInformation/Status, Sen-
sorInformation/Type, SensorInformation/DataValue, SensorInforma-
tion/DataType, SensorInformation/WorkCorrectly, SensorInforma-
tion/Consistent

Controls FaultInformation/FaultID, FaultInformation/Type, FaultInfor-
mation/Priority, FaultInformation/DetectionTime, FaultInformation/
CorrectionTime, FaultInformation/Corrected, FaultInformation/Description

ResponsibleFor CalculationDone, FaultDetected WhenCalculationDone,
RemedyActionSuggested WhenFaultDetected, FaultStatusUpdated

DependsOn DataBase

Perfoms Do Calculation, Detect Fault When Calculation is Done, Sug-
gest Remedy Action When Fault Detected, Update Fault Status

COMM

Def Handles communication between the different objects

46

Has /

Monitors FaultInformation/FaultID, FaultInformation/Type, FaultIn-
formation/Priority, FaultInformation/DetectionTime, FaultInforma-
tion/CorrectionTime, FaultInformation/Corrected, FaultInformation/Description,
AlarmInformation/AlarmID, AlarmInformation/Type, AlarmInfor-
mation/Priority, AlarmInformation/ActivationTime, AlarmInforma-
tion/DeactivationTime, AlarmInformation/Activated, AlarmInforma-
tion/Description, SensorInformation/SensorID, SensorInformation/Status,
SensorInformation/Type, SensorInformation/DataValue, SensorInfor-
mation/DataType, SensorInformation/WorkCorrectly

Controls /

ResponsibleFor NoDatalntroduced, NoDataLost, SequencePreserved,
DataTransmittedInTime, FaultInfoTransmitted WhenFaultDetected

DependsOn Sensor, PRECON, ALARM, Database

Perfoms Transmit Query, Transmit Data to DB, Transmit Fault Info
When Fault Detected

Sensor

Def Physical sensors provide plant information
Has Sensorld, Status, Type, DataValue, DataType, WorkCorrectly

Monitors SteamCondensor/Temperature, SteamCondensor/Desired Temp,
SteamCondensor /MinTemp, SteamCondensor /MaxTemp, SteamCon-
densor/Pressure, SteamCondensor/DesiredPress, SteamCondensor/
MinPress, SteamCondensor/MaxPress, CoolingCircuit/Temperature,
CoolingCircuit /DesiredTemp, CoolingCircuit /MinTemp, Cooling-
Circuit /MaxTemp, CoolingCircuit /Pressure, CoolingCircuit /De-
siredPress, CoolingCircuit /MinPress, CoolingCircuit /MaxPress, Sen-
sorInformation/Status,

Controls Sensor/SensorID, Sensor/Status, Sensor/Type, Sensor/DataValue,
Sensor/DataType, SensorInformation/SensorID, SensorInformation/Type,
SensorInformation/DataValue, SensorInformation/DataType, Sensor-
Information/WorkProperly

ResponsibleFor AnalogDataAcquired, DigitalDataAcquired
DependsOn /
Perfoms Acquire Analog Data, Acquire Digital Data

MANAGEMENT UNIT

Def Ensures efficient working of the sensors, checks consistency in data
obtained from the sensors

Has /

47

Monitors SensorInformation/SensorID, SensorInformation/Type, Sen-
sorInformation/DataValue, SensorInformation/DataType, SensorIn-
formation/WorkProperly

Controls SensorInformation/Status, SensorInformation/Consistent
ResponsibleFor SanityChecksPerformed, Consistency ChecksPerformed
DependsOn Sensor

Perfoms Perform Sanity Check, Perform Consistency Check

A.4 Operations specifications

o AcquireAnalogData

Def Acquire the data coming from an analog device
Input s:Sensor,si:SensorInformation

Output si:SensorInformation/Value

DomPre s.value # si.value

DomPost s.value = si.value

ReqTrig for AnalogDataAcquired
s.value # si.value S_g; s.Type = ’Analog’ A s.ID=si.ID A s.Value #
si.Value

PerformedBy Sensor
e AcquireDigitalData

Def Acquire the data coming from an digital device
Input s:Sensor,si:SensorInformation

Output si:SensorInformation/Value

DomPre s.value # si.value

DomPost s.value = si.value

ReqTrig For DigitalDataAcquired
s.value # si.value S_gs s.Type = "Digital’ A s.ID = si.ID A s.Value
si.Value

PerformedBy Sensor
o SwitchSensorOff

Def Turn the sensor off
Input s:Sensor

Output s:Sensor/Status
)

DomPre s.Status = ’on
DomPost s.Status = ’off’

48

ReqTrig For SanityCheckPerformed
= s.WorkingProperly

PerformedBy ACQUISITION UNIT
SwitchSensorOn

Def Turn the sensor on
Input s:Sensor

Output s:Sensor/Status
DomPre s.Status = ’off’
DomPost s.Status = 'on’

ReqPre For SanityCheckPerformed
s.WorkingProperly

Operationalizes SanityCheckPerformed
PerformedBy ACQUISITION UNIT

UnValidateData

Def Unvalidate the sensor data if they are not considered plausible
Input si: SensorInformation

Output si: SensorInformation/Consistent

DomPre si.Consistent

DomPost - si.Consistent

ReqTrig For ConsistencyChecksPerformed
(si.DataType = "Temperature’ A (si.Value < minTemp V si.Value >
maxTemp))
\% (si.DataType = ’Pressure’ A (si.Value < minPres V si.Value >
maxPres))

PerformedBy ACQUISITION UNIT
ValidateData

Def Validate the sensor data if they are considered plausible
Input si: SensorInformation

Output si: SensorInformation/Consistent

DomPre - si.Consistent

DomPost si.Consistent

ReqPre For ConsistencyChecksPerformed
(si.DataType = "Temperature’ A (minTemp < si.Value < maXTemp))
\% (si.DataType = "Pressure’ A minPres < si.Value < maxPres))

PerformedBy ACQUISITION UNIT

49

e TransmitSensorData

Def Transmit the data to the DataBase

Input si: SensorInformation

Output /

DomPre - Transmitted(si,ACQUISITION,DB)
DomPost Transmitted(si, ACQUISITION,DB)

ReqTrig For SensorDataTransmitted
— Transmitted (si,ACQUISITION,DB) S_; si.Consistent A — Trans-
mitted(si,ACQUISITION,DB)

PerformedBy COMMUNICATION
e UpdateSensorData

Def Update the data in the DataBase
Input si: SensorInformation
Output /

DomPre - Stored(si)

DomPost Stored(si)

ReqTrig For SensorDataUpdated
- Stored(si) S=1s Transmitted(si,ACQUISITION,DB)A — Stored(si)

PerformedBy DB
o TransmitSensorQuery

Def transmit a sensor query to the DataBase
Input s: Sensor

Output /

DomPre - Transmitted(s,PRECON,DB)
DomPost Transmitted (s, PRECON,DB)

ReqTrig For SensorQuerryTransmitted
= Transmitted (s, PRECON,DB) S_;; Query(s) A = Transmitted(s,PRECON,DB)

PerformedBy COMMUNICATION
o AnswerSensorQuery

Def Answer to a sensor query

Input s: Sensor

Output si: SensorInformation

DomPre - Transmitted(si,DB,PRECON)
DomPost Transmitted(si,DB,PRECON)

50

ReqTrig For SensorQueryAnswered
- Transmitted(si, DB,PRECON) S—;; Transmitted(s, PRECON,DB)A
Query(s)A Stored(si) A si.ID = s.ID A = Transmitted(si,DB,PRECON)

PerformedBy DB
Calculate

Def calculate all needed things in order to detect faults
Input si: SensorInformation

Output /

DomPre - CalculationDone

DomPost CalculationDone

ReqTrig For CalculationDone
- CalculationDone S—;, Transmitted(si, DB,PRECON) A — Calcu-
lationDone

PerformedBy PRECON
DetectFault

Def detect Fault

Input f: Fault, I: Location
Output /

DomPre - Detected(f,l)
DomPost Detected(f,]l)

ReqTrig For FaultDetectedWhenCalculationDone
- Detected(f,]) S=;5 CalculationDone A Occurs(f,]) A = Detected(f,]1)

PerformedBy PRECON
TransmitDiagnosisData

Def Transmit the data concerning the diagnosis of a fault to the DataBase

Input f: Fault, I: Location, fi: FaultInformation, si: SensorInformation,
fd: FaultDiagnosis

Output /

DomPre - Transmitted(fi, PRECON,DB) V = Transmitted(ad, PRECON,DB)
V = Concerns(ad,si,fi)

DomPost Transmitted(fi, PRECON,DB) A Transmitted(ad, PRECON,DB)
A Concerns(ad,si,fi)

ReqTrig For DiagnosisDataTransmitted
- Transmitted(fi, PRECON,DB) V — Transmitted(ad, PRECON,DB)

V = Concerns(ad,si,fi) S=15 Detected(f,l) A £ID = fi.ID A (— Trans-
mitted(fi, PRECON,DB) V = Transmitted(ad, PRECON,DB) V = Con-
cerns(ad,si,fi))

o1

PerformedBy COMMUNICATION
UpdateDiagnosisData

Def Store the data concerning a detected fault in the DataBase
Input fi: SensorInformation, fd: FaultDiagnosis

Output /

DomPre - Stored(fi) V — Stored(fd)

DomPost Stored(fi) A Stored(fd)

ReqTrig For DiagnosisDataUpdated
- Stored(fi) V = Stored(fd) S—;s Transmitted(fd, PRECON,DB) A
Transmitted(fi, PRECON,DB) A (= Stored(fi) V — Stored(fd))

PerformedBy DB
SwitchFaultStatusOn

Def switch the Fault Status on

Input f: Fault, I: Location, PowerPlant

Output PowerPlant/FaultStatus

DomPre PowerPlant.FaultStatus = off

DomPost PowerPlant.FaultStatus =on— Transmitted (fi, PRECON, ALARM)

ReqTrig For FaultStatusUpdated
Detected(f,1)

PerformedBy PRECON
SwitchFaultStatusOff

Def switch the Fault Status off

Input f: Fault, I: Location, PowerPlant
Output PowerPlant/FaultStatus
DomPre PowerPlant.FaultStatus = on
DomPost PowerPlant.FaultStatus = off

ReqPre For FaultStatusUpdated
- Detected(f,1)

PerformedBy PRECON
TransmitFaultInformation

Def Transmit Fault Information to The ALARM Management unit
Input f: Fault, I: Location, fi: FaultInformation

Output /

DomPre - Transmitted(fi, PRECON, ALARM)

92

DomPost Transmitted(fi, PRECON, ALARM)

ReqTrig For FaultInformationTransmittedWhenFaultDetected
- Transmitted(fi, PRECON, ALARM) S_;; Detected(f,l) A £ID =
fi.ID A = Transmitted (fi, PRECON, ALARM)

PerformedBy COMMUNICATION
RaiseAlarm

Def Raise the alarm
Input fi: FaultInformation
Output a: Alarm
DomPre - Raise(fi,a)
DomPost Raise(fi,a)

ReqTrig For AlarmRaisedWhenFaultInformationTransmitted
- Raise(fi,a) S—1 s Transmitted (i, PRECON, ALARM) A — Raise(fi,a)

PerformedBy ALARM
TransmitAlarmData

Def Transmit the alarm data to the DataBase

Input fi: FaultInformation, a: Alarm, ai: AlarmInformation, ad: Alar-
mDiagnososis

Output /

DomPre - Transmitted(ai, ALARM,DB) V = Transmitted(ad,ALARM,DB)
V = Concerns(ad,fi,ai)

DomPost Transmitted(ai,ALARM,DB) A Transmitted(ad,ALARM,DB)
A Concerns(ad,fi,ai)

ReqTrig For AlarmDataTransmitted
- Transmitted(ai,ALARM,DB) V = Transmitted(ad,ALARM,DB) v

— Concerns(ad,fi,ai) S—1s; Raise(fi,a) A a.ID = ai.ID A (- Trans-
mitted(ai,ALARM,DB) V = Transmitted(ad,ALARM,DB) vV — Con-
cerns(ad,fi,ai))

PerformedBy COMMUNICATION

UpdateAlarmData

Def Update Alarm data in the DataBase

Input ai: AlarmInformation, ad: AlarmDiagnosis
Output /

DomPre - Stored(ai) V — Stored(ad)
DomPost Store(ai) A Stored(ad)

33

ReqTrig For AlarmDataCorrectlyUpdated
- Stored(ai) V — Stored(ad) S—;s Transmitted(ai, ALARM,DB) A
Transmitted(ad, ALARM,DB) A (= Stored(ai) V = Stored(ad))

PerformedBy
o SwitchAlarmStatusOn

Def switch the Alarm Status on

Input a: Alarm, fi: FaultInformation, PowerPlant
Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = off
DomPost PowerPlant.AlarmStatus = on

ReqTrig For AlarmStatusUpdated
Raise(fi,a)

Operationalizes AlarmStatusUpdated
PerformedBy ALARM

o SwitchAlarmStatusOff

Def switch the Alarm Status off

Input a: Alarm, fi: FaultInformation, PowerPlant
Output PowerPlant/AlarmStatus

DomPre PowerPlant.AlarmStatus = on
DomPost PowerPlant.AlarmStatus = off

ReqPre For AlarmStatusUpdated
- Raise(fi,a)

Operationalizes AlarmStatusUpdated
PerformedBy ALARM

o TransmitAlarmQuery

Def transmit a alarm query to the DataBase
Input a: Alarm

Output /

DomPre - Transmitted(a,ALARM,DB)
DomPost Transmitted(a,ALARM,DB)

ReqTrig For AlarmQuerryTransmitted
- Transmitted(a,ALARM,DB) S_;; Query(a) A - Transmitted(a,ALARM,DB)

PerformedBy COMMUNICATION

o AnswerAlarmQuery

54

Def Answer to a alarm query

Input a: Alarm

Output ai: AlarmInformation

DomPre - Transmitted(ai,DB,ALARM)
DomPost Transmitted(ai,DB,ALARM)

ReqTrig For AlarmQueryAnswered
- Transmitted(ai,DB,ALARM) S—;s; Transmitted(a,ALARM,DB)A
Query(a)A Stored(ai) A ai.ID = a.ID A = Transmitted(ai,DB,ALARM)

PerformedBy DB

35

Appendix B

Architecture description:
method 1

96

WWOD

ATasdoagsiom"

UOTIBWIOTUIIOSUSS

odA1e3eq UOTIBWIOFUIIOSUSS
snTepelIeq UOTIRWIOJUIIOSUSS

9dAL uoTjewIoJUIIOSUSS
QIIOSUSS UOTIBWIOFUIIOSUSS

LINN INIWIDYNYIW

qua3gfsuop - uorleWIOFUL IOSUSS
SN1e31S UOTJeWIOIYIIOSUSS

SN1e]1S " UOTIeWIOJUIIOSUSS

—{ dOSNES

ATxedoagbuTifiom UOTIPWIOJUIIOSUSS

odArepeq UOT3eWIOJUIIOSUSS

anTepefed UOTIRWIOFUIIOSUSS

9flA1 - uOT]PWIOIUIIOSUSS
QII0S|9S UOTJLeWIOJUIIOSUDS

ALze@0IgI0M "
odAre3eq- Osuss
sntepeleq” urIosuss
odAL uotL TOJUIIOSUSS JU93STSUOD " UOT TEYIOJUT IOSUSS
QIIOSUSS MGTIPWIOJUIIOSUSS SNe]S " UOTJewIOIYI I0OSUSS
NODHEdd
uoT1dTI0S9(Q UOTIBWIOTUT I TNeS
P93091I0D " UOTIRWIOTUTIITNET
SWTLUOTIDDIIOD "UOTFewIoJuIITned
uoT1dTIDSQQ " UOTIeWIOIUI I TNeS SUTIUOT30935(UOTIEWIOTUT 2 TNeS
P9309II0NYQOTIeWIOIUTI I TNed A3TI0TId UOTIPWIOTUTI TR
SWTLUOTIOSIIOD " UOTIRWIOIUIITNES odAL-uoTjewIoyuIlTnNed
SWTLIUOTIOSISA " UOTIBURQIUIITNEL aIaTned uoTjewriojullTned
AQTIOTId UOTIRWIOTDEQ TNEd :

adAL -
arsned -

UOTIBWIOTUTL] TR
uoTjewrojuIlTned

uoT1dTI0S9(0 UOTIBWIOJUTWIRTY
Po3BATIOY UOTIRWIOTUTWIRTY
SYTLUOTIeATIORS(Q UOTJeWIOIUIWIRTY
SWTLUOTILATIOY UOTIRWIOTJUTWIRTY
A3TIOTId UOTIRWIOTUIWIRTY

9dAL UOTJeWIOJUIWILTY

QIWIeTY UOTJeWIoFUIWIRTY

IWIYTY

A FOLVIAO -

uotadrIossq wIeTY
P23eATIOV " WIRTY
SWILUOTIeATIOeaq WIBTY
SWTLUOTIRATIOY WILTY
A3TIOTIJ "WIRTY

odAL wIery

QIWIeTY "WIeTy

dataflow architecture

57

Step 1:

Figure B.1

A115d0I3¥I0M* UOTIBWIOTUT TOSUSS
adALejeq UOT3PWIOIJUIIOSUSS
enTeAR3ed” UOTIBWIOIUIIOSUSS
2dA1 " uoTjEWIOIUTIIOSUSS
QIIOSUSS UOTIBWIOFUIIOSUSS

LIINO L I

JUSISTSUOD " UOTIBWIOFUIIOSUSS
SN3eIS UOTILWIOTUIIOSUSS

ATx2d01d%IOM " UOTIBWIOFUTIOSUDS
adALejeq UOT3eWIOIUIIOSUSS
enTeAe3ed’ UOTFBWIOFUIIOSUSS
5dAJ UOTIeWIOIUTI0SUSS

Q170sUSS UOTIBWIOFUIIOSUSS 1o IolouoD UOTITHIOFUITOSUOS

SN3e1S UOTIBWIOTUIIOSUSS

SN3e3S°UOTIPWIOJUIIOSUSS

A119d0Ig3I0M UOTIBWIOFUIIOSUSS
2dAreleq UOTIRWIOFUIIOSUSS
snTeARIRQ’ UOTIPWIOFUTIOSUDS
odAL uoTaeWIOJUTIOSUSS A
QII0SUSS *UOTIBWIOJUTIOSUSS

NODE¥d

uoT3dTI0S9Q UOTIBWIOTUII TN
P2103110) UOTIRWIOIUTITNRA
SWILUOTIDSIIOD *UOTIBWIOFUTITNEL
SWTLUOT3ID®380 " UOTIRWIOIUTITNEA
A3TI0TAd "UOTIEWIOFUIITNEL
odAz-uoTieWIOIUTATNEL

QI3TNEd UOTIBWIOFUIITNRA

Goxd3I0M " UOTIBWIOFUIIOSUSS
odALeqed UOT1PWIOTUTIOSUSS
SnTEARIEQ UOTIPWIOIUTIOSUSS
9dAL UOTIPWIOFUIIOSUSS
QII0SUS‘ UOTIBWIOTUIIOSUSS

YOSNES

uotadTIosaq’ uoTIRWIOFUIITNE
P33021100 " UOTIRWIOTUTI TN
SWTIUOTIDSIIOD " UOTFEWIOFUTITNEA
SWTLUOTIO®38(UOTIBWIOTUIITNES
3770114 UOTIEWIOIUIITNEA

2dAL uotjewroyuIlTnNed

QI3Tned uoTIeWIOFUTI TN

WWOD

aa

N

uoT3dTI0S9(" UOTIeMNOIUTIITNE,

DP2302110) UOTIRWIDUTITNRA

SWTLUOT3021I0) UOTFRWIOINEITNEL

SWTLUOTID933Q " UOTIBWIOTUT NNBA
A3TI07ad UOTIRWIOIUTIT
odAz - uoT7ewIOIUIATNE,

AI3Tned uoTIewIoguIITNed

USISTSUOD " UOTIRWIOTUIIOSUSS
SN3eIS UOTIBWIOTUIIOSBYS,

TOTTATI0S50 UOTIPWI0JUIWIRTY
PS3BATIOY UOTIBWIOJUIWIRTY
LUOTIBATIORS(UOTIBWIOJUTWIRTY

SWTIUOTIRATIOY UOTIRWIOIUTWIRTY

uoT3dTaos
pa3eaTy
swrdNpTieaTIoe

SWTINQTIEATY

£37T1072d * UOTIEWIOJUTUIRTY
SdAL-uoTIeWIOFUTWIETY
ATWIeTY UOTIRWIOJUTWIRTY

50" UOTIBWIOFUTWIRTY
Oy ' UOTIPWIOFUTWIETY
50 UOTIRWIOTUTWIETY
OV UOT3BWIOFUTWIBTY

QTIOTId " UOTIBWIOTUTWILTY
5dAL* UOTFeWIOFUTWIRTY

arisxe

A HOLYNAZO

uoTadraosaq wreTy
P9IBATIOV WIRTY
SWILUOTIBATIORSQ WIRTY
SWTLUOTILATIOV WIBTY
A31I0Tad WIETY

odAL wreTy

QIWIETY WILTY

¥ UOTIPWIOJUTWILTY

WYY

58
style-based refined architecture

Step 2:

Figure B.2

NODZF¥d

HONENIVINIVW ADNHLSISNOD

A729d01d3I0M * UOTFEUIOFUTIOSUSS
5dALe3eQ" UOTIBWIOIUTIOSUSS
anTeAe3Eq” UOTIEWIOJUTIOSUSS
odAL UOTIRWIOJUIIOSUSS
QII0SUSS UOTIBWIOJUTIOSUSS

LIINQ INEWHDUNVW |

YOSNES

JUS3STSUOD UOTFRWIOFUIIOSUSS
SN3e3S° UOTIBPWIOIUIIOSUSS
A712d01d5T0M UOTIBWIOJUIIOSUSS
5dALe3eq" UOTIEWIOIUIIOSUSS
SnTeARIEQ UOTIEWIOIUTIOSUSS
5dAL " UOTIRWIOJUIIOSUSS JUSISTSUOD * UOTIBWIOJUTIOSUSS
II0SUSS ' UOTJEWIOTUTIOSUSS SN3e3S UOTIBWIOJUIIOSUSS

TR S

NODF¥d

uoT3dTIDSeQ UOTIBWIOFUIITNRA
P2303110D UOTIEWIOIUTITNEL
SWTLUOTID91I0D UOTIRWIOIUTITNRL
SWTLUOTID232Q " UOTIRWIOIUTITNRA
A3T1I0Tad UOTIRWIOFUIITNEL

odAL uoTiewIoFuIlTNRd
QI3TNed *UOTIeWIOFUII[NRL

JU23STSUOD " UOTJRWIOJUI IOSUDS

SN7815 UOTIRWIOTUTIOSUSS
A119d0Id3{I0M UOTILWIOIUIIOSUSS
sdALe3eq" UOTIEWIOFUTIOSUSS
onTeARIEQ’ UOTIEWIOJUIIOSUDS
5dAL - UOT1PWIOTUT IOSUSS
QrI0SUSS UOTIEWIOJUT TosUSE TIATIOSq UOTIRWIOTUTWILTY
DP9IBATIOV UOTFRWIOTUTWIBTY

SN3e3S° UOTIPWIOIUIIOSUSS

A119d01d3I0M UOTILWIOJUIIOSUSS
adAreleq UOTIBWIOFUIIOSUSS
onTeABIeQ’ UOTILWIOFUIIOSUSS
9dAL UOTIBWIOJUIIOSUSS uoT3dTI0S9(Q UOTILWIOFUTFTNR

QIIOSUSS UOTIBWIOJUIIOSUSS

WWOD

o5 RRAOSIIOD UOTIBUIOFUTITNRA
ELRQ EA09II0D " UOTIBWIOFUT I TR

73109390 UOTIRWIOTUTIITNRT
odAL - uoTewzouT rosuse? F1OTd TUOTIBUIOIUTITNRA

QI170SUSS UOTIeWIOJUT ToSUSS _SOAL UOTIEWIOTUTITNRL
driTned uoTjewiojurl(ned

A119doxd3(I0M * UOTJRWIOT U,
adA1e3eq uoTFemIoIu
snrepeieq uoTIewIOFUTIOEHE

TOTTATIOS50 UOTIPWI0JUIWIRTY

aa

SWILUOTIBATIORSQ UOTIRWIOFUTWIRTY oT13dYroseq UOTIPWIOFUT TR

SWTLUOTIBATIOY UOTIPWIOJUTWIRTY

pe3peiio) uoTIRWIOIUIITNR

A3TI0TId " UOTFEWIOFUTWILTY swIUOTJOoII0D * UOTILWIOFUTITNRL
9dAL UOTIPWIOFUIWIRTY sfiTIu0f3ne3aq UOTILWIOFUIITNEL

QTWIeTY UOTIPWIOFUTWIBTY

WEYTY

TIOTId UOTIRWIOTUTITNES
°dAL uoTaBWIOIUTIITNRL
QIiTned uoTiewiojuIITNEd

0303UUO)IULISTOLI TN

uotadrIoseq - wreTy
DPOIBATIOY "WIRTY
SWTRUOTIRATIORS] WILTY
SUWR\LUOTIBATIOY WIBTY
A3TI0Tad WIETY

odAL wreTy

JIWIeTY WIeTy

JOLVIAdO

o

JUS3STSUOD UOTIEWIOJUTIOSUSS DIIBATIOV UOTIBWIOIUTWIELTY
SN7B1S UOTIEWIOTUT I0SWELUOTIBATIORS(UOTIRUIOJUTWIETY
SWTIUOTIBATION UOTIPWIOFUTWIETY

£37T1072d - UOTIEWIOIUTUIRTY

SdAL-uoTIeWIOFUTWIETY

AIWIRTY UOTIRWIOJUTWIRTY

u§T31dTIOS8Q UOTIRWIOFUTWIRTY
93BATIOY UOTIRWIOTUTWIRTY
LUOT\eAT1O®S(" UOTIBWIOTUTWIETY
\WTLUOE IBATIOY UOTIPWIOFUTWIRTY
ITIOTId UOTIBWIOFUTWIBTY

2dAL " UOTIEWIOJUTWIETY

TWIeTY UOTIBWIOJUTWIRTY

- wavTe

99

pattern-based refined architecture

B.3: Step 3:

Figure

Appendix C

Architecture description:
method 2

C.1 Architecture Prescriptions

Preskriptor Specification: PowerPlant Monitoring System
Problem Goals Specifications: PowerPlant Monitoring Process

Components: e Component PowerPlantMonitoringSystem
Type Processing
Constraints PerformancOfThePlantMonitored
Composed of PRECON
ALARM
DataBase
Communication

Uses /

¢ Component PRECON
Type Processing

Constraints FaultDetected
RemedyActionSuggested
Periodical ChecksPerformed&Report Written
Composed of FaultDetectionEngine
FaultInformation
FaultDiagnosis
SensorInformation
SensorConnect

Uses /

e Component ALARM
Type Processing

60

20305UUOC) TebRUEHUIE TFOUTEUAUOTI093503 TNEd

T0303uU0DEaLISND

z0309uUCHEqRIEPAN

uoTIeD TUNWWOD

ebeueAIIaNy

zebeuesiepdn _

P ep— _

_ woTaERTOFUTWTETY _

sTsoubeTqQUIRTY _

TebeuRUIRTY _

_ 303UuUODIOSUSS UOTIEWIOFUIIOSUSS

stsouberaarned

uoT3RWIOIUIITIER
Ne)

esegeleq

WIYTY

wa3shs
ButiojTuolURTdISMOd

NODF¥d

sutbug
uoTIDeIBqITNE

Component refinment tree

Figure C.1

Constraints AlarmCorrectlyManaged
AlarmRaisedIffFaultDetected
AlarmTraced

Composed of AlarmManager
AlarmInformation
AlarmDiagnosis
InteractionManager

Uses /

Component Database
Type Processing
Constraints CorrectDataPersistentlyStored

Composed of QueryManager
UpdateManager

Uses /

Component Communication
Type Connector

Constraints NoDatalntroduced
NoDatalLost
SequencePreserved
DataTransmittedInTime
DataTransmitted ToTheDB
QueryTransmitted
FaultInformationTransmitted WhenFaultDetected

Composed of UpdateDBConnect
QueryDBConnect
FaultDetectionEngineAlarmManagerConnect

Uses /

Component FaultDetectionEngine
Type Processing

Constraints CalculationDone
FaultDetected WhenCalculationDone
FaultStatusUpdated
CheckPerformed WhenDataA cquired
Report Written WhenCheckPerformed

Composed of /

Uses SensorConnect to interract with SensorInformation
FaultDetectionEngineAlarmManagerConnect to interract with Alar-
mManager
UpdateDBConnect to interract with UpdateManager

Component FaultInformation
Type Data
Constraints FaultInformationTransmitted WhenFaultDetected

62

Composed of /
Uses FaultDetectionEngineAlarmManagerConnect to interract with
AlarmManager
UpdateDBConnect to interract with UpdateManager
Component FaultDiagnosis
Type Data

Constraints DiagnosisWritten
ComputedVariablesStored

Composed of /
Uses UpdateDBConnect to interract with DBUpdateManager

Component SensorInformation
Type Data

Constraints AnalogDataAcquired
DigitalDataAcquired
SanityCheckPerformed
ConsistencyCheck

Composed of /

Uses SensorConnect to interract with DB
SensorConnect to interract with FaultDetectionEngine

Component SensorConnect

Type Connector

Constraints DataAcquiredFromTheField

Composed of /

Uses /

Component UpdateDBConnect
Type Connector

Constraints Secure
TimeConstraint = 2s

Composed of /
Uses /

Component QueryDBConnect
Type Connector

Constraints TimeConstraint = 5s
Composed of /

Uses /

Component FaultDetectionEngineAlarmManagerConnect
Type Connector

Constraints FaultTolerant
Secure
TimeConstraint = 1s

63

Composed of /
Uses /

Component AlarmManager
Type Processing

Constraints AlarmRaised WhenFaultInformationTransmitted
FaultInformationTransmitted
AlarmStatusUpdated
AlarmNotRaisedIfFaultNotDetected

Composed of /

Uses FaultDetectionEngineAlarmManagerConnect to interract with
FaultDetectionEngine UpdateDBConnect to interract with Up-
dateManager

Component AlarmInformation

Type Data

Constraints AlarmInformationStored WhenAlarmRaised

Composed of /

Uses UpdateDBConnect to interract with UpdateManager

Component AlarmDiagnosis

Type Data

Constraints DiagnosisWritten

Composed of /

Uses UpdateDBConnect to interract with UpdateManager

Component InteractionManager

Type Processing

Constraints OperatorInteractionManaged
Composed of /

Uses QueryDBConnect to interract with QueryManager

Component QueryManager
Type Processing

Constraints QueryAnswered
DataQueriedUponUserRequest
AlarmInformationProvidedUponUserRequest
DataAcquired

Composed of /
Uses QueryDBConnect to interract with InteractionManager

Component UpdateManager

Type Processing

Constraints DataCorrectlyUpdated DataUpdatedIfConsistent
Composed of /

64

Uses SensorConnect to interact with SensorInformation
UpdateDBConnect to interact with FaultDetectionEngine
UpdateDBConnect to interact with FaultDiagnosis
UpdateDBConnect to interact with AlarmManager
UpdateDBConnect to interact with AlarmDiagnosis

C.2 Additional constraints on the system

C.2.1 Constraints on the Database
1. Informal Def : Every update on the main database has to be done on
the backup database
Formal Def : V x:Data Update(x,mainDB) = ¢ Update(x,backupDB)

2. Informal Def : No additional update should to be made

Formal Def : Update(x,backupDB) A mainDB.Status = working = ¢
Update(x,mainDB)

3. Informal Def : If the main database fails the backup database should
take the relay

Formal Def : mainDB.Status = failure A backupDB.Status=working =
o = mainDB.work A backupDB.work

4. Informal Def : If the main database recovers after a failure all the up-
dates made on the backup database have to be done on the main
database. The main database has also to reused instead of the backup
one.

Formal Def : V x:Data Update(x,backupDB) A e mainDB.Status = fail-
ure A mainDB.Status = working = Update(x,mainDB)
5. Informal Def : No Query on something that is currently updated can
be performed
Formal Def : V x:Data Query(x) = (= Update(x,mainDB) A mainDB.Work
) V (= Update(x,backupDB) A backupDB.Work)
6. Informal Def : Only one database can work at a time

Formal Def : mainDB.Work = — backupDB.Work
A backupDB.Work = — mainDB.Work

C.2.2 Constraints on the connector between ALARM &
PRECON (i.e., FaultDetectionEngineAlarmManager-
Connect)

1. Informal Def : There has to be two copies of PRECON and ALARM

65

bOeUrPNUOT10RIIDIY

osegeaeq

IobeueNiiand

aobeuepnaiepdn

3osuuopggaiepdn

YOTJPWIOJUTWICTE

sTsoubeTquIeTY

IobeueNuIe Ty

—_ 1oauuopgga3lepdn _ ETsoubeTgaTned _

_ _

_ AOﬂumEH0mcHM0mqu

1D9UUODIOSUDS _ _

- _ _

7 _ _
_ 1D9UUODIOSUDS

©

_uowzuoomawumva _ © _

_ _

_ _ _

sutbug

suTbuguoTinoilsgaIned

309UUODISBULNUIRTY
_ suTbuguoTinelsgaIned

Jo2uUuUODISHbURNUIR Y

4

otjosisaitnel |

UﬂumEHOMEHuﬁSmm_

NOOHYEd

Figure C.2: Box diagram of the architecture

Formal Def : V x: Component x.type = PRECON V x.type = ALARM
= J y:Component x.type = y.type A " x =y AX =y

. Informal Def : Every time a component fails (PRECON or ALARM),
the copy should take te relay

Formal Def : V x:Component (x.type = PRECON V x.type = ALARM
) A x.Status = failure = 3 y:Component x.type = y.type A y.Status
= working A o (y.Work A = x.Work)

. Informal Def : Only one component (PRECON or ALARM) should be
working at a time

Formal Def : V x:Component (x.type = PRECON V x.type = ALARM
) A x.Work = = 3 y:Component x.type=y.type A = x =y A y.Work

. Informal Def : There is no difference in importance between the copies.
So the switch should only occur in case of a failure

Formal Def : e = x.Work A x.Work = Jy e y.status=working A y.status=failure

A x.type=y.type A " X =y AX =y
. Informal Def : A failure of PRECON or ALARM should not affect the
other. The other should continue to work fine

Formal Def : 3 x:Component e x.Status = working A x.Status=failure
= (V y:Component x.type # y.type A e y.Satus=working = y.Status
=woking)

67

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

