
Architectural Prescriptions for Dependable Systems

Manuel Brandozzi, Dewayne E. Perry

UT – ARISE, Advanced Research In Software Engineering.
The University of Texas at Austin, Austin TX 78712-1084

{MBrandozzi, Perry}@ece.utexas.edu

Abstract. In today’s highly complex software systems it’s often impossible to
enforce and evaluate dependability requirements unless they are taken into
account from the beginning of the development process. Retrofitting it into the
system at the code level is not a satisfactory way of solving this problem.
Dependability requirements cause transformations to be made to a software
system’s architecture on various levels. We categorize architectural solutions to
non-functional requirements according to the kinds of transformations they
cause: additive, separative and integral. The first kind of solution for non-
functional requirements just adds new components to the system; the second
kind modifies only a subset of the system’s architecture; the third kind
integrates the effects of the non-functional requirements throughout the entire
architecture. The Preskriptor method, which we are developing to transform
requirements specifications into architectural prescriptions (i.e. high-level
architectural specifications), provides a framework to enforce non-functional
(dependability) requirements at the architectural level.

1 Introduction

Experience has shown that, for complex software systems, it’s very important to take
into account non-functional requirements as early as possible in their design process.
The earliest they can be accounted for is the architectural design level. This enables a
clear understanding of the implications of non-functional requirements on the high
level components and on the topology of such systems.

Dependability requirements are a particular type of non-functional requirements.
In this paper we adopt a broad definition of dependability and we intend it to
“embrace all those aspects of behavior upon which the user of a system might need to
place dependence: it thus includes reliability, safety, availability and security” [1].

Another way that an architectural prescription favors the design of dependable
systems is by enabling the reuse of the high level design of systems that, having been
already deployed, have demonstrated to be dependable. A prescription allows the
architect to reuse all the components and the topology that derive from particular
goals (i.e. requirements), including dependability requirements. Generally, a brand
new system design has a higher likelihood of failure than a well tested one.

Our approach on solving this issue is based on the properties of goal-oriented
requirements and on those of architectural prescriptions. In particular, our approach

2 Manuel Brandozzi, Dewayne E. Perry

takes advantage of the KAOS requirements specification language [3], the
architectural prescription language Preskriptor [4].

Before illustrating our approach for dependability enforcement at the architectural
level in section 4, we provide an introduction to goal-oriented requirements and to
architectural prescriptions in sections 2 and 3 respectively. In section 5 we illustrate
our approach with an example, and we summarize our contributions and discuss
future work in section 6.

2 Goal Oriented Requirements Specifications and KAOS

Goal oriented requirements specifications are, among all the kinds of requirements
specifications, those that are closer to the way humans think [2] and hence the easiest
to be understood by all the stakeholders of the system’s development process. KAOS
is the goal oriented specification language, introduced by A. van Lamsweerde [3],
which we used in our methodology.

The KAOS’ ontology is composed of objects, operations and goals. Objects can be
agents (active objects), entities (passive objects), events (instantaneous objects), or
relationships (objects depending on other objects). Operations are performed by an
agent, and they change the state of one or more objects. Operations are characterized
by pre-, post- and trigger- conditions. Goals are the objectives that the system has to
achieve. In general, a goal can be AND/OR refined till we obtain a set of achievable
sub-goals. The goal refinement process generates a goal refinement tree. All the
nodes of the tree represent goals. The leaves of the tree may also be called requisites.
The requisites that are assigned to the software system are called requirements; those
assigned to the interacting environment are called assumptions. Here is an example
of goal declaration in KAOS:

Goal Maintain[AuthorizedAccessesOnly]
InstanceOf SecurityGoal
Concerns StockValues, BankerActor
ReducedTo

ConfidentialityOfAccessPassword,
ConfidentialityOfTransmittedStockValues

InformalDef
Access passwords must remain confidential. Stock

values information has to be released only to those
providing the correct passwords.

Fig 1. Goal specification in KAOS

The keyword Goal denotes the name of the goal; InstanceOf declares the type of the
goal; Concerns indicates the objects involved in the achievement of the goal;
ReducedTo contains the names of the sub-goals into which the goal is refined.
Finally, there is InformalDef: the informal definition of the goal. There can also be an
optional attribute FormalDef, which contains a formal definition of the goal (which
can be expressed in any formal notation such as linear temporal logic).

Architectural Prescriptions for Dependable Systems 3

3 Architectural Prescriptions and Preskriptor

An architectural prescription [4] lays out the space for the system structure by
selecting the architectural components (processes, data, and connectors), their
relationships (interactions) and their constraints. In a prescription, the fundamental
characterization of components is given by the goals they are responsible for (that are
their constraints). Components are further characterized by their type, which can be
processing, data or connecting. The processing components, or processors, are those
that provide the transformation on the data components. The data components
contain the information to be used and transformed. The connecting components, or
connectors, can be either implemented by data components, processing components
or a by combination of both. They are the glue that holds all the pieces of the system
together. The interactions of the components among each other, together with the
restriction of their possible number of instances characterize the topology of the
system.

Fig. 2 contains the architectural prescription of a data component specified in
Preskriptor. Preskriptor is our architectural prescription language, whose process
takes KAOS requirements specifications as starting point.

Component StockValues [1, 1]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB [1,1], Server [1,1]
Uses MarketConnect to interact with

StockMarket

Fig. 2. A component’s specification in Preskriptor

The field Component denotes the name of the component. Type specifies the type of
the component. Constraints is the most important attribute of a component. It
denotes the requirements that the component is responsible for. We use here the term
constraint to denote both functional and non-functional constraints (which correspond
to requirements of the system). Composed of identifies the subcomponents that
implement the component. The last attribute, Uses, indicates what are the
components used by the component. Since interactions can only happen through a
connector, the Uses attribute has the additional keyword to interact with that indicates
which components the component interacts with using a particular connector.

Without going into the details of how to get a prescription from the requirements
[4], it’s important to know that at the beginning some candidate components for the
architecture are proposed, then the functional goals first, and non-functional goals
later, are assigned, one at a time, to a subset of the potential components. The
potential components which do not contribute to the achievement of any goal are
discarded from the system. The next section explains in some detail how to account
for non-functional requirements in an architectural prescription.

4 Manuel Brandozzi, Dewayne E. Perry

4 Non-Functional Requirements in Prescription Design

Taking into account Non-Functional Requirements (NFRs) while designing an
architectural prescription has, in the most general case, three kinds of effects on the
already designed prescription of a system:

1) The introduction of new components.
2) The transformation of the system’s topology, i.e. a change on the relationships

among the system’s components.
3) The further constraining of already existing components.

Some non-functional requirements allow for separations of concerns among the

architectural components; other requirements, instead, are spread throughout the code:
they reach every component of the system like blood vessels reach every cell of our
body.

We denote those NFRs that enable separation of concerns with respect to an
architecture as Separative Non-Functional Requirements (SNFRs). SNFRs are those
requirements that can be achieved by further constraining, adding new components
and/or by transforming the topology of only a precisely identifiable subset in strict
sense of the architecture’s components. By “precisely identifiable” subsystem we
mean that the subsystem can be characterized by a property. By subsystem “in strict
sense” we exclude the complete system, case in which we don’t achieve separation of
concerns. A precisely identifiable subsystem in strict sense is, for example, a single
component of the system. This happens in the case of a performance goal if a single
component is the bottleneck for computation. Another example of a precisely
identifiable subset in strict sense can be the set including all the connectors from a
particular component, and the component itself, like in the fault tolerance example
that we will illustrate in next section.

The simplest SNFRs are those that, given a particular architecture, can be achieved
by only adding to the system new components and the relationships of those new
components with other components, i.e. by composing some existing components
with new ones without changing the constraints of any of the old components. We
denote this kind of NFRs as Additive Non-Functional Requirements (ANFRs).

Those NFRs that are not SNFRs are denoted as Integral Non-Functional
Requirements (INFRs). These requirements affect the entire system or a subset of the
system for which no characterizing property can be found, i.e. the system is not
precisely identifiable. A way to achieve this other kind of requirements is by making
all the components conform to a particular style. An example of INFR is the goal for
a system is to be composed by only components that conform to CORBA. No matter
what, this requirement has to be added as a constraint to all the system’s components.

In general, whether an NFR is integral, separative, or additive depends on the
architecture on which we want to achieve it. It also may depend on the level of
refinement of the architecture. In fact, what at a finer resolution of an architecture is a
clearly identifiable subset in strict sense may become the whole set of the system’s
components at a coarser refinement.

Architectural Prescriptions for Dependable Systems 5

5 Enforcing Dependability at the Architectural Level

Let’s see, with the aid of an example, how a dependability requirement, in this case
fault tolerance, can be handled by the Preskriptor process.

Any computer network can have, even in absence of catastrophic events (such us
power failures, earthquakes, etc.) a certain number of machines that crash or become
inaccessible. Let’s consider the case of a distributed system, which runs on a
distributed network, and which contains a data component whose accessibility, at any
time, is vital. This data component can contain, for example, the value of the stocks
managed by an investment bank. It’s vital for the bankers to be able to access at any
time the current value of a stock. Not being possible to do so could cost to the bank
thousands of dollars, perhaps millions!

This kind of fault tolerance problem has been widely studied in the distributed
systems community and a standard solution it’s the following. Suppose that in a
network with x nodes containing the data object StockValues there can be at most t
(with t < x) of the x nodes that can fail at the same time. We can achieve a fault-
tolerant real-time access to the vital data object StockValues, by having, at least, t+1
copies of the object stored in t+1 different nodes. To guarantee the fault tolerance we
also need some protocol that manages the access to the object from outside the
network, and which updates the copies of the object in the different nodes to achieve
consistency among them.

Fig. 3 contains the prescription of a simple distributed system. This is the
prescription of the system before we take into account the fault tolerance goal.

Component StockValues [1, 1]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB[1,1], Server[1,1]
Uses MarketConnect to interact with StockMarket

Component BankerClient [0, n]
Type Processing
Constraints …
Uses

StockValuesAccess to interact with StockValues
BankerUserInterface to interact with BankerActor

Component StockValuesAccess [0, n]
Type Connecting
Constraints Maintain[AuthorizedAccessesOnly]

Fig. 3. Prescription for a stock values information system

In the prescription of Fig. 3 we have only one copy of the data component
StockValues, the component storing the latest values of the stocks belonging to
different markets that is updated by using MarketConnect connecting it to the stock
markets. The prescription allows any number n of components BankerClient to be
instantiated. BankerClient is the piece of software running on the bankers’ machines.

6 Manuel Brandozzi, Dewayne E. Perry

Fig. 4. Topology graph of the prescription in Fig. 3

The prescription requires the system to have communication between BankerClient

and StockValues through connector StockValuesAccess, that has to achieve the
security goal Maintain[AuhorizesAccessesOnly] (defined in Example 1.) together
with other goals (such as mutual exclusion) not included here for simplicity. Given a
particular choice of implementation of connector StockValuesAccess, the low level
design may instantiate the connector only once for all the n BankerClients, instantiate
it n times, or any other number of times between 0 and n.

Fig. 4 contains the graphical representation of the topology of an instantiation of
the same prescription. It’s the topology of an instantiation of the prescription because
for each component a particular number of instances has been chosen. For example,
there are only three clients rather than an indefinite number; and there is only one
instance of connector StockValuesAccess for the interaction of all the clients with
StockValues, rather than an indefinite number of connectors that is at most equal to
the number of BankerClient components. Graphical representations are useful to

BankerClien
t 1

BankerClie
nt 2

BankerClien
t 3

StockValuesAcces
s

Stock Values

MarketConnec
t

StockMarket 1 StockMarket 2

Lege
nd

Uses Connec
tor

Proce
ssor

Data

Architectural Prescriptions for Dependable Systems 7

better understand the topology, which is implicit in every textual specification of a
prescription.

In a prescription graph, the arrow representing the Uses attribute goes from the
component C1, which needs some information from the interaction, to the connector
CN that makes the interaction possible, and from the connector CN to component C2
that provides the information needed by C1.

Fig. 5 shows the same prescription after it has been transformed to account for the
non-functional goal of fault tolerance for the component StockValues.

Component StockValues [t+1, n]
Type Data
Constraints Maintain[LatestStockValuesInfo], …
Composed of DB[1,1], Server[1,1]
Uses

MarketConnect to interact with StockMarket
InterCopyCoordinator to interact with

StockValues

Component InterCopyCoordinator [1, n]
Type Connecting
Constraints Maintain[FaultTolerance]

Component StockValuesAccess [0, n]
Type Connecting
Constraints Maintain[AuthorizedAccessesOnly]

Component StockValueFTAccess [1,n]
Type Connecting
Constraints

Maintain[FaultTolerance],
Maintain[AuthorizedAccessesOnly]

Composed of
IntercopyCoordinator [1,n], StockValuesAccess

[0,n]

Component BankerClient [0, n]
Type Processing
Constraints …
Uses

 StockValuesFTAccess to interact with
StockValues

BankerUserInterface to interact with
BankerActor

Fig. 5. Prescription for a stock values information system with fault tolerance

Like many dependability requirements, the non-functional fault tolerance requirement
given the previous prescription is an ANFR. It’s an ANFR because it can be assigned
as a constraint only to the new connector InterCopyCoordinator, which coordinates
the now multiple copies of component StockValues. This is an example of achieving
an ANFR via connectors; another such example can be found in a system developed
by the DSSA group [5], case in which the NFR is performance.

8 Manuel Brandozzi, Dewayne E. Perry

Fig. 6. Topology graph of the prescription in Fig. 5

The system specified by the new version of the prescription has to have at least t+1 (t
being the maximum number of faults) copies of component StockValues, rather than
only one like its pre-fault tolerance prescription. StockValues is now using the newly
added connector InterCopyCoordinator. To achieve the fault tolerance goal, among
the other things, this connector will have to make it sure that, at any time, there are at
least t+1 copies of StockValues. Also, it has to assure that the different copies are,
somehow, kept consistent at least from the perspective of the rest of the software
system. The BankerClients interacting with component StockValues must always get
the latest updated value of the stocks. The access to StockValues by two or more
clients at the same time has to abide to the same mutual exclusion policies that held
when only one instance of StockValues was in the system. We designed the
prescription so that InterCopyCoordinator keeps the topological transformations
transparent to BankerClient. The only change in BankerClient’s specification is that
now this component uses connector StockValuesFTAccess (resulting from the
composition of InterCopyCoordinator and StockValuesAccess) to interact with
StockValues, rather than using StockValuesAccess. It’s the InterCopyCoordinator’s

Connec
tor

StockValues 1 StockValuesAcce

InterCopyCoordinator StockValues 2

StockValues 3

MarketCon
nect

StockMarket 1 StockMarket 2

Legen
d

Uses

Proce
ssor

Data

BankerClient
3

BankerClient
2

BankerClient

Architectural Prescriptions for Dependable Systems 9

subcomponent of StockFTValuesAccess that hooks into StockValues to guarantee that
BankerClient always gets the updated values of the stocks.

In a particular implementation of the prescription in a latter phase of the
development process, InterCopyCoordinator may take care of the creation of t+1
copies at start-up, as well as creating new copies, moving the existing ones, or remove
copies whenever some node fails or to save on communication costs like in illustrated
in [6].

The effects of the topological transformation are evident if we have a look the
topology graph of the new prescription in Fig. 6. There, the graph is the same than
the one of figure 4., apart from having substituted the single component StockValues
with a more complex component, composed by the different StockValues instances
(three in the example) and the IntercopyCoordinator used by them. The double edged
arrows are a syntactic shortcut to make the graph more elegant: they represent at the
same time the arrow that go from component A to B and the one from component B
to component A.

6 Conclusion

Dependability requirements are a subset of non-functional requirements. To better
achieve them and manage their changes they should be taken into account already at
the architectural design level. We provided an overview of our methodology to
design an architectural prescription given a set of goal oriented requirements
specifications.

The requirements can either be functional or non-functional. Separative Non-
Functional Requirements (SNFRs) enable separation of concerns in achieving them.
Their effects are limited to a subset of the system identifiable by a property (like the
set of connectors outgoing from a particular component). In particular, we illustrated
with an example how a fault tolerance requirement for an object in a computer
network (which is an ANFR, an easier case of SNFR) can be achieved on a given
architecture. This was done by introducing in the architecture a new connector and by
modifying the topology of the system locally to one of its components. Many other
dependability requirements, including security, performance and other kinds of fault
tolerance can be ANFRs with respect to architectures.

Our future work will be aimed at finding out domain independent ways to
compositionally transform the prescription of a system to account for ANFRs and at
developing a tool to do so automatically as well as investigating how to achieve the
other, more complex kinds of non-functional requirements.

10 Manuel Brandozzi, Dewayne E. Perry

References

1. Littlewood, B.: Evaluation of software dependability. Computing Tomorrow: Future
Research Directions in Computer Science, Book, I. Wand and R. Milner, 1996

2. Van Lamweerde, A.: Requirements Engineering in the Year 00: A Research Perspective.

Invited paper for ICSE’2000. Proceedings 22nd International Conference on Software
Engineering, Limerick, June 2000, ACM Press

3. Van Lamweerde, A., Darimont, R., and Massonet, P.: Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. Proceedings RE’95 –
2nd IEEE Symposium on Requirements Engineering, York, March 1995, 194-203

4. Brandozzi, M., and Perry, D.E.: Transforming Goal Oriented requirements specifications
into Architectural Prescriptions. Proceedings STRAW ’01, ICSE 2001, Toronto, May 2001,
54-61

5. Tracz, W.: Domain-Specific Software Architecture Pedagogical Example. ACM Software
Engineering Notes, July 1995, 49-62.

6. Johnson, G., Singh, A.: Stable and fault-tolerant object allocation. Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon, 259-268

