
Verifying the Preskriptor Process with Students

Introduction

 Traditionally, the most difficult transition of the development process for a non-
trivial software system has been the one from the requirements for the system (i.e. what
the system is supposed to do) to its design (i.e. the high level components and structure of
the system). This step involves going from the problem’s domain to the domain of its
solution. One of the factors that make the design of software systems so challenging is
that they have to achieve many different requirements (problems) at the same time, and
there is often not a single solution to a problem, but many possible ones.

In our previous work we introduced a new methodology that makes it possible to
derive a less constraining architectural specification (architectural prescription) from a
goal oriented requirements specification. An architecture prescription specifies the
components and their interactions considering only the problem domain goals they have
to achieve.

We claim that our methodology guarantees satisfaction of all requirements, it
provides means for better separation of concerns, and, most importantly, it makes it easier
to perform the high level design of the system starting from the system’s requirements
than traditional methodologies.
 The purpose of this experiment is to achieve an initial validation of our
methodology in a laboratory setting. A laboratory setting gives us careful control over
some of the issues while also providing an inexpensive way to do preliminary
experimental work.
 Apart from providing an initial validation of the Preskriptor process, this
experiment will give us additional insight on the design of future experiments that will be
in the industrial environment.

Sample selection and ruling out threats to validity

Our research sample will be constituted by junior and senior computer
engineering and computer science students. The sample size shall be of at least 651,
number that provides a good statistical power in the data analysis phase. We’ll take our
sample from four classes: a programming class and a software engineering class in the
computer engineering department, and two similar classes in the computer science
department. The classes we selected are: Software Engineering Processes and Data
Structures in C++, in the computer engineering department; Software Engineering and
Object Oriented Programming, in the computer science department.

This sample will not be a homogeneous one, as the students’ knowledge of
programming and their knowledge of the software engineering methodologies may vary
significantly among them. Also, the fact that computer engineering and computer science

1 Given by the Cohen table considering a statistic t, a medium effect, α=0.05 and a power equal to 0.8

students are exposed to some classes that are different in nature may affect their
performance in the project we will assign them. For example, computer engineers
generally have taken more hardware classes, while computer scientists have taken more
programming and theory classes.
To rule out the biases deriving from assigning all the students with more or a different
kinds of knowledge to one treatment or to another, we shall split the sample according to
two independent variables: knowledge of software engineering and student’s major. The
knowledge of software engineering variable can be: none, for students never exposed to
the field; some, for students that took or are taking classes in the field. Student’s major
can either be computer engineering or computer science.
Students in the software engineering classes have taken for sure programming classes
because of the departments prerequisites regulations for those classes. Students in the
programming classes may have taken a software engineering class before and we ask
them if it is so before assigning them to the right sub-sample. As a result of the split
we’ll get four sub-samples of students.

The treatments shall be the following. One treatment shall be the Preskriptor
methodology, which takes as input goal oriented requirements specifications and
produces an architectural prescription. Another treatment shall be going from informal
requirements to an architectural design in an ADL: Acme. A third treatment shall be
methodology from informal requirements to an informal architecture design.

To achieve better internal validity and external validity, we’ll assign the same
number of representatives of each sub-sample to each treatment. In fact if, for example,
we assigned some students from sub-sample S1 to all treatments but treatment T1, the
cause of better, equal or worse results of treatment T1 could have been due to the fact that
no representatives from group S1 performed the project using T1. If we decided to use
only a homogeneous sub-sample of students, we would have lost in external validity,
which we intend as a generalization of our results to the computer engineering/science
majoring student population.

To not confuse the students, they shall be randomly assigned to only one
methodology, and shall have to use only that one for the system’s design. Students won’t
be told anything about the origin of the methodology they are taught. This approach rules
out the possibility that the group to which our new methodology is given feels more/less
motivated. The different methodologies are taught by instructors who support them, in
about one hour lectures. This approach rules out biases in the results deriving from
teaching alternative methodologies in a less enthusiastic way.

The system’s design is an individual project. It’s important that the students don’t
cooperate with each other. It’s also important that the students are committed to the
project in terms of effort and time. To motivate the students, the instructors shall
emphasize the importance of the experiment. To discourage student cooperation or
communication of results on the individual projects, the instructors shall tell them how
important it is for the success of the experiment that they don’t communicate with each
other. Even grading the project may be possible in those classes for which the topics of
requirements specifications and software design are taught anyway. Being graded, or
being offered extra credit may, will provide additional motivation to the students.

The experiment’s duration will be short enough to rule out significant changes in
the independent variables used to split the sample.

Criteria and measurements for the dependent variables

The Preskriptor methodology is designed to guarantee the achievement of all the
requirements by the architecture designed according to it. This claim can be proven by
the following property of the Preskriptor methodology P1: the Preskriptor methodology is
iterated till all the requirements are achieved by designed system.

Property P1 proves that we will achieve all the requirements given that we solve
all the conflicts among requirements at the requirements specification level and that we
iterate the Preskriptor process long enough.

However, we do have to take measures to have an idea of till what extent this
property of the designed architecture is achieved by the traditional methodologies. Also,
students may apply our methodology not correctly and therefore not achieve this
fundamental product quality. Therefore, to measure the achievement of the property
thanks to the different methodologies, we’ll ask the students to identify, in the
architecture they designed, for each requirement which the components that contribute to
achieve it are, if any. A variable, called requirements satisfaction variable will contain
the number of requirements that have at least a component taking them into account.

Our second claim is that the Preskriptor methodology provides products with
better separation of concerns. By separation of concerns we mean that only a clearly
identifiable subset of the system’s components and eventually the system’s topology (in
the case of non-functional requirements) are used to achieve a particular goal. By clearly
a identifiable subset we mean a subset of the system in strict sense and that we know
exactly which are the components belonging to it. By achieving separation of concerns,
we don’t have to worry about a particular goal in any of the components not belonging to
its subset, and that when we have to modify a component contributing to the achievement
of a goal we are aware of his contribution and we can make sure keep that we keep it
after modifying it.

To measure the second property, for each requirement Ri and for each component
Ci that is not in the set of components identified by the student as achieving requirement
Ri, we will ask the student what the degree of confidence with which he/she thinks that
component C doesn’t contribute by any mean to the achievement of the requirement R.
The level of confidence shall assume one of the following values: completely sure,
almost sure, not sure. Even if a student clearly knows for sure which components
contribute to a particular requirement, this is not a guarantee that her/his architecture has
achieved separation of concerns; for she/he may have just assigned all the requirements
to all the components! For each student project we will compute the average number of
components per requirement; in general, the smaller this number is the better the
separation of concern. This measure could not yield a correct result in case the student
refined a particular component but didn’t refine others. In this case, the requirement
assigned to the refined component may then be assigned to all its sub-components. This
would raise the average number of components per requirement, yet the obtained
architecture would provide the same degree of separation of concern than the older. To
find this out, we shall analyze the architectures designed by the students, to see if there
was any rationale in assigning a requirement to some components so that the selected

components constitute a subsystem that can be identified by a property. These questions
will be asked only after they have turned in their completed project. We have to take
these measures a posteriori, or else we would be implicitly modifying the methodology
that the student is using or conditioning their behavior during the experiment. For
example, to answer the second question, a student would use traceability even if the
methodology does not require him to do so.
 Our third hypothesis concerns a very important process quality, easiness, and
states that the Preskriptor methodology makes it easier to design an architecture for the
system given its requirements. One of the criterions we shall use for the easiness is the
actual time spent by the participant students to learn the methodology and the time they
took to design the architecture. To measure this criterion we’ll ask the participants to
time themselves when they are working on our project. Since most of them will be
working with a new methodology, we’ll ask them to take track of how much time they
spent to learn the methodology. Given that the sample contains students that have
different background knowledge of software engineering, the average time they spent is a
pretty good indicator of the difficulty to learn the different methodologies. We’ll also ask
them how much time they spent on the design the system.

Another criterion we’ll consider is the easiness as perceived by the students. To
measure it, once the project is completed, we will ask the students to answer the
following questionnaire:

Please rate your level of agreement with each of the following statements.
The distance between any two consecutive levels of agreement (such as strongly agree
and agree, agree and undecided, etc.) are the same.

- I understood the rationale behind the process
Strongly agree, agree, undecided, disagree, strongly disagree

- It’s not clear why the process is structured like that
Strongly agree, agree, undecided, disagree, strongly disagree

- There were some points difficult to understand
Strongly agree, agree, undecided, disagree, strongly disagree

- The different points of the methodology were clear
Strongly agree, agree, undecided, disagree, strongly disagree

- I knew what to do to start the project
Strongly agree, agree, undecided, disagree, strongly disagree

- I wasn’t sure how to begin working on the project
Strongly agree, agree, undecided, disagree, strongly disagree

- When working on the project, at the end of each step I knew what I had to do next
Strongly agree, agree, undecided, disagree, strongly disagree

- There were times, working on the project, when I didn’t know what to do after
performing a step

Strongly agree, agree, undecided, disagree, strongly disagree

- It was straightforward to perform what each step required me to do
Strongly agree, agree, undecided, disagree, strongly disagree

- Some steps were hard to perform
Strongly agree, agree, undecided, disagree, strongly disagree

- I clearly knew when the project was completed
Strongly agree, agree, undecided, disagree, strongly disagree

- When I finished working on the project I wasn’t sure if there was still something left to
do
Strongly agree, agree, undecided, disagree, strongly disagree

We’ll use a five points scale to rate the statements. We can characterize the
easiness of a process by the easiness of understanding it, and by its usefulness in
developing an architecture.

The first four statements aim at measuring the first of these two characteristics.
There are redundancies, i.e. statements that provide the same measure, such as I
understood the rationale of the process and It is not clear to me why such a process
should work. One statement is positive and the other one is negative. This redundancy is
useful to rule out biases that may arise from the subjects’ ratings. Some students may not
be motivated and just select the same rating for each statement; other students may
always agree with a statement. In a similar way all the other positive statements have a
negative counterpart. Above we wrote the statements that provide the same measure one
after the other one. In the actual questionnaire they shall not be next to each other so that
it won’t be evident they are a different wording of the same sentence.

The latter eight statements are used to measure how useful the methodology was,
how easy it was for the student to apply the methodology. The student may find it
difficult to derive in practice an architecture from its requirements, even when he learned
well the methodology.

