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Abstract. In today’s highly complex software systems it’s often impossible to 
enforce and evaluate dependability requirements unless they are taken into 
account from the beginning of the development process.  Retrofitting it into the 
system at the code level is not a satisfactory way of solving this problem. 
Dependability requirements cause transformations to be made to a software 
system’s architecture on various levels.  We categorize architectural solutions to 
non-functional requirements according to the kinds of transformations they 
cause: additive, separative and integral.  The first kind of solution for non-
functional requirements just adds new components to the system; the second 
kind modifies only a subset of the system’s architecture; the third kind 
integrates the effects of the non-functional requirements throughout the entire 
architecture. The Preskriptor method, which we are developing to transform 
requirements specifications into architectural prescriptions (i.e. high-level 
architectural specifications), provides a framework to enforce non-functional 
(dependability) requirements at the architectural level. 

1 Introduction 

Experience has shown that, for complex software systems, it’s very important to take 
into account non-functional requirements as early as possible in their design process.  
The earliest they can be accounted for is the architectural design level.  This enables a 
clear understanding of the implications of non-functional requirements on the high 
level components and on the topology of such systems.   

Dependability requirements are a particular type of non-functional requirements.  
In this paper we adopt a broad definition of dependability and we intend it to 
“embrace all those aspects of behavior upon which the user of a system might need to 
place dependence: it thus includes reliability, safety, availability and security” [1]. 

Another way that an architectural prescription favors the design of dependable 
systems is by enabling the reuse of the high level design of systems that, having been 
already deployed, have demonstrated to be dependable.  A prescription allows the 
architect to reuse all the components and the topology that derive from particular 
goals (i.e. requirements), including dependability requirements.  Generally, a brand 
new system design has a higher likelihood of failure than a well tested one.   

Our approach on solving this issue is based on the properties of goal-oriented 
requirements and on those of architectural prescriptions.  In particular, our approach 
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takes advantage of the KAOS requirements specification language [3], the 
architectural prescription language Preskriptor [4]. 

Before illustrating our approach for dependability enforcement at the architectural 
level in section 4, we provide an introduction to goal-oriented requirements and to 
architectural prescriptions in sections 2 and 3 respectively.  In section 5 we illustrate 
our approach with an example, and we summarize our contributions and discuss 
future work in section 6. 

2 Goal Oriented Requirements Specifications and KAOS 

Goal oriented requirements specifications are, among all the kinds of requirements 
specifications, those that are closer to the way humans think [2] and hence the easiest 
to be understood by all the stakeholders of the system’s development process.  KAOS 
is the goal oriented specification language, introduced by A. van Lamsweerde [3], 
which we used in our methodology. 

The KAOS’ ontology is composed of objects, operations and goals.  Objects can be 
agents (active objects), entities (passive objects), events (instantaneous objects), or 
relationships (objects depending on other objects).  Operations are performed by an 
agent, and they change the state of one or more objects.  Operations are characterized 
by pre-, post- and trigger- conditions.  Goals are the objectives that the system has to 
achieve.  In general, a goal can be AND/OR refined till we obtain a set of achievable 
sub-goals.  The goal refinement process generates a goal refinement tree.  All the 
nodes of the tree represent goals. The leaves of the tree may also be called requisites.  
The requisites that are assigned to the software system are called requirements; those 
assigned to the interacting environment are called assumptions.  Here is an example 
of goal declaration in KAOS: 

 
 
Goal Maintain[AuthorizedAccessesOnly] 
InstanceOf SecurityGoal 
Concerns StockValues, BankerActor 
ReducedTo  

ConfidentialityOfAccessPassword, 
ConfidentialityOfTransmittedStockValues 

InformalDef  
Access passwords must remain confidential.  Stock 

values information has to be released only to those 
providing the correct passwords. 

 
Fig 1. Goal specification in KAOS 

 
The keyword Goal denotes the name of the goal; InstanceOf declares the type of the 
goal; Concerns indicates the objects involved in the achievement of the goal; 
ReducedTo contains the names of the sub-goals into which the goal is refined.  
Finally, there is InformalDef: the informal definition of the goal. There can also be an 
optional attribute FormalDef, which contains a formal definition of the goal (which 
can be expressed in any formal notation such as linear temporal logic). 
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3 Architectural Prescriptions and Preskriptor 

An architectural prescription [4] lays out the space for the system structure by 
selecting the architectural components (processes, data, and connectors), their 
relationships (interactions) and their constraints.  In a prescription, the fundamental 
characterization of components is given by the goals they are responsible for (that are 
their constraints).  Components are further characterized by their type, which can be 
processing, data or connecting.  The processing components, or processors, are those 
that provide the transformation on the data components.  The data components 
contain the information to be used and transformed.  The connecting components, or 
connectors, can be either implemented by data components, processing components 
or a by combination of both.  They are the glue that holds all the pieces of the system 
together.  The interactions of the components among each other, together with the 
restriction of their possible number of instances characterize the topology of the 
system.   

Fig. 2 contains the architectural prescription of a data component specified in 
Preskriptor.  Preskriptor is our architectural prescription language, whose process 
takes KAOS requirements specifications as starting point. 

 
 
Component StockValues [1, 1] 
Type Data 
Constraints Maintain[LatestStockValuesInfo], … 
Composed of DB [1,1], Server [1,1] 
Uses MarketConnect to interact with  

StockMarket 
 

Fig. 2.  A component’s specification in Preskriptor 
 

The field Component denotes the name of the component.  Type specifies the type of 
the component.  Constraints is the most important attribute of a component.  It 
denotes the requirements that the component is responsible for.  We use here the term 
constraint to denote both functional and non-functional constraints (which correspond 
to requirements of the system).  Composed of identifies the subcomponents that 
implement the component.  The last attribute, Uses, indicates what are the 
components used by the component. Since interactions can only happen through a 
connector, the Uses attribute has the additional keyword to interact with that indicates 
which components the component interacts with using a particular connector. 

Without going into the details of how to get a prescription from the requirements 
[4], it’s important to know that at the beginning some candidate components for the 
architecture are proposed, then the functional goals first, and non-functional goals 
later, are assigned, one at a time, to a subset of the potential components. The 
potential components which do not contribute to the achievement of any goal are 
discarded from the system.  The next section explains in some detail how to account 
for non-functional requirements in an architectural prescription. 
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4 Non-Functional Requirements in Prescription Design 

Taking into account Non-Functional Requirements (NFRs) while designing an 
architectural prescription has, in the most general case, three kinds of effects on the 
already designed prescription of a system: 

 
1)  The introduction of new components. 
2)  The transformation of the system’s topology, i.e. a change on the relationships   

among the system’s components. 
3)  The further constraining of already existing components. 

 
Some non-functional requirements allow for separations of concerns among the 

architectural components; other requirements, instead, are spread throughout the code: 
they reach every component of the system like blood vessels reach every cell of our 
body. 

We denote those NFRs that enable separation of concerns with respect to an 
architecture as Separative Non-Functional Requirements (SNFRs).  SNFRs are those 
requirements that can be achieved by further constraining, adding new components 
and/or by transforming the topology of only a precisely identifiable subset in strict 
sense of the architecture’s components.  By “precisely identifiable” subsystem we 
mean that the subsystem can be characterized by a property.  By subsystem “in strict 
sense” we exclude the complete system, case in which we don’t achieve separation of 
concerns.  A precisely identifiable subsystem in strict sense is, for example, a single 
component of the system.  This happens in the case of a performance goal if a single 
component is the bottleneck for computation.  Another example of a precisely 
identifiable subset in strict sense can be the set including all the connectors from a 
particular component, and the component itself, like in the fault tolerance example 
that we will illustrate in next section.   

The simplest SNFRs are those that, given a particular architecture, can be achieved 
by only adding to the system new components and the relationships of those new 
components with other components, i.e. by composing some existing components 
with new ones without changing the constraints of any of the old components.  We 
denote this kind of NFRs as Additive Non-Functional Requirements (ANFRs). 

Those NFRs that are not SNFRs are denoted as Integral Non-Functional 
Requirements (INFRs).  These requirements affect the entire system or a subset of the 
system for which no characterizing property can be found, i.e. the system is not 
precisely identifiable.  A way to achieve this other kind of requirements is by making 
all the components conform to a particular style.  An example of INFR is the goal for 
a system is to be composed by only components that conform to CORBA.  No matter 
what, this requirement has to be added as a constraint to all the system’s components. 

In general, whether an NFR is integral, separative, or additive depends on the 
architecture on which we want to achieve it.  It also may depend on the level of 
refinement of the architecture.  In fact, what at a finer resolution of an architecture is a 
clearly identifiable subset in strict sense may become the whole set of the system’s 
components at a coarser refinement. 
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5 Enforcing Dependability at the Architectural Level 

Let’s see, with the aid of an example, how a dependability requirement, in this case 
fault tolerance, can be handled by the Preskriptor process.   

Any computer network can have, even in absence of catastrophic events (such us 
power failures, earthquakes, etc.) a certain number of machines that crash or become 
inaccessible.  Let’s consider the case of a distributed system, which runs on a 
distributed network, and which contains a data component whose accessibility, at any 
time, is vital.  This data component can contain, for example, the value of the stocks 
managed by an investment bank.  It’s vital for the bankers to be able to access at any 
time the current value of a stock.  Not being possible to do so could cost to the bank 
thousands of dollars, perhaps millions! 

This kind of fault tolerance problem has been widely studied in the distributed 
systems community and a standard solution it’s the following.  Suppose that in a 
network with x nodes containing the data object StockValues there can be at most t 
(with t < x) of the x nodes that can fail at the same time.  We can achieve a fault-
tolerant real-time access to the vital data object StockValues, by having, at least, t+1 
copies of the object stored in t+1 different nodes.  To guarantee the fault tolerance we 
also need some protocol that manages the access to the object from outside the 
network, and which updates the copies of the object in the different nodes to achieve 
consistency among them.   

Fig. 3 contains the prescription of a simple distributed system.  This is the 
prescription of the system before we take into account the fault tolerance goal. 

 
Component StockValues [1, 1] 
Type Data 
Constraints Maintain[LatestStockValuesInfo], … 
Composed of DB[1,1], Server[1,1] 
Uses MarketConnect to interact with StockMarket 

 
Component BankerClient [0, n] 
Type Processing 
Constraints … 
Uses  

StockValuesAccess to interact with StockValues 
BankerUserInterface to interact with BankerActor 
 

Component StockValuesAccess [0, n] 
Type Connecting 
Constraints Maintain[AuthorizedAccessesOnly] 

 
Fig. 3.  Prescription for a stock values information system 

 
In the prescription of Fig. 3 we have only one copy of the data component 
StockValues, the component storing the latest values of the stocks belonging to 
different markets that is updated by using MarketConnect connecting it to the stock 
markets.  The prescription allows any number n of components BankerClient to be 
instantiated.  BankerClient is the piece of software running on the bankers’ machines.   
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Fig. 4. Topology graph of the prescription in Fig. 3 
 
The prescription requires the system to have communication between BankerClient 

and StockValues through connector StockValuesAccess, that has to achieve the 
security goal Maintain[AuhorizesAccessesOnly] (defined in Example 1.) together 
with other goals (such as mutual exclusion) not included here for simplicity.  Given a 
particular choice of implementation of connector StockValuesAccess, the low level 
design may instantiate the connector only once for all the n BankerClients, instantiate 
it n times, or any other number of times between 0 and n. 

Fig. 4 contains the graphical representation of the topology of an instantiation of 
the same prescription.  It’s the topology of an instantiation of the prescription because 
for each component a particular number of instances has been chosen.  For example, 
there are only three clients rather than an indefinite number; and there is only one 
instance of connector StockValuesAccess for the interaction of all the clients with 
StockValues, rather than an indefinite number of connectors that is at most equal to 
the number of BankerClient components.  Graphical representations are useful to 
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better understand the topology, which is implicit in every textual specification of a 
prescription. 

In a prescription graph, the arrow representing the Uses attribute goes from the 
component C1, which needs some information from the interaction, to the connector 
CN that makes the interaction possible, and from the connector CN to component C2 
that provides the information needed by C1. 

Fig. 5 shows the same prescription after it has been transformed to account for the 
non-functional goal of fault tolerance for the component StockValues. 

 
Component StockValues [t+1, n] 
Type Data 
Constraints Maintain[LatestStockValuesInfo], … 
Composed of DB[1,1], Server[1,1] 
Uses 

MarketConnect to interact with StockMarket  
InterCopyCoordinator to interact with  

StockValues 
 

Component InterCopyCoordinator [1, n] 
Type Connecting 
Constraints Maintain[FaultTolerance] 

 
Component StockValuesAccess [0, n] 
Type Connecting 
Constraints Maintain[AuthorizedAccessesOnly] 

 
Component StockValueFTAccess [1,n] 
Type Connecting 
Constraints 

Maintain[FaultTolerance],  
Maintain[AuthorizedAccessesOnly] 

Composed of  
IntercopyCoordinator [1,n], StockValuesAccess 

[0,n] 
 
Component BankerClient [0, n] 
Type Processing 
Constraints … 
Uses 

 StockValuesFTAccess to interact with  
StockValues 

BankerUserInterface to interact with  
BankerActor 

 
Fig. 5.  Prescription for a stock values information system with fault tolerance 

 
Like many dependability requirements, the non-functional fault tolerance requirement 
given the previous prescription is an ANFR.  It’s an ANFR because it can be assigned 
as a constraint only to the new connector InterCopyCoordinator, which coordinates 
the now multiple copies of component StockValues.  This is an example of achieving 
an ANFR via connectors; another such example can be found in a system developed 
by the DSSA group [5], case in which the NFR is performance. 
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Fig. 6. Topology graph of the prescription in Fig. 5 

 
The system specified by the new version of the prescription has to have at least t+1 (t 
being the maximum number of faults) copies of component StockValues, rather than 
only one like its pre-fault tolerance prescription.  StockValues is now using the newly 
added connector InterCopyCoordinator.  To achieve the fault tolerance goal, among 
the other things, this connector will have to make it sure that, at any time, there are at 
least t+1 copies of StockValues.  Also, it has to assure that the different copies are, 
somehow, kept consistent at least from the perspective of the rest of the software 
system.  The BankerClients interacting with component StockValues must always get 
the latest updated value of the stocks.  The access to StockValues by two or more 
clients at the same time has to abide to the same mutual exclusion policies that held 
when only one instance of StockValues was in the system.  We designed the 
prescription so that InterCopyCoordinator keeps the topological transformations 
transparent to BankerClient.  The only change in BankerClient’s specification is that 
now this component uses connector StockValuesFTAccess (resulting from the 
composition of InterCopyCoordinator and StockValuesAccess) to interact with 
StockValues, rather than using StockValuesAccess.  It’s the InterCopyCoordinator’s 
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subcomponent of StockFTValuesAccess that hooks into StockValues to guarantee that 
BankerClient always gets the updated values of the stocks. 

In a particular implementation of the prescription in a latter phase of the 
development process, InterCopyCoordinator may take care of the creation of t+1 
copies at start-up, as well as creating new copies, moving the existing ones, or remove 
copies whenever some node fails or to save on communication costs like in illustrated 
in [6]. 

The effects of the topological transformation are evident if we have a look the 
topology graph of the new prescription in Fig. 6.  There, the graph is the same than 
the one of figure 4., apart from having substituted the single component StockValues 
with a more complex component, composed by the different StockValues instances 
(three in the example) and the IntercopyCoordinator used by them.  The double edged 
arrows are a syntactic shortcut to make the graph more elegant: they represent at the 
same time the arrow that go from component A to B and the one from component B 
to component A. 

6 Conclusion 

Dependability requirements are a subset of non-functional requirements.  To better 
achieve them and manage their changes they should be taken into account already at 
the architectural design level.  We provided an overview of our methodology to 
design an architectural prescription given a set of goal oriented requirements 
specifications.   

The requirements can either be functional or non-functional.  Separative Non-
Functional Requirements (SNFRs) enable separation of concerns in achieving them.  
Their effects are limited to a subset of the system identifiable by a property (like the 
set of connectors outgoing from a particular component).  In particular, we illustrated 
with an example how a fault tolerance requirement for an object in a computer 
network (which is an ANFR, an easier case of SNFR) can be achieved on a given 
architecture.  This was done by introducing in the architecture a new connector and by 
modifying the topology of the system locally to one of its components.  Many other 
dependability requirements, including security, performance and other kinds of fault 
tolerance can be ANFRs with respect to architectures.   

Our future work will be aimed at finding out domain independent ways to 
compositionally transform the prescription of a system to account for ANFRs and at 
developing a tool to do so automatically as well as investigating how to achieve the 
other, more complex kinds of non-functional requirements. 
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