
Transforming Goal Oriented Requirement Specifications  
into Architecture Prescriptions 

 
 

Manuel Brandozzi 
Center for Advanced Experimental Software 

Engineering Research 
The University of Texas at Austin 

mbrandoz@ece.utexas.edu 
 

Dewayne E. Perry 
Center for Advanced Experimental Software 

Engineering Research  
The University of Texas at Austin 

perry@ece.utexas.edu 
 

 
Abstract 

 
In this paper we propose a new method to 

transform the requirements specification for a software 
system into an architectural specification for the system.  
In the introduction we illustrate the needs for this new 
method in the context of the software development process 
and we explain the concept of architecture prescription. 
Then, we give a brief overview of KAOS, the goal oriented 
requirements specification language we used as a starting 
point.  We characterize the APL (Architecture 
Prescription Language) and show how to use it to derive 
an architecture prescription from the KAOS 
requirements.  We then illustrate our technique with a 
practical example, namely the meeting-planning problem.  
Finally, we discuss related work and indicate future 
directions of our research. 

 
 

1. Introduction 
 

At present, there are many different software 
development processes used in industry.  These processes 
may be more or less suited for the particular application 
being developed.  A common characteristic of most of the 
development processes is that there is feedback from one 
phase to another one.  Let’s consider the earlier phases of 
a generic development process with feedback.   

The process starts with the “requirements 
analysis and specification” phase.  In this phase, the 
requirements engineer has to understand the user’s needs 
and to document them, either formally or informally.   

The second phase is the “architectural design” 
phase.  In this phase, the system architect selects the 
architectural elements, their interactions and the 
constraints on these elements and interactions to achieve a 
basic framework to satisfy the requirements specified in 
the previous phase. 

Then there is the design phase.  During this 
phase the designer decides how to decompose the 
elements described in the architectural design into low 
level modules, which already existing components might 
be reused to implement these modules, or which 
algorithms and data structures should be used to 
implement the modules.   

The later phases of the process include coding, 
testing, integration, delivery and maintenance. Each of the 
front-end phases can be viewed as the implementation of 
the previous one.   

The process is iterative because, typically, either 
to make the implementation of a phase feasible, or more 
efficient, we return to previous phases, one or more times, 
and modify the relevant software artifacts of those phases.  
Coming back from one phase to a previous one 
constitutes considerable work and time overhead because 
it’s generally very difficult to understand what has to be 
modified in the previous phase and these modifications 
may have side effects.  So, there is a need to minimize the 
number of iterations, or to make them easier to perform 
and easier to identify their side effects whenever they are 
necessary.  Iterations in the process happen also when it is 
discovered that the system doesn’t do what the user really 
wanted.  So, we feel we can improve the process by using 
better methods to specify the requirements and by using 
rigorous techniques to pass from each phase of the 
development process to the next one.   

There are further advantages of passing from a 
phase to the next one using formal techniques.  By doing 
this, we achieve reusability of part of the artifact of each 
phase.  The earlier the phase the artifact belongs to, the 
higher is the gain obtained.  Let’s suppose, for instance, 
that we have to develop a new system for which only a 
small part of the requirements differ from those of a 
system already developed.  With our approach that maps 
the requirements to the components derived from them, 
we know exactly what has to be changed in the 
architecture of the system already developed in order to 
obtain an architecture of the new system.  The same 



applies when some of the requirements of a system are 
changed, for whatever reason, during or after the 
development of the system. 

As experience shows, in traditional approaches 
the modification of requirements might have very subtle 
effects on the architecture and a brand new architecture 
may be needed each time requirements are modified if we 
are to achieve a reliable system.  The method we 
introduce in this paper, by providing requirements to 
architecture traceability, enables us to reuse parts of the 
architecture, and hence to reuse all the derived artifacts 
that implement the architectural components.  It enables a 
development team to save both time and resources.   

Our work has been focused on finding a method 
for the first of the transitions from one phase to the next: 
the transition going from the requirements specification to 
the architectural design, i.e. the one that has the highest 
leverage.  Traditionally, this transition has been one of the 
most difficult aspects of software engineering.  The 
primary problem in software development is transforming 
what we want the system to do into a basic framework for 
how to do it.  Our method takes as input goal oriented 
requirement specifications and returns as output an 
architecture prescription.  An architecture prescription is 
an alternative way to specify an architecture.  We chose 
goal oriented specifications because we think they are, 
among all the kinds of requirements specifications, those 
more near to the way human thinks and are easy to 
understand by all the stakeholders.  Another reason is that 
they are particularly suitable to be transformed into an 
architecture prescription.  In the next section we’ll give a 
brief description of KAOS, the goal oriented specification 
language that we used in our example that has been first 
introduced by Axel van Lamsweerde et al. [1]. 

Let’s now explain what we mean by an 
architecture prescription, a concept introduced by 
Dewayne E. Perry and Alexander L. Wolf [3].  An 
architecture prescription lays out the space for the system 
structure by restricting the architectural elements 
(processes, data, connectors), their relationships 
(interactions) and constraints that can be use to implement 
the system.  The main advantages of an architecture 
prescription over a typical architecture description are that 
it can be expressed in the problem domain language and 
it’s often less complete, and hence less constraining with 
respect to the remaining design of the system.  An 
architectural prescription concentrates on the most 
important and critical aspects of the architecture and these 
constraints are most naturally expressed in terms of the 
problem space (or business domain, the domain of the 
problem).  An architecture description, on the other hand 
is a complete description of the elements and how they 
interface with each other and tends to be defined in terms 
of the solution space rather than the problem space (or in 
terms of components such as GUIs, Middleware, 

Databases, etc, that are used to implement the system). 
Since an architecture prescription is expressed in the 
domain language, it makes it easier to create a mean of 
transforming requirement specifications into architectural 
specifications.  The two kinds of specifications can make 
use of a common vocabulary to relate the requirements’ 
goals to the architectural constraints. 

The purpose of our work is twofold: to propose 
architecture prescriptions as a way to specify the 
architectures of software systems, and to design a 
technique to transform the requirements specifications 
into prescriptive specifications. 

The rest of the paper is structured as follows:  in 
section 2 we give an overview of KAOS, in section 3 we 
show how to derive from a KAOS specification the 
architecture prescription whose architectural elements, 
and the way these elements interact, are defined via 
application specific constraints.  In section 4 we’ll give a 
practical example of the method using the meeting-
planning problem and, finally, in section 5 we will 
summarize the contribution of our work and illustrate its 
future directions.  
 
2. Overview of the KAOS Specification 
Language 
 

KAOS is a goal oriented requirements specification 
language [1].  Its ontology is Composed of: 

 
• Objects - they can be: 

•   Agents: active objects 
•   Entities: passive objects  
•   Events: instantaneous objects 
•   Relationships: depend on other objects 

 
• Operations: they are performed by an agent and 

change the state of one or more objects. They are 
characterized by pre-, post- and trigger- 
conditions. 

 
• Goal: it’s an objective for the system.  In 

general, a goal can be AND/OR refined till we 
obtain a set of goals achievable by some agents 
by performing operations on some objects.  The 
refinement process generates a refinement tree. 

 
• Requisites, requirements and assumptions: the 

leaves obtained in the goal refinement tree are 
called requisites.  The requisites that are assigned 
to the software system are called requirements; 
those assigned to the interacting environment are 
called assumptions. 

 



How are requirements specified?  The high-level 
goals are gathered from the users, domain experts and 
existing documentation.  These goals are then AND/OR 
refined till we derive goals achievable by some agents.  
For each goal the objects and operations associated with it 
have to be identified.  Of course more than one 
refinement for a goal may be possible, and there may be 
conflicts between refinements of different goals that can 
be resolved as proposed in [2]. It’s up to the requirements 
engineer to choose the best refinement tree.  A refinement 
tree could be modified afterwards in case there are 
problems implementing the artifacts of a latter phase of 
the development process. 

In exhibit 1. there is an example of a goal 
specified using KAOS. 
 
 
Goal Achieve[MeetingRequestSatisfied] 

InstanceOf SatisfactionGoal 
 Concerns Meeting, Initiator, Participant 
 ReducedTo SchedulerAvailable, 
fffffffffffffffffffffffffff ParticipantsConstraintsKnown, 
fffffffffffffffffffffffffff MeetingPlanned, 
fffffffffffffffffffffffffff ParticipantsNotified 

InformalDef Every meeting request should be 
satisfied within some deadline associated with the request.  
Satisfying a request means proposing some best meeting 
date/location to the intended participants that fit their 
constraints, or notifying them that no solution can be 
found with those constraints. 
 

Exhibit 1. example of a goal specification 
in KAOS 
 
The Goal keyword denotes the name of the goal; 
InstanceOf declares the type of the goal; Concerns 
indicates the objects involved in the achievement of the 
goal; ReducedTo traces into which sub-goals the goal is 
resolved.  Finally, there is informal definition of the goal 
followed by an optional formal definition. FormalDef is 
the optional attribute; it contains a formal definition of the 
goal that can be expressed in any formal notation. 
 
3. From Requirements to Architecture 

 
3.1 From KAOS entities to APL entities 

 
How is it possible to transform a KAOS 

requirements specification into an architecture 
prescription for the software system?  Exhibit 2. shows 
the correspondence we found between KAOS entities that 
refer to a subset of the system specification and the 
Architecture Prescription Language (APL) entities that 
describe the constraints on the software architecture.  The 

subset of the overall system specification considered is 
the subset concerning the software system specification. 
 
KAOS entities                        APL entities                                                                            
 
•Agent                                 •Process component / 
ddddddddddddddddddddddddConnector component 
 
•Event                                  •Event 
 
•Entity                                  •Data component 
 
•Relationship                        •Data component / 

ddfRelationship among 
ddddddddd fcomponents 

 
•Goal                                     •Constraint on the system                       
dddddddddddddddddddddddffor on a subset of the system                  
dddddddd fffffffffffffffffffffff •One or more additional 
ffffffffffffffffffffffffffffffffffdf processing, data or 
dddddddddddddddddddddddddconnector components 
 
  Exhibit 2. Mapping KAOS entities to APL 
entities 

 
 
Each object in the requirements generally 

corresponds to a component in the architecture.  More 
specifically, an agent object, an active object, corresponds 
to either a process or a connector.  By definition, a 
process (thread, task) is an active component.  What 
might not be immediately apparent is that also a 
connector can be an active component.  An example of 
this type of connector is a software firewall.  A software 
firewall is an active entity that checks whether the 
processes that want to interact satisfy some conditions or 
not, and allows or denies the interaction among them 
accordingly. 

The events relevant to the architecture of the 
system are those either internal to the software system or 
those in the environment that have to be taken into 
account by the software system.  The receiving of a 
message by a process is an example of internal event.  
The triggering of an interrupt by a sensor is an example of 
external event.  An event is generally associated to a 
connector. 

An entity, or passive object, corresponds to a 
data element, which has a state that can be modified by 
active objects.  For example, the speed of a train is a 
variable (entity) that can be modified by a controller 
(agent). 

A relation corresponds to another type of data 
element that links two or more other objects and that can 
have additional attributes.  An example of relation data is 
a data structure whose attributes are the type of train, its 



current speed and its maximum speed (additional 
attribute). 

A goal is a constraint on one or more of the 
components of a software system.  Additional 
components may be derived to satisfy a non-functional 
goal.  An example of a constraint deriving from a goal is 
that a component of the software system of an ATM has 
to check if the password typed by the user matches the 
password associated in the system to the ATM card 
inserted. 
 
3.2 The Architecture Prescription Language 

 
Appendix A shows an abstract example of the 

refinement tree for the goals (on the left), and of the 
refinement tree for the corresponding architecture 
prescription components (on the right).  As the example 
shows, the trees don’t have the same shape.  It would be a 
pure coincidence if they did have it.   

The goal refinement tree is obtained as we 
explained in section 2.  All the refinements are pure “and” 
apart from the refinement of goal G1.  G1 is obtained by 
achieving requirement R1.1 and either requirement R1.2 
or goal G1.1 (the arch between R1.2 and G1.1 denotes an 
“or” refinement).  The sub-goals/requirements refining 
goal Gi are denoted as Gi.j, with j varying from 1 to the 
number of sub-goals/requirements.  We use an analogous 
notation for the subcomponents. 

In the component refinement tree, the root 
component C is the software system itself.  The software 
system is viewed as a component of the bigger system 
that may include hardware devices, mechanical devices 
and human operators.  We want to note here that also for 
these other kinds of systems we could design an 
architecture prescription language.  Ours, anyway, is 
tailored to the software sub-system.  The first refinement 
of C is obtained by considering the components directly 
derived by the KAOS specification by using the 
methodology we explained in section 3.1. Note that we 
may provide further refinements or even redo existing 
refinements due to non-functional requirements such as 
performance and reliability or from reusability 
considerations.   

  Exhibit 3. shows how the APL describes all the 
attributes of the components in the refinement tree.  
Please note that the Composed of relationship is the only 
one that can be deduced directly from the tree. 

 
Component C:  

KAOS spec.: S 
Type: Software System 
Constraints: R1.1, (R1.2 or (R1.3.1, R1.3.2)), 

dddddddddddddssssssR2.1, R3.1, R3.2 
Composed of: C1, C2, C3, C4 
Uses: / 

 
Component C1:  

KAOS spec.: S 
Type: Processing 
Constraints: R1.1, R3.1a 
Composed of: C1.1, C1.2, C1.3 
Uses: C2 to interact with {C3}  
  

Component C2:  
KAOS spec.: S 
Type: Connecting 
Constraints: R3.1b 
Composed of: C2.1, C2.2 
Events: E1, E2, E3 
Uses: /             
 

Component C3:  
KAOS spec.: S 
Type: Data 
Constraints: R1.2, R2.1 
Composed of:/ 
Uses: C2 to interact with {C1, C4} 
 

Component C4:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1, R3.2 
Composed of: C4.1, C4.2 
Uses: C2 to interact with {C3}  

 
Component C1.1:  

KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of:/ 
Uses:/ 
 

Component C1.2:  
KAOS spec.: S 
Type: Connector 
Constraints: R3.1a 
Composed of:/ 
Uses: C2 to interact with {C3}  
 

Component C1.3:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of:/ 
Uses:/ 
 

Component C2.1:  
KAOS spec.: S 
Type: Data 
Constraints: R3.1b.1 



Composed of:/ 
Events: E1, E2 
Uses:/ 
 

Component C2.2:  
KAOS spec.: S 
Type: Processing 
Constraints: R3.1b.2 
Composed of:/ 
Events: E2, E3 
Uses:/ 
 

Component C4.1:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of: / 
Uses: C2 to interact with {C3}  
 

Component C4.1:  
KAOS spec.: S 
Type: Data 
Constraints: R3.2 
Composed of: / 
Uses: C2 to interact with {C3}  
 
Exhibit 3. APL prescriptions 
 
The attribute KAOS spec. denotes the 

specification from which the component is derived.  In 
our example we called this specification S.   

Type specifies the type of the component.  The 
possible types for components are: Software System, 
Processing, Connecting and Data.   

Constraints is the most important attribute of a 
component.  It denotes which requirements the 
component satisfies.  For example, the root component C, 
i.e. the software system, must achieve all the goals.  The 
subcomponents in the first layer of the tree, instead, have 
to satisfy only a subset of the system requirements.  The 
union of the requirements achieved by the leaves 
components is the complete set of requirements. 

Also, a component may be only contributing in 
achieving a goal without being able to achieve it alone.  
This may happen in case of non-functional requirement 
such as security.  When a component cannot achieve a 
requirement only by itself, we represent it in our 
prescription language by appending a different lower case 
letter to the name of that requirement in each of the 
components involved in achieving it.  In our example, this 
happens with C1 and C2. In order to achieve goal R3.1, 
goals R3.1a and R3.1b have to be achieved by C1 and C2 
respectively. 

The same requirement can be achieved by more 
than one software component. One reason for such a 

redundancy might be a reliability goal; another reason 
might be that the achievement of a goal may best be done 
cooperatively.  In refinements successive to the first one 
(in which all the components are directly derived from the 
requirements specification) the constraints themselves can 
be further refined in order to better allocate them to 
different subcomponents.  In the next paragraph we’ll 
explain the reasons for such subcomponents.  So, it may 
happen what we show in our abstract example.  In our 
example C2.1, a subcomponent of C2, whose constraints 
are requirements R1 and R3.1.b, has as constraint 
requirement R3.1b.1 (R3.1b.1 is one of the two sub-
requirements that and-refine R3.1b).  The other 
subcomponent of C2, C2.2 has R3b.2 as constraint.   

Composed of identifies the subcomponents that 
implement the component.  The subcomponents of the 
root component are obtained directly from the KAOS 
specification.  The subcomponents in the next layers of 
the components refinement tree are designed by the 
software architect in order to make the software system 
achieve other desirable characteristics, such as better 
performance or greater reusability of the components 
(even across different domain).  For example, a 
component directly derived from the KAOS specification 
might be too big; it could have too many requirements as 
constraints.  If the component implements many 
requirements many users/software components might use 
it.  This would lower the system performance.  Also, 
reducing the constraints on a component will make it 
easier to modify the component in case one of the 
requirements is removed or changes during the software 
development process.  To achieve this purpose the 
component could be split into many subcomponents that 
have fewer requirements or even only a part of a 
requirement.  As we said in the previous paragraph, some 
requirements might be further refined after the 
specification phase, even though they are already directly 
achievable by some agents.  Having to satisfy only a sub-
requirement may make the subcomponent more reusable.  
For example, a requirement on a component for an 
intelligent house software system might have to take into 
account both inputs from a smoke detector and a heat 
sensor to detect a fire.  Even though the requirement can 
be directly achieved by a single component, to make the 
fire manager components more portable (to a system that 
has a smoke sensor only, for example) as well as better 
maintainable, we can split the requirement into smoke 
detection and heat detection sub-requirements and assign 
them to different components. 

The attribute Events, generally assigned to 
connector components, indicates the events the 
component has to handle. 

The last attribute, Uses, indicates what are the 
components used by the component.  Since interactions 
always happen through a connector, the Uses attribute has 



the optional keyword to interact with that indicates which 
components the component interacts with using that 
connector. 
 
4. An Architecture Prescription for the 
Meeting-Planning Problem 

 
Now, we will know show how to obtain an 

architecture prescription in practice.  For this purpose we 
will consider the meeting-planning problem.  At the 
highest abstraction level there are two goals that every 
meeting planner has to achieve.  They are (in KAOS 
notation): 

 
Achieve[MeetingRequestSatisfied] 
Maximize[NumberOfParticipants] 
 
We already showed the specification of the first 

goal (exhibit 1.).  From this goal specification we obtain 
three agents one of which is software: Scheduler.  From 
the sub-goal Achieve[SchedulerAvailable] we deduce that 
the root component of the architecture prescription must 
be parent also of other two components: 
SchedulerManager and MConnector.  Scheduler Manager 
finds an available scheduler, communicating to the 
existing schedulers by MConnector, and in case no 
Scheduler is available it builds a new one.  We call the 
root component MeetingWizard.   

The second goal translates in an additional 
constraint on Scheduler.   

Without going into the details of the KAOS 
specification for the meeting planner, some of which are 
in [1] and [2], in exhibit 6 we show some of the 
components of the meeting planner architecture 
prescription that illustrate many of the characteristics we 
discussed before. 

 
Component MeetingWizard: 

KAOS spec.: MeetingPlanner 
 Type: Software System 
 Constraints: {the complete set of requirements} 

Composed of: Scheduler, SchedulerManager, 
ssssssssssssssssMConnector 
Uses:/ 

 
Component Scheduler: 

KAOS spec.: MeetingPlanner 
 Type: Processing 
 Constraints: {the complete set of requirements}               
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr \ Achieve[SchedulerAvailable] 

Composed of: PlanningEngine,  
                       ParticipantClient, 

fffffffffffffffffffffffffffff MeetingInitiatorClient,                                        
e                                  ffResourcesAvailableRepository, 

fffffffffffffffffffffffffffff SecureConnector1,  
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrSecureConnector2 

Uses:/ 
 

Component SchedulerManager: 
KAOS spec.: MeetingPlanner 

 Type: Processing 
 Constraints: Achieve[SchedulerAvailable] 
 Composed of:/ 

Uses: Scheduler,  
dddddMConnector to interact with {Scheduler} 
 

Component PlanningEngine: 
KAOS spec.: MeetingPlanner 
Type: Processing 
Constraints: {subset of the set of requirements} 
Composed of: Planner,  
                       Optimizer 
Uses: SecureConnector to interact with 

ffffffffffffffffffffff{ParticipantClient, MeetingInitiatorClient} 
 

Exhibit 6. APL sample prescription for the 
meeting planner 
 
 
 
5. Conclusion 

 
In this paper we have illustrated the advantages 

of formal techniques to go from a phase of the software 
development process to its next one.  We focused on what 
we consider the most important of these transitions: the 
one from requirements to architecture.  To make a formal 
transition between these two phases easier we have 
introduced an architecture prescription language (APL), 
that specifies the structure of the software system and its 
components in the language of the application domain.  
This higher-level architecture specification can be then 
easily translated, if necessary, in an architecture 
description, in the solution domain.  We took advantage 
of the characteristics of KAOS as a requirements 
specification language. 

Other researchers in the past have tried to find 
techniques to pass from requirements to architecture.  
Nenad Medvidovic et al., in [4], developed a technique to 
pass from requirements specified in WinWin to an 
architectural model for the system.  Their technique, 
while providing a framework to pass from requirements to 
architecture, is not formal and still leaves a lot of choices 
to the architects.  This due in part the big gap between the 
requirements specification, specified in the problem 
domain language, and architectural design, described in 
the solution domain language.  Other researchers have 
designed object-oriented techniques to pass from 
requirements to architecture.  These techniques, though, 



are still very informal with little guidance for the architect 
on to decompose the architecture into classes and which 
attributes and methods to assign to those classes.  
Furthermore, this approach is tailored to an object 
oriented design. 

Our goal is to design a formal technique to pass 
from the requirements to an architecture prescription that 
can be refined afterwards.  The formality is necessary to 
make it sure that none of the requirements are neglected, 
and that we don’t introduce any useless component or 
constraint.  The generality of our approach allows the 
architects to choose their favorite ADL (architecture 
description language) to describe an architecture 
prescribed in APL. 

Future areas of our work will include: define and 
perform experiments that tests our method, further 
research or even redefine the components of the APL to 
achieve non functional properties such as better 
performance and reusability, and build supporting tools 
that take the requirements for a software system and some 
other parameters and transform them into an architecture 
prescription for the system. 

 
 

6. References: 
 
[1] Anne Dardenne, Axel van Lamweerde and Stephen Fickas, 
“Goal-directed Requirements Acquisition”, Science of 
Computer Programming, Vol.20, 1993, pp. 3-50 

 
[2] Axel van Lamweerde, R. Darimont, and E. Letier, 
“Managing Conflicts in Goal-Driven Requirements 
Engineering”, IEEE Transactions on Software Engineering, 
IEEE Computer Society, November 1998, pp. 908-925. 
 
[3] Dewayne E. Perry, Alexander L. Wolf, “Foundations for the 
Study of Software Architecture”, Software Engineering Notes, 
ACM SIGSOFT, October 1992, pp. 40-52 
 
[4] Nenad Medvidovic, Paul Gruenbacher, Alexander F. Egyed, 
and Barry W. Boehm, “Bridging Models across the Software 
Lifecycle”,  Technical Report USC-CSE-2000-521, University 
of Southern California 
 
[5] Axel van Lamsweerde, Robert Darimont, and Philippe 
Massonet, “Goal-Directed Elaboration of Requirements for a 
Meeting Scheduler: Problems and Lessons Learnt”, Proceedings 
RE’95 – 2nd IEEE Symposium on Requirements Engineering, 
York, March 1995, pp. 194-203 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Goal Refinement Tree 

G 

G1 G2 G3 

R1.1 R1.2 G1.3 R2.1 R3.1 R3.2 

R1.3.1 R1.3.2 

Component Refinement Tree 

C 

C1 C2 C3 C4 

C1.1 C1.2 C1.3 C2.1 C2.2 C4.1 C4.2 

Appendix A. 


