

From Goal-Oriented Requirements to Architectural Prescriptions:

The Preskriptor Process

Manuel Brandozzi
UT – ARISE

Advanced Research in Software Engineering
The University of Texas at Austin

manuelbr@mail.utexas.edu

Dewayne E. Perry
UT – ARISE

Advanced Research in Software Engineering
The University of Texas at Austin

perry@ece.utexas.edu

Abstract

The step from the requirements for a software system
to an Architecture for the system has traditionally been
the most complex one in the software development
process. This step goes from what the system has to
achieve, to how it achieves it. In order to make this step
easier, we propose the use of Preskriptor, a prescriptive
architectural specification language, and of its associated
process, the Preskriptor process. Architectural
prescriptions consist in the specification of the system’s
basic topology and of the constraints associated with it
and its components and interactions. The Preskriptor
process provides a systematic way to satisfy both the
functional and non functional requirements from the
problem domain, as well to integrate architectural
structures from well known solution domains.

1. Introduction

The most difficult transition in the development
process for a non-trivial software system is likely the one
from the requirements for the system to the system’s
architecture. This step involves going from the problem’s
domain to the domain of its solution [1]. One of the
factors that makes the design of software systems so
challenging is that they have to satisfy many different
requirements (problems) at the same time, and there is
often more than a single solution to a particular
requirement.

Requirements specifications can be viewed as a
contract between the customer and the software
developers. Hence, they should be not only easy to
understand by the software architects and engineers but
also by the domain experts and users.

We propose the use of architectural prescriptions [2] to
perform the step from requirements to architecture. An
architectural prescription is the architecture of the system
in terms of its components, the constraints on them and
the interrelationships among the component (i.e., the
constraints on their interactions). At least initially, the

constraints are only those coming from the problem
domain. While architectural descriptions provide more or
less complete details to the designers, prescriptions make
the step from requirements to architecture easier to model
and to perform. Prescriptions may also provide a means
of deeper understanding about the architecture. We will
show how we can perform this step from goal-oriented
requirements. Another advantage of prescriptions is that,
being at a higher level of abstraction, they can be reused
more easily, and they enable more creative designs.

The same prescription could be used for an entire
software family [3] of applications that differ only in
deployment requirements. If the applications differ also
in some requirements coming from the problem domain,
like the interaction with different types of users, we can
first develop the prescription for an ancestor system that
has all and only the requirements common to the whole
family and then get, by extending this prescription, the
prescriptions for all the descendent applications.

Because Architectural Prescription Languages APLs,
which we introduced in [4], are written in an elementary
ontology, they enable new, innovative designs. Let’s
consider, for example, a distributed system. An
architecture description language may include elements
such as clients and servers. It may be that the architect
writing a specification in such an architecture description
language uses client and server components also when,
for example, a multi-peer architecture might be a better
solution. The designer will then be constrained by such
architecture to a low-level design that adopts a client-
server solution. By describing the system at a higher
level of abstraction, a specification in an architectural
prescription language would instead permit the designer
to choose the best solution at the design level and even let
him/her take different choices for different members of
the family.

The paper is structured as follows: we first give an
overview of KAOS, the requirements specification
language our process uses as a starting point; then we
introduce the Preskriptor architectural prescription
language and process illustrating them with a practical
example; we conclude by summarizing the fundamental

results of the paper, and by discussing the future
directions of our research.

2. Overview of the KAOS Specification
Language

KAOS is a goal oriented requirements specification
language [5]. Its ontology is composed of objects,
operations and goals. Objects can be agents (active
objects), entities (passive objects), events (instantaneous
objects), or relationships (objects depending on other
objects). Operations are performed by an agent, and
change the state of one or more objects. They are
characterized by pre-, post- and trigger- conditions.

Goals are the objectives that the system has to achieve.
In general, a goal can be AND/OR refined till we obtain a
set of achievable sub-goals. The goal refinement process
generates a goal refinement tree. All the nodes of the tree
represent goals. The leaves may also be called requisites.
The requisites that are assigned to the software system are
called requirements; those assigned to the interacting
environment are called assumptions.

Let’s briefly see how obtain a requirements
specification in KAOS. The high-level goals are gathered
from the users, domain experts and existing
documentation. These goals are then AND/OR refined
till we derive goals that are achievable by some agents.
For each goal the objects and operations associated with it
have to be identified. Of course, more than one
refinement for a goal may be possible, and there may be
conflicts between refinements of different goals that can
be resolved as proposed in [6]. It’s up to the
requirements engineer to generate a “good” refinement
tree. By “good” refinement tree we mean one that does
not contain conflicts among refinements of different goals
and from which it is possible to derive an architecture that
achieves those goals. In addition to iterations with the
requirements specification process, there may also be
iterations between the requirements specification process
and the architecture prescription process.

In figure 1., there is an example of a goal specified in
KAOS, taken from the example we’ll use in next section.

Goal Maintain[ConfidentialityOfSubmissions]
InstanceOf SecurityGoal
Concerns DocumentCopy, Knows, People
ReducedTo

ConfidentialityOfSubmissionDocument
ConfidentialityOfIndirectSubmission

InformalDef A submission must remain
confidential. A paper that has to
be submitted has to remain
confidential.

Figure 1. Example of a goal specification in
KAOS

The keyword Goal denotes the name of the goal;
InstanceOf declares the type of the goal; Concerns
indicates the objects involved in the achievement of the
goal; ReducedTo contains the names of the sub-goals into
which the goal is resolved. InformalDef is the informal
definition of the goal. Then there could be FormalDef, n
optional attribute; it contains a formal definition of the
goal (which can be expressed in any formal notation such
as first order logic).

3. The Preskriptor Process

We will illustrate our technique with an example. In

the example, we shall obtain an architectural prescription
for a system that automates some of the functions in the
paper selection process for a scientific magazine (or a
conference). Our starting point is a specification of this
software system in KAOS. The fundamental goal of the
paper selection system is to keep high the quality of the
magazine.

We have to determine the fundamental goal (root goal)
that the system has to achieve; this goal is the only
unavoidable constraint coming from the problem domain.
By using a KAOS specification as a starting point, we can
gradually increase the degree of constraint of the solution
by considering the goals that refine the root goal. We can
keep on refining goals to an appropriate level. The
Preskriptor process can take as input goals in any level of
the resulting goal refinement tree.

If we take the root of the tree, although the resulting
prescription will enable new, innovative solutions to the
problem, it will generally provide too little guidance to
the system’s designers.

On the other hand, taking the leaves of the goal
refinement tree (or even a further refining of the
prescription to achieve qualities as performance,
reusability, etc.) may produce a specification that
constraints too much the lower level designs. As Parnas
once noted, if in order to design washing machines we
used all the requirements coming from how we wash the
clothes by hand, we wouldn’t have got the very effective
rotary washing machines of nowadays.

Our approach leaves the software architect free to
choose the degree of constraint desired on the
architecture. Also, he or she could change the degree of
constraint during the architecture process according to
necessity. In the example that follows we use a high
degree of constraint (i.e. we consider goals deep in the
goal refinement tree) only for demonstration purposes.

The process of deriving the prescription is composed
of three steps that can be followed by an optional one,
and which may be iterated. In the first step we derive the
basic prescription from the root goal for the system. This
root goal is either already given or it can be obtained by
abstracting its sub-goals. In the second step we get the

components that are potential sub-components of the
basic architecture considering the objects that are in the
KAOS specification. In the third step we choose a level
of refinement of the goal refinement tree that we consider
appropriate, we decide which of the sub-goals at this level
are achieved or co-achieved by the software system, and
we assign them to the sub-components which we derived
at step 2. As a last step, the architectural prescription
may be further refined to achieve additional non-
functional properties.

Our example considers the KAOS specification for the
paper selection process developed in the thesis [7]. We
shall transform this KAOS specification into a
prescription for a Software System that is to assist in the
paper selection process. Figure 2. illustrates the first
three steps of the process.

Figure 2: The fundamental steps of the
Preskriptor process

3.1 The First Step of the Methodology

The software system, that we hereafter denote as

“SelectionManager”, is co-responsible for the root goal
“Maintain[QualityOfTheScientificMagazine]” together
with the system composed of the people involved. The
software system performs different functions that can be
automated and it interacts with the human system. Its
purpose is to speed up the paper selection process and to
improve its confidentiality.

The Preskriptor language is an implementation of the
APL introduced in [4].

Preskriptor Specification: ScientificPaperManager
KAOS Specification: PaperSelectionProcess
Components:

Component SelectionManager [1,1]
Type Processing
Constraints

Maintain[QualityOfTheScientificMagazine]
Composed of …
Uses PeopleConnect to interact with (AutorAgent,

ChiefEditorAgent,
AssociatedEditorAgent, EvaluatorAgent)

Figure 3: Example of a specification in
Preskriptor

At the beginning of a Preskriptor specification is the

declaration of its name. It’s followed by the declaration of
the KAOS specification from which the prescription is
derived. A prescription may derive from only one KAOS
specification, and if the prescription derives from several
different KAOS specifications, it’s better to merge the
specifications first and then to architect the system. By
doing so, if there are conflicts between goals in different
specifications they will be solved early at the
requirements phase. So, all the components of a
prescription derive from the same KAOS specification,
which may be the union of several KAOS specifications.
Following are the definitions of the components.

The field Component specifies the name of the
component. Type denotes the type of the component.
Constraints is the most important attribute of a
component. It denotes which are the requirements that
the component is responsible for. We use here the term
constraint to denote both functional and non-functional
constraints (both corresponding to requirements on the
system). Composed of identifies the subcomponents that
implement the component. The last attribute, Uses,
indicates which are the components used by the
component. Since interactions can only happen through a
connector, the Uses attribute has the additional keyword
to interact with denoting which components the
component interacts with using a particular connector.

At the highest layer of abstraction, to which the first
step of the specification corresponds, we have to write
next to the name of a component its possible number of
instances in the system. At the other layers this
information is optional because it will be contained
anyway in the Composed of field of the super-component
of the component considered. For example, [1,n] means
that the component can have any number of instances
from 1 to an arbitrary number n.

We will fill in the Composed of field after we decide
how to refine the system at the third step. The software

Step 1

Step 2

Root Goal(s)

KAOS Objects

Root Component(s)

Step 3 KAOS Goals

Potential Sub-
component(s)

Architectural

 feedback to
requirements

 from requirements
 specification phase

system has to interact with the people involved in the
process. To do so, it uses the (fairly complex) connector
“PeopleConnect”. To distinguish the people involved in
the process (agents) from the data components that may
be used in the software system to represent them, we
added the Agent suffix to their names. PeopleConnect is
specified as follows:

Component PeopleConnect [1,n]
Type Connector
Constraints

Maintain[QualityOfTheScientificMagazine]
Composed of …
Uses /

Figure 4. Example of a connector specification

The symbol “/” means none and, for now, we will omit

the fields whose value is none. The formal specification
of the Preskriptor language is in the Appendix.

3.2 The Second Step

From the objects in the KAOS specification we derive
potential data, processing and connector components that
can implement SelectionManager. If in the third step we
don’t attribute any constraint to these potential
components, they won’t be part of the prescription. In
that case, in fact, they won’t be necessary to achieve the
goals of the KAOS specification. In figure 5. is a sample
this set for the paper selection process.

Component Document
Type Data
Constraints …

Component Paper
Type Data
Constraints …

Component People
Type Data
Constraints …

Component Knows
Type Data
Constraints …
Composed of People[0,m], Document[0,n]

Figure 5. Sample of potential components for the
paper selection system

The notation, used in the Composed of field of the last

component, means that the component is composed of 0
or more “People” sub-components and by 0 or more
“Document” sub-components. Obviously, the number of
instances assigned to different sub-components doesn’t
have to be the same.

“SelectionManager” could be composed also of the
following processing component, and the following
connectors, which connect the processing component to
the data ones.

Component SelectionManagerEngine
Type Processing
Constraints

Maintain[QualityOfTheScientificMagazine]
Composed of …
Uses

PeopleConnect to interact with
 (AuthorAgent, ChiefEditorAgent,
 AssociatedEditorAgent, EvaluatorAgent),
Conn1 to interact with Document,
Conn2 to interact with Paper,

…

Component Conn1
Type Connector
Constraints …

…

Figure 6. SelectionManagerEnging and
associated connectors

3.3 The Third Step

Now we will complete the architectural prescription by
taking into account the goals that are at the goal
refinement tree level that we selected. We show how to
put constraints on the architectural components we got at
step 2.

Let’s first refine our root goal. After a first
refinement, the subgoals of the root that the software
system needs to achieve are:

Maintain[OriginalityOfSubmission],
Maintain[QualityOfPublishedArticles],
Maintain[QualityOfPrint],
Achieve[EnoughQuantityOfPublishedArticles].

By refining the first of these goals, we obtain the

following sub-goals:

Maintain[QualityOfEditorialDecisions],
Maintain[PertinenceOfPublishedArticles].

After two more refinements we obtain:

Avoid[ConflictOfInterestsWithAssociatedEditor]

This goal can translate directly into a constraint on the

“SelectionManagerEngine” and “People” subcomponents.
“SelectionManagerEngine” will somehow keep track of
the different ways the various people represented by the
People data component may know each other. The two

constrained components are able to achieve this
requirement and the existence of this requirement is a
sufficient condition for the existence of the two
components given our architectural rationale. By this we
mean that these components ought to exist even if they
have no other goals to achieve. On the other hand, if we
don’t care anymore about this requirement and there are
no further constraints assigned to these components, there
is no point in keeping them. By proceeding in a similar
fashion with the rest of the goal refinements, we obtain
the first version of a complete Preskriptor specification:

Preskriptor Specification: ScientificPaperSelector

KAOS Specification: PaperSelectionProcess
Components:

Component SelectionManagerEngine [1,1]
Type Processing
Constraints

Avoid[ConflictOfInterestsWithAssociatedEditor]
Avoid[SurchargeAssociatedEditor],
Achieve[ListOfPotentialEvaluators],
Avoid[ConflictsWithEvaluator],
Maintain[CommittedEvaluator],
Avoid[SurchargeEvaluator],
Maintain[FeedbackOnPaper],
Maintain[ConfidentialityOfPapers],
Maintain[IntegrityOfPapers],
Maintain[ConfidentialityOfSubmission],
Maintain[IntegrityOfEvaluation],
Maintain[ConfidentialityOfSensibleDocument]

Composed of …
Uses

PeopleConnect to interact with (AutorAgent,
ChiefEditorAgent,
AssociatedEditorAgent,
EvaluatorAgent),

Conn1 to interact with Document,
Conn2 to interact with Paper,
…

Component Document [0,n]
Type Data
Constraints

Maintain[FeedbackOnPaper],
Maintain[IntegrityOfEvaluation]

Component Paper [0,n]
Type Data
Constraints Maintain[IntegrityOfPapers],

Component Conn1 [1,n]
Type Connector [1,n]
Constraints
Maintain[IntegrityOfEvaluation],
Maintain[ConfidentialityOfSensibleDocument]

…

Figure 7. A prescription for the paper selection
process after step 3

We omitted the complete specification, but if we
included it, it would be possible to notice that the
components: ChiefEditor, Author, Knows, Holds,
IsAuthorOf, Supervise, InChargeOf and Evaluates, which
were potential sub-components at step 2, were removed
from the prescription because they are not necessary to
achieve the sub-goals for the system. This is due to the
rationale that we took in prescribing the system.
Different architects may use different rationales and
produce different prescriptions.

At the third step (and at the optional fourth) we first
consider the functional goals and than the non-functional
ones. The goals of the latter type have a more complex
effect on the system to achieve. In the most general case,
apart from further constraining already existing
components, they introduce new components and they
transform the system’s topology (i.e. they change the
relationships among the system’s components). Details
on how the Preskriptor process manages non-functional
requirements can be found in [8].

3.4 The fourth step

At this step of the prescription design process, the
architectural prescription is further refined to make the
system achieve goals that are not from the problem
domain. These additional goals are typically introduced
for a variety of reasons (for example architectural,
economic, etc.).

These goals can be classified as follows: useful
architectural properties, even though not required by the
problem (such as reusability, evolvability, etc.),
conformance to a particular architectural style, and
compatibility goals (such as compatibility with a given
platform or industry standard, or platform independency).

Examples of architectural goals are reusability,
location transparency and dynamic reconfiguration.
These goals can modify the prescription at the component
level, at the sub-system level, or affect the whole system.

As practical experience has shown [8], architectural
styles can be chosen as a particular solution to achieve
some goals or to refine some components. For example,
we can achieve the architectural goal of dynamic
reconfiguration by making all the components adhere to
the reconfigurable architectural style. By dynamic
reconfiguration we mean that the application can evolve
after it has been already deployed as demands change for
new and different kinds of configuration. A
reconfigurable architectural style is the following set of
constraints: provide location independence; initialization
must provide facilities for start, restart, rebuilding
dynamic data, allocating resources, and initializing the
component; finalization must provide facilities for
preserving dynamic data, releasing resources, and
terminating the component.

The last kind of goals that don’t come from the
problem domain are compatibility goals. They further
constrain a prescription to take into account, already at
this architectural design level, the need to assure the
compatibility of the system with one or more industry
standard(s) and/or platform(s). For example we may
want to make a system CORBA or Linux compatible.
This may be motivated by the need to assure
compatibility with legacy systems, other vendors systems,
available machines, or just for some marketing strategies.

Fig. 11 shows how step 4 interacts with the previous
steps of the Preskriptor process.

Figure 8: Step 4 of the Preskriptor process

As we can see, in general, the fourth step is iterated till
we have achieved all of the non-domain goals. This step
may also be iterated with step three. In that case,
alternative problem domain goal refinements and/or
components may be chosen to make the later prescription
design steps possible or easier to perform.

It’s important to distinguish between the artifact of the
third step and the one of the fourth. The third step
produces an artifact whose only constraints come from
the problem domain, which can be reused with similar
systems without over-constraining them. On the other
hand after the fourth step we obtain a prescription that
takes into account also constraints that we introduced for
the particular product we are developing, such as the use
of a particular architectural style or the compatibility with
a certain industry standard. While the artifact of step four
may be reused with other systems that we want to develop
in a similar manner, we also want to be able to easily
reuse a prescription in systems that are to be implemented
with different non domain constraints, like with different
architectural styles. For this reason we distinguish
between the specification of the prescription after step 3.,

which we call Problem Oriented Prescription (POP), from
the one after step 4, which we call Solution Oriented
Prescription (SOP).

Given the Problem Oriented Prescription for the
system and the non-domain driven goals, step 4 proceeds
similarly to step 3. It takes as inputs a POP and the non
problem domain goals, and gives a SOP as a result. In
this step the non-domain goals are assigned as constraints
to some POP components and/or the topology of the POP
may be modified in order to achieve them (in this step we
may reintroduce some of the KAOS components that we
discarded at step three).

A Solution Oriented Prescription specification is
similar to a POP specification, but it includes one or more
of the following additional attributes: Architectural Goals,
Architectural Styles and Compatibility Goals
Specification. These new attributes are needed to keep
track of the specifications of the goals, which don’t come
from the problem domain.

4. Conclusion

This paper presents an introduction to Preskriptor a
method for transforming a requirements specification into
an architectural prescription. Architectural prescriptions
are a higher-level form of architectural specifications that
interface more easily with requirements specifications and
that do not include implementation oriented entities such
as client-server which are often default components in
architectural descriptions. We illustrated how to derive a
prescription with a practical example. The key steps in
the prescription specification process are: the selection of
the right level of goal refinement, the choice of the
potential components for the architecture, the assignment
of the constraints to the potential components for the
architecture and, often in the case of non-functional
requirements, the modification of the architecture’s
topology.

Preskriptor is a systematic and rigorous process to
make sure that none of the requirements are neglected,
that no useless requirements and/or components are
introduced and that the means for easily modifying the
architecture are provided. The generality of our approach
will allow the architects to choose their favorite ADL, or
design specification, to describe at a lower level an
architecture prescribed in Preskriptor.

The objectives for the future of our research are the
extension of the methodology to take into account the
most common non-functional requirements, the test of the
methodology with case studies and empirical studies, and
the development of a supporting tool.

5. References

Step 4

Problem Oriented Prescription

 feedback to Step 3

 From Step 3

Solution Oriented Prescription

Architectural Goals
Architectural Styles
Compatibility Goals

 From Non Problem
Domain specifications

[1] Jackson, M., “The world and the machine”.
Proceedings of the 17th International Conference on
Software Engineering, Seattle, Washington (USA), April
1995. Keynote speech

[2] Perry, D.E., Wolf, A. L., “Foundations for the Study
of Software Architecture”, Software Engineering Notes,
ACM SIGSOFT, October 1992, pp. 40-52

[3] Parnas, D. L., “On the Design and Development of
Program Families”, IEEE Transactions on Software
Engineering, IEEE Computer Society, March 1976, pp. 1-
9

[4] Brandozzi, M., and Perry, D. E., “Transforming Goal
Oriented requirements specifications into Architectural
Prescriptions”, Proceedings of STRAW ’01, ICSE 2001,
Toronto, May 2001, 54-61

[5] Van Lamweerde, A., Darimont, R., and Massonet, P.,
“Goal-Directed Elaboration of Requirements for a
Meeting Scheduler: Problems andLessons Learnt”,
Proceedings RE’95 – 2nd IEEE Symposium on
Requirements Engineering, York, March 1995, pp. 194-
203

[6] Van Lamweerde, A., Darimont, R., and Letier, E.,
“Managing Conflicts in Goal-Driven Requirements
Engineering”, IEEE Transactions on Software
Engineering, IEEE Computer Society, November 1998,
pp. 908-925

[7] Cordier, C., and Van Lamweerde, A., “Analyse des
constraintes desécurité puor la gestion électronique d’une
revue scientifique”, UniversiteCatholique de Louvain,
1997

[8] Brandozzi, M., and Perry, D., “Architectural
Prescriptions for Dependable Systems”, Proceedings of
WADS, ICSE 2002, Orlando, May 2002

[9] Dewayne E. Perry. “A Product Line Architecture for a
Network Product” ARES III: Software Architectures for
Product Families 2000, Los Palmos, Gran Canaria, Spain,
March 2000

6. Appendix

Preskriptor Specification: [Prescription’s name]
(KAOS Specification: [Requirements specification’s
name])?

Components:
(
Component [Component’s name] ([num1, num2])&
Type {Processing | Data | Connector}
Constraints ([Constraint’s name],)+

(Composed of ([Component’s name] [num1, num2],)*)?
(Extends [Component’s name])?

(Generalizes ([Component’s name],)+)?

(Uses [Connector’s name] to interact with ([Component’s
name],)+)*

)+

The terms between brackets denote the meaning of the
identifier that will be at their place. “*” means that the
preceding expression can be present 0 to an arbitrary
number of times. “+” is the same except that it has to be
present at least once. “?” means the expression can be
present 0 or 1 time only. The new symbol “&” means that
the expression is required only for the specification of the
components at the first level of the components
refinement tree.

