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Abstract 

 

From Goal Oriented Requirements Specifications to  

Architectural Prescriptions 

 

 

 

 

Manuel Brandozzi, M.S.E. 

The University of Texas at Austin, 2001 

 

Supervisor:  Dewayne E. Perry 

 

In the present thesis we propose a new method to design a high level 

architecture of a software system that guarantees the satisfaction of its 

requirements.  We give an overview of the concepts of goal oriented 

requirements specifications and of architectural prescriptions; we summarize the 

characteristics of KAOS, the goal oriented requirements specification language 

that is used by our process, and we introduce Preskriptor, our Prescription 

Specification Language (APL); we illustrate our methodology for transforming 

requirements to an architectural prescription and provide practical examples; 

finally, we discuss related work and indicate further directions of our research. 
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Chapter 1:  Introduction 

Traditionally, the most difficult transition of the development process for a 

non-trivial software system has been the one from the requirements for the system 

to its design.  This step involves going from the problem’s domain to the domain 

of its solution [Jack 95].  One of the factors that make the design of software 

systems so challenging is that they have to satisfy many different requirements 

(problems) at the same time, and there is often not a single solution to the 

problem, rather many possible ones.   

Requirements specifications can be viewed as a contract between the 

customer and the software developers and they should be easy to understand by 

domain experts and users, as well by software architects and engineers. 

Let’s now introduce our methodology and insert it in the context of the 

software development process.  At present, there are many different software 

development processes that are used in industry and that have been studied in 

academia.  A common characteristic of most of these development processes is 

the feedback from one phase to another one as proposed in the spiral model 

[Boehm 88].  

Let’s consider the earlier phases of a generic development process with 

feedback.  The process starts with the “requirements analysis and specification” 

phase.  In this phase, the requirements engineer has to understand the customer’s 

and/or user’s needs and document them, in a requirements specification language. 
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The second phase is the “architectural design” phase. In this phase, the system 

architect selects the architectural elements, their interactions and the constraints 

on the elements and interactions that provide a basic framework to satisfy the 

requirements specified in the previous phase.  The low level design phase follows. 

During this phase the designer decides how to decompose the elements described 

in the architectural design into low level modules, i.e. modules that include the 

detailed specification of data and processes used and exported.   

Each of the front-end phases can be viewed as the implementation or 

refinement of the previous one.  Iterations in the process may happen because the 

developers discovered that the system doesn’t do what the customer/user really 

wanted.  So, we feel that we can improve the process by introducing a technique 

that provides guidance in going from requirements to architecture. 

The method that we introduce takes as input the system’s requirement 

specifications (expressed in a goal oriented language), and provides as output an 

architecture specification (expressed in an architectural prescription language).  

Architecture prescriptions [Perry 92] are specifications of the system’s basic 

components and topology, and of the constraints associated with its components 

and interactions.  Furthermore, the constraints are expressed in terms of the 

problem domain as opposed to the solution domain.  For example, a problem 

domain constraint on a component may be to be able to handle electronic mail or 

streaming video.  So, an architectural prescription specifies higher level 

components such as email managers and streaming video players rather than 

GUI’s and databases.  A by product of our approach is requirements to 
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architecture traceability, which enables us to reuse parts of an architecture, and 

hence to reuse all the derived artifacts that implement it.  This translates into a 

saving of both time and resources for the development team.   

The purpose of our work is twofold: to advocate the use of architecture 

prescriptions in the specification of the architectures of software systems, and to 

introduce a process that performs the step from the requirements specifications to 

architecture prescriptions. 
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Chapter 2:  Overview of Goal Oriented Requirements 
Specifications and KAOS 

We chose goal oriented specifications because we think that they are, 

among all the kinds of requirements specifications, those that are closer to the 

way humans think and hence easier to understand by all the stakeholders in the 

development process. Another reason is that they can be refined from higher level 

goals to lower level ones.  A refinement of a goal is constituted by a set of goals 

that once achieved imply the achievement of the original goal.  A refinement is in 

general composed by a conjunction and disjunction of nodes (called AND / OR 

refinements respectively).  For example we can achieve the goal “go home” by 

achieving the goals “buy bus ticket”, “catch a bus” and “get off at home” or by 

achieving the goals “take the car”, “drive home” and “get off”.  While in this 

example the goals have to be achieved in the specified order, it’s not always the 

case.  We can vary the constraining level of an architecture prescription by 

considering different levels of refinement of the requirements.  

In the remainder of the chapter we’ll give a description of the main 

characteristics of KAOS, the goal oriented specification language, introduced by 

A. van Lamsweerde [Lam 95], that we used in our methodology. 

KAOS’ ontology is composed of objects, operations and goals.  Objects 

can be agents (active objects), entities (passive objects), events (instantaneous 

objects), and relationships (objects depending on other objects).  Operations are 

performed by an agent, and change the state of one or more other objects. They 

are characterized by pre-, post- and trigger- conditions.   Goals are the 
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objectives that the system has to achieve.  In general, a goal can be AND/OR 

refined till we obtain a set of achievable sub-goals.  The goal refinement process 

generates a goal refinement tree.  All the nodes of the tree represent goals. The 

leaves may also be called requisites.  The requisites that are assigned to the 

software system can be denoted requirements; those assigned to the interacting 

environment can be called assumptions.   

Let’s briefly see now how obtain a requirements specification in KAOS. 

The high-level goals are gathered from the users, domain experts and existing 

documentation.  These goals are then AND/OR refined till we derive goals that 

are achievable by some agents.  For each goal the objects and operations 

associated with it have to be identified.  Of course, more than one refinement for a 

goal may be possible, and there may be conflicts between refinements of different 

goals that can be resolved as proposed in [Lam 98].  It’s up to the requirements 

engineer to generate a “good” refinement tree.  By “good” refinement tree we 

mean one that does not contain conflicts among refinements of different goals and 

from which it is possible to derive an architecture that achieves those goals.  In 

addition to iterations with the requirements specification process, there may also 

be iterations between the requirements specification process and the architecture 

prescription design process. 

Figure 1. is an example of a goal declaration in KAOS that is taken from 

the example that we will use extensively in the following chapters. 
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Goal Maintain[ConfidentialityOfSubmissions] 

InstanceOf SecurityGoal 
Concerns DocumentCopy, Knows, People 
ReducedTo  

ConfidentialityOfSubmissionDocument 
ConfidentialityOfIndirectSubmission 

InformalDef A submission must remain confidential.  An article that has  
to be submitted has to remain confidential. 

Figure 1: example of a goal specification in KAOS. 

The keyword Goal denotes the name of the goal; InstanceOf declares the 

type of the goal; Concerns indicates the objects involved in the achievement of 

the goal; ReducedTo contains the names of the sub-goals into which the goal is 

resolved.  Finally, there is InformalDef: the informal definition of the goal. 

FormalDef is an optional attribute; it contains a formal definition of the goal (it 

can be expressed in any formal notation such as first order logic). 
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Chapter 3:  Architectural Prescriptions 

An architecture prescription lays out the space for the system structure by 

selecting the architectural elements (processes, data, and connectors), their 

relationships (interactions) and constraints.  In a prescription, the most important 

characterization of the components is given by the goals they are responsible for 

(i.e., their constraints).  Components are further characterized by their type: 

process, data or connector.  The processing components are those the provide the 

transformation on the data components.  The data components contain the 

information to be used and transformed.  The connector components, which may 

be either implemented by data components, processing components or by a 

combination of both, are the glue that holds all the pieces of the system together.   

The interactions of the components among each other, together with the 

restriction of their possible number of instances, characterize the topology of the 

system.   

The main advantages of an architecture prescription over a typical 

architecture description are that it is expressed in the problem domain language, it 

is often less complete, and hence less constraining with respect to the next phases 

of system design.  An architecture description, on the other hand is, generally, a 

complete description of the elements and how they interface with each other, and 

tends to be defined in terms of the solution space rather than the problem space 

(or in terms of components such as GUIs, middleware, databases, etc, that are 

used to implement the system). 
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Since an architecture prescription is expressed in the problem domain 

language, it’s also easier to create a method to design it starting from the 

requirements specifications.  The two kinds of specifications can make use of a 

common logic and vocabulary mapping the requirements specifications’ goals to 

the architectural constraints.  In the following chapters we will show how we 

perform the step from goal-oriented requirements.  Also, being at a higher level of 

abstraction, prescriptions can more easily be reused and they enable more creative 

designs.   

Let’s consider, for example, a distributed system.  An architecture 

description language (ADL) may include elements such as clients and servers.  

So, it will be likely that the architect writing a specification in that ADL will use 

client and server components also when the best way to solve the problem was 

another one (for example a multi-peer architecture).  Then, the designer will be 

constrained by the architecture to a low-level design that adopts a client-server 

solution.  Since an APL specifies the system at a higher level of abstraction, it 

would permit the designer to choose a better (possibly more innovative) solution 

at the low-level design and even to implement different choices for different 

members of the same software family. 
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Chapter 4:  From KAOS Entities to APL entities 

How is it possible to transform a KAOS requirements specification into an 

architecture prescription for the software system?  Figure 2. shows what are the 

effects, in terms of topological transformations and constraints, of the KAOS 

entities and how they relate the specification to the system’s architecture 

prescription.  Note that, in general, a requirements specification considers a 

system of which the software system is only a part.  From here on, by 

requirements specification we will mean the subset of the specification that 

concerns the software system, unless otherwise stated. 

 
KAOS entities    APL entities 
 
• Agent     • Process component / 

  Connector component/ - 
 

• Event     • - 
 

• Entity     • Data component / - 
 

• Relationship     • Data component / - 
 

• Goal      • Constraint on the system/ 
  on a subset of the system 
• One or more additional 
   processing, data or 
   connector components 

Figure 2: Mapping KAOS entities to an APL entities. 

The “-” symbol means no effects on the architecture.  Note that only the 

Goal entities are guaranteed to affect the prescription.  Each object in the 
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requirements may generate a corresponding a component in the prescription; we’ll 

see in which case this happens in an example in chapter 6.  An agent object, i.e. 

an active object, may generate either a process or a connector.  By definition, a 

process (thread, task) is an active component.  What might not be immediately 

apparent is that also a connector can be an active component.  An example of this 

type of connector is a software firewall.  A software firewall is an active entity 

that checks whether the processes that want to interact satisfy some conditions or 

not, and allows or denies the interaction among them accordingly. 

The events relevant to the architecture of the system are those either 

internal to the software system or those in the environment that have to be taken 

into account by the software system.  The sending and receiving of messages by 

processes are an example of internal events.  The triggering of an interrupt by a 

sensor is an example of external event.  An event is not associated to any 

architectural component but is has to be taken into account by the prescription 

through the goals that depend on it. 

An entity, or passive object, may correspond to a data element, which has 

a state that can be modified by active objects. For example, the speed of a train is 

a variable (entity) that can be modified by a controller (agent). 

  A relationship may correspond to a data element too.  An example of 

relation data is a data structure that associates a trains and their current speed. 

A goal corresponds to a constraint on one or more of the components of a 

software system. Additional components may be derived to satisfy a non-

functional goal.  An example of a constraint on a particular component deriving 
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from a goal is that a particular component of the software of an ATM has to check 

whether the password typed by a user matches the password associated in the 

system to the ATM card that he/she inserted. 
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Chapter 5:  Preskriptor - an Architecture Prescription Language  

Now we’ll introduce Preskriptor, the APL we use in our methodology.  

The software system that we’ll use as an example, is a system that helps in the 

paper selection process for a scientific magazine (or conference).  We will 

hereafter denote it as “ScientificPaperSelector”.   

ScientificPaperSelector is co-responsible for the root goal 

“Maintain[QualityOfTheScientificMagazine]” together with the system it 

interacts with, (i.e., the people involved in the process).  ScientificPaperSelector 

performs different functions that can be automated and it interacts with the system 

composed of people.  Its purpose is to speed up the paper selction process and to 

improve its confidentiality.  For the KAOS requirements specification of the 

system, we consider the specification in [Cordier 97]. 

Fig. 3. shows the refinement tree for its requirements specification, and 

Fig. 4 is the refinement tree for the corresponding architecture prescription.  A 

refinement of a component of a prescription is a set of sub-components that are 

used to implement it.  A refinement tree shows the refinements of all the goals or 

components for the system.  If there is an arch connecting two outgoing edges 

from the same goal node, the node it’s OR refined by the goals; if there is no such 

arch, it’s AND refined.  A component is refined by the nodes belonging to its 

outgoing edges.  
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 Figure 3: Goal refinement tree for the paper selection system, the refinements are 

all AND. 

 

Let’s have an overview of the goal refinement tree in figure 3.   

Goal G is the root goal, the fundamental goal for the system: 

G:Maintain[QualityOfTheScientificMagazine]”.  

G is AND refined by the goals: 

G1: Maintain[QualityOfPublishedArticles],  

G

G1.1 

  G1 G2 G3 G4
… …

 G1.2

     
…

G1.1.1 

G1.1.2 G1.1.3 G1.1.4 

G1.1.4

…

… … … …

  

G1.1.1.1 

G1.1.1.2 
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G2: Maintain[OriginalityOfSubmission], 

G3: Maintain[QualityOfPrint],   

G4: Achieve[EnoughQuantityOfPublishedArticles]. 

Goal G1 is AND refined by: 

G1.1: Maintain[QualityOfEditorialDecisions],  

G1.2: Maintain[PertinenceOfPublishedArticles]. 

Continuing in this manner, we refine all the other goals till, for each goal, 

we get the level of refinement we want.   

As the example shows, the two goals and components trees are not similar.  

They are built using different processes.  The goal refinement tree is obtained in 

the requirements specification process.  The component refinement tree is 

obtained during the prescription design process that we’ll introduce in following 

chapter.  It consists in performing the architectural transformation that the 

requirements specification components may generate as figure 2 shows.   

All the refinements in goal tree of figure 3. are pure AND.  The sub-goals 

refining goal Gi are denoted as Gi.j, with j varying from one to the number of sub-

goals/requirements. We use an analogous notation for the subcomponents in the 

other tree.  
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Figure 4: Component refinement tree for the paper selection system. 

 

  In the component refinement tree, the root component C is the software 

system itself: ScientificPaperSelector.  The software system is viewed as a 

component of the bigger system that may include hardware devices, mechanical 

devices and human operators.  As we will see in next chapter, the first refinement 

is performed by considering the root goal and the systems the software system has 

to interact with.  Component C is refined by: 

C

C1 C2

… …

  

  

C1.1 

C1.2 C1.3
C1.4

C1.1.1 C1.1.2 
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C1: SelectionManager, 

C2: PeopleConnect 

The second refinement layer is obtained by considering components derived by 

the KAOS specification.  At this layer component C1 is refined by several 

components: 

C1.1: SelectionManagerEngine 

C1.2: Document 

C1.3: People 

C1.4: Evaluator 

… 

As the tree shows, we may have further refinement layers in this tree, to 

achieve additional non requirements such as performance, reliability or 

reusability.  For example, as we will see in chapter 7, SelectionManagerEngine 

can be refined by PeopleSelectionManager and SelectionProcessManager, 

(components C1.1.1 and C1.1.2) to improve reusability. 

Figure 5. shows how Preskriptor, the architectural prescription language, 

specifies the components that we see in the component refinement tree.  The 

appendix contains Preskriptor’s grammar.  Please note that the Composed of 

attribute is the only one that can be deduced directly from the components 

refinement tree. 

 
Preskriptor Specification: ScientificPaperSelector 
Problem Goals Specification: PaperSelectionProcess (KAOS) 
Components: 
 
Component SelectionManager [1,1] 
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Type Processing 
Constraints Maintain[QualityOfTheScientificMagazine] 
Composed of … 
Uses PeopleConnect to interact with (AutorAgent, ChiefEditorAgent,  

AssociatedEditorAgent, EvaluatorAgent)  
 
 
Component PeopleConnect [1,n] 
Type Connector 
Constraints Maintain[QualityOfTheScientificMagazine] 
Composed of  … 
Uses / 
 
Component SelectionManagerEngine [1,1] 
Type Processing 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor], 
Avoid[SurchargeAssociatedEditor],  
Achieve[ListOfPotentialEvaluators], 
Avoid[ConflictsWithEvaluator],  
Maintain[CommittedEvaluator],  
Avoid[SurchargeEvaluator],  
Maintain[FeedbackOnPaper],  
Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission],  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

Composed of  … 
Uses  

PeopleConnect to interact with (AutorAgent, ChiefEditorAgent, 
AssociatedEditorAgent, EvaluatorAgent), 

Conn1 to interact with Document,  
Conn2 to interact with Paper,  
… 
 

Component Document [0,n] 
Type Data 
Constraints  

Maintain[FeedbackOnPaper], 
Maintain[IntegrityOfEvaluation] 
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Component Paper [0,n] 
Type Data 
Constraints Maintain[IntegrityOfPapers], 

 
Component People [0,n] 
Type Data 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor],  
Avoid[ConflictsWithEvaluator],  
Achieve[ListOfPotentialEvaluators] 

 
Component Evaluator [0,n] 
Type Data 
Constraints  

Avoid[SurchargeEvaluator],  
Maintain[CommitedEvaluator] 

 
Component PeopleSelectionManager [1,1] 
Type Processing 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor], 
Avoid[SurchargeAssociatedEditor],  
Achieve[ListOfPotentialEvaluators], 
Avoid[ConflictsWithEvaluator],  
Maintain[CommitedEvaluator],  
Avoid[SurchargeEvaluator],  

Composed of  … 
Uses PeopleConnect to interact with (ChiefEditorAgent, 

AssociatedEditorAgent, EvaluatorAgent) 
 
Component SelectionProcessManager [1,1] 
Type Processing 
Constraints  

Maintain[FeedbackOnPaper],  
Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission],  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

Composed of  … 
Uses   

PeopleConnect to interact with (AutorAgent, ChiefEditorAgent, 
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AssociatedEditorAgent, EvaluatorAgent), 
Conn1 to interact with Document,  
Conn2 to interact with Paper,  

Figure 5: Example of components’ specification. 

As we can see, an architectural specification in Preskriptor has to start 

with the declaration of the name of the system, ScientificPaperSelector in the 

example.  It follows the declaration of the problem goal oriented requirements 

specification, Problem Goals Specification, from which the prescription is 

derived.  As we will see later on, this doesn’t have to be necessarily expressed in 

KAOS.  For this reason, the name of the specification language used is indicated 

between parentheses.  The prescription has only a requirements specification as 

attribute because even when it derives from more than a specification, it’s better 

to merge the specifications first and then design the prescription.  In fact it’s 

easier, if there are any conflicts between goals in different specifications to solve 

them will be solved at the requirements specification phase.  This means that all 

the components of a prescription will derive from the same goal oriented 

specification, that is, in general, the union of more specifications.  In our example 

we called this specification, which is in KAOS, PaperSelectionProcess.   

Type denotes the type of the component.  Again, the possible types of 

components are: Processing, Connecting and Data.   

Constraints is the most important attribute of a component. It denotes 

which requirements that the component is responsible for.  For example, the root 

component C, i.e. the software system, must achieve all the goals.  Its 

subcomponents, instead, are responsible for only a subset of the system 
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requirements.  The union of the requirements achieved by the leaves components 

has to be the complete set of requirements. 

A component may be only contributing in achieving a goal without being 

able to achieve it alone.  This may happen, for example, in the case of non-

functional requirements like security.  The same requirement can be achieved by 

more than one software component. Such a redundancy may come, for example, 

from a reliability goal.   

Composed of identifies the subcomponents that implement the component 

in the next refinement layer. At the first layer of abstraction we have to write next 

to the name of a component its possible number of instances in the system.  At the 

other layers this is optional because this information will be contained anyway in 

the Composed of field of its super-components.  For example, [1,n] means that the 

component can have any number of instances from 1 to an arbitrary number.  

[1,1] means there has to be and there can only be a single instance of the 

component. 

The last attribute, Uses, indicates what are the components used by the 

component. Since interactions can only happen through a connector, the Uses 

attribute has the additional keyword to interact with that indicates which 

components the component interacts with using that connector.  The symbol “/” 

means no attribute and, for now, we will omit the fields whose value is none.  

Another attribute for a component, whose value in the example was 

always “/”, is Specializes.  This attribute is a syntactic shortcut for the 

specification of components that only have some additional constraints with 
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respect to other components.  It is particularly useful for the prescription of 

software families.  Specializes does not preclude the presence Composed of; the 

component including the Specializes attribute is a modified version of the 

component(s) that the attribute identifies.   

Architecting practical experience tells us that it would be useful to have 

also a Generalizes attribute, to make it easier to design a prescription for a 

software family by generating it from initially independent applications (bottom-

up).  Generalizes means that the component takes all and only the common 

characteristics of the components identified by the attribute. 
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Chapter 6:  From Domain Requirements to Architecture 
Prescriptions 

Figure 6. is a schematic representation of the process we propose to derive 

an architecture prescription, such as the one we discussed in chapter 5., from a 

requirements specification.  By using a goal oriented requirements specification 

as a starting point, we can gradually increase the degree of constraint of the 

solution by considering the goals that refine those used previously. 

If we take the root of the tree, the resulting prescription may enable new, 

innovative solutions to the problem, but it will generally provide too little 

guidance to the system’s designers.   

On the other hand, taking the leaves of the goal refinement tree (or even 

further refinements of the prescription to achieve qualities as performance, 

reusability, etc.) may produce a specification that constrains too much of the 

lower level designs.  As D. Parnas once noted, if in order to design washing 

machines we used all the requirements coming from how we washed the clothes 

by hand through the centuries, we would never have been able to achieve the very 

successful rotary washing machines of our days. 
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Figure 6: The prescription design process. 

 

Step 1 

Step 2 

Root Goal(s)

KAOS Objects

Root Component(s) 

Step 3 KAOS Goals 

Potential Sub- component(s) 

Architectural Prescription

feedback to requirements 
   specification phase 

from requirements 
   specification phase 
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The process of deriving the prescription from a domain requirements 

specification is composed of three steps, and it may be iterated.  In the first step 

we derive the basic prescription from the root goal for the system and the 

knowledge of the other systems it has to interact with.  This root goal is either 

already given, or it can be obtained by induction.  In the second step we get 

components that are potential sub-components of the basic architecture from the 

objects that are in the KAOS specification.  In the third step we choose the degree 

of refinement of the goal refinement tree that we consider appropriate, we decide 

which of the sub-goals are achieved or co-achieved by the software system, and 

we assign them to the sub-components derived at the previous step.  Afterwards, 

the architectural prescription may be further refined to achieve non-functional 

properties such as reusability, performance, reliability, etc (i.e. non domain goals). 

Now we will illustrate the process with of a practical example.  We will 

consider again the paper selection process for a scientific magazine. 

 

6.1 The First Step of the Methodology 

Again, the software system, is co-responsible for the root goal 

“Maintain[QualityOfTheScientificMagazine]” together with the system composed 

of the people involved in the process.  The software system contributes to achieve 

the root goal but it cannot achieve it on its own, i.e. it achieves only some of the 

root goal’s sub-goals.  The artifact of this step is the very basic architecture for the 

system that takes into account the fundamental goal and the systems the software 

system has to interact with.  Fig. 7 shows it for our example. 
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Preskriptor Specification: ScientificPaperManager 
Problem  Goals Specification: PaperSelectionProcess  (KAOS) 
Components: 
 
Component SelectionManager [1,1] 
Type Processing 
Constraints Maintain[QualityOfTheScientificMagazine] 
Composed of … 
Uses PeopleConnect to interact with (AutorAgent, ChiefEditorAgent,  

AssociatedEditorAgent, EvaluatorAgent)  
 

Component PeopleConnect [1,n] 
Type Connector 
Constraints Maintain[QualityOfTheScientificMagazine] 
Composed of  … 
Uses / 

Figure 7: initial prescription specification  

The root component in the tree of Fig. 4, i.e. the software system itself, is 

refined by the SelectionManager and PeopleConnect components which take into 

account the root goal and provide the needed interaction with the system made of 

people.  To distinguish the people involved in the process (agents) from the data 

components that may be used in the software system to represent them, we added 

the Agent suffix to their names.  We will fill in the “Composed of” field of these 

two subcomponents after we decide how to refine them at the third step.   
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6.2 The Second Step 

At this step, from the objects that are used in the KAOS specification we 

derive some potential data, processing and connector components that can 

implement the SelectionManager component we obtained at the previous step.  If 

during next step (the third step) we don’t attribute any constraint to these potential 

components, they won’t be part of the system’s prescription.  That would mean, in 

fact, that, although they could be used as a particular solution to achieve the goals 

of the KAOS specification, they won’t be necessary to achieve them. 

Here is the Preskriptor specification of some candidate objects from the 

requirements specification in [Cordier 97]: 

 
Component Holds 
Type Data 
Constraints … 
Composed of  People[0,m], Document[1,1] 
 
Component IsAuthorOf 
Type Data 
Constraints … 
Composed of  People[0,m], Document[1,n] 
 
Component Supervise 
Type Data 
Constraints … 
Composed of  ChiefEditor[0,m], Paper[0,1] 
 
Component InChargeOf 
Type Data 
Constraints … 
Composed of  AssociatedEditor[0,m], Paper[1,1] 
 
Component Evaluates 
Type Data 
Constraints … 
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Composed of  Evaluator[0,m], Paper[0,n] 
 
Component Document 
Type Data 
Constraints … 

 
Component Paper 
Type Data 
Constraints … 

 
Component People 
Type Data 
Constraints … 
 
Component ChiefEditor 
Type Data 
Constraints … 
 
Component AssociatedEditor 
Type Data 
Constraints … 
 
Component Author 
Type Data 
Constraints … 
 
Component Evaluator 
Type Data 
Constraints … 
 
Component Knows 
Type Data 
Constraints … 
Composed of  People[0,m], Document[0,n] 

 
… 

Figure 8: Potential components’ specification  
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Since all the components derived from KAOS’ specification are data, we 

need at least a processing component to implement SelectionManager.  As a 

particular solution we chose to have just a processing component at this point in 

the design.  We called it SelectionManagerEngine.  We need also the connectors 

between this processing component and the previously declared data components.  

Figure 9. is the specification of these additional subcomponents for 

SelectionManager.  

 
Component SelectionManagerEngine 
Type Processing 
Constraints Maintain[QualityOfTheScientificMagazine] 
Composed of … 
Uses  

PeopleConnect to interact with  
AuthorAgent, ChiefEditorAgent,    
AssociatedEditorAgent, EvaluatorAgent), 

Conn1 to interact with Document,  
Conn2 to interact with Paper,  
… 
 

Component Conn1 
Type Connector 
Constraints … 

 
Component Conn2 
Type Connector 
Constraints … 

 
… 

Figure 9: Potential components’ specification – cont. 

At next step we will determine which of these subcomponents are really 

needed to implement SelectionManager. 
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6.3 The Third Step 

Now, we will derive the architectural prescription by taking into account 

goals that are deep in the goal refinement tree.  We will show how to put the 

appropriate constraints on the architectural components of step 2. 

At the first refinement of the root goal, the subgoals that the software 

system contributes to achieve are: 

Maintain[OriginalityOfSubmission], 

Maintain[QualityOfPublishedArticles],  

Maintain[QualityOfPrint], 

 Achieve[EnoughQuantityOfPublishedArticles]. 

 

Let’s, for example consider the refinement of the first of these goals.  We obtain 

the following sub-goals: 

 

Maintain[QualityOfEditorialDecisions], 

Maintain[PertinenceOfPublishedArticles]. 

 

After two further refinements of the first goals of each refinement we obtain (goal 

G1.1.1.1 in the tree of figure 3): 

Avoid[ConflictOfInterestsWithAssociatedEditor] 
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This goal is the first that can translate into a constraint for the software system 

only.  At this point the software architect has to decide which of the potential 

components we obtained at step 2 will have to take the responsibility for this goal.  

There is not only one way to make this choice.  In our example, we decided to 

assign the goal to the SelectionManagerEngine and People subcomponents.  We 

used the following rationale: in the system to be, SelectionManagerEngine will 

somehow keep track of the different ways the different persons represented by the 

People data component may know each other.  Given our decision, the two 

constrained components will have to implemented in the next phases of the 

development process, so that they will indeed achieve this requirement.  The 

existence of this requirement will be a sufficient condition for the existence of the 

two components.  By this we mean that these components have to be in the 

system even if they have no other goals to achieve.  On the other hand, if we don’t 

care anymore about this requirement and there are no further constraints on these 

components, they can be safely discarded. 

By proceeding in a similar manner with the rest of the goal refinements, 

we obtain the first version of a complete APL specification: 

 
Preskriptor Specification: ScientificPaperSelector 
Problem  Goals Specification: PaperSelectionProcess 
Components: 

 
Component SelectionManagerEngine [1,1] 
Type Processing 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor], 
Avoid[SurchargeAssociatedEditor],  
Achieve[ListOfPotentialEvaluators], 
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Avoid[ConflictsWithEvaluator],  
Maintain[CommittedEvaluator],  
Avoid[SurchargeEvaluator],  
Maintain[FeedbackOnPaper],  
Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission],  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

Composed of  … 
Uses  

PeopleConnect to interact with (AutorAgent, ChiefEditorAgent, 
AssociatedEditorAgent, EvaluatorAgent), 

Conn1 to interact with Document,  
Conn2 to interact with Paper,  
… 
 

Component Document [0,n] 
Type Data 
Constraints  

Maintain[FeedbackOnPaper], 
Maintain[IntegrityOfEvaluation] 
 

Component Paper [0,n] 
Type Data 
Constraints Maintain[IntegrityOfPapers], 

 
Component People [0,n] 
Type Data 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor],  
Avoid[ConflictsWithEvaluator],  
Achieve[ListOfPotentialEvaluators] 
 

Component AssociatedEditor [0,n] 
Type Data 
Constraints Avoid[SurchargeAssociatedEditor] 

 
Component Evaluator [0,n] 
Type Data 
Constraints  

Avoid[SurchargeEvaluator],  
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Maintain[CommitedEvaluator] 
 

Component PeopleConnect [1,n] 
Type Connector 
Constraints  

Maintain[FeedbackOnPaper],  
Maintain[InformationOnEvolutionOfSubmission],

 Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission], 
Maintain[ConfidentialityOfSensibleDocument],  
Maintain[IntegrityOfEvaluation] 

Composed of  … 
 

Component Conn1 [1,n] 
Type Connector [1,n] 
Constraints  

Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 
 

Component Conn2 [1,n] 
Type Connector 
Constraints  

Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfPapers] 
 
… 

Figure 10: Potential components’ specification  

We want to highlight the fact that the components: ChiefEditor, Author, 

Knows, Holds, IsAuthorOf, Supervise, InChargeOf and Evaluates, that were 

potential sub-components at step 2, were taken away from the prescription 

because they are not necessary to achieve the sub-goals that the system has to 

achieve.  This is only due to the rationale that we took in prescribing the system.  
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Different architects may use different rationales and produce different 

prescriptions.   

In the general case the effects of non-functional goals on the prescription 

are additional constraints on the system’s components and/or a modification of 

the system’s topology.  The latter effect includes the introduction of new 

components, changing the way components interact and the allowed number of 

instances for each component.  For example, if we have a fault-tolerance goal for 

some components, in a system that can have at most t faults, the number of 

instances of the components to achieve fault tolerance will have to be at least t+1, 

and we’ll need at least one connector to manage their consistency and manage 

their interaction with the rest of the system.  
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Chapter 7: Achieving Non problem domain Requirements   

We now introduce a fourth step in the prescription design process, in 

which an architectural prescription is further refined to make the system achieve 

goals that are not from the problem domain.  These additional goals are typically 

introduced for architectural and/or economic reasons.   

These goals can be classified as follows: useful architectural properties 

(such as reusability, reliability, etc.), conformance to a particular architectural 

style and compatibility goals (such as compatibility with a given platform or 

industry standard or platform independency). 

Examples of architectural goals are reusability, location transparency and 

dynamic reconfiguration.  These goals can modify the prescription at the 

component level, at the sub-system level, or affect the whole system.  

As practical experience has shown [Perry 00], architectural styles can be 

chosen as a particular solution to achieve some goals or to refine some 

components.  For example, we can achieve the architectural goal of dynamic 

reconfiguration by making all the components adhere to the reconfigurable 

architectural style.  By dynamic reconfiguration we mean that the application can 

evolve after it has been already deployed as demands change for new and 

different kinds of configuration.  A reconfigurable architectural style is the 

following set of constraints: provide location independency; initialization must 

provide facilities for start restart, rebuilding dynamic data, allocating resources, 

and initializing the component; finalization must provide facilities for preserving 

dynamic data, releasing resources, and terminating the component. 
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The last kind of goals that don’t come from the problem domain are  

compatibility goals. They further constrain a prescription to take into account, 

already at this architectural design level, the need to assure the compatibility of 

the system with one or more industry standard(s) and/or platform(s).  For example 

we may want to make a system CORBA or Linux compatible.  This may be 

motivated by the need to assure compatibility with legacy systems, other vendors 

systems, available machines, or just for some marketing strategies.   

 

 

Figure 11: Step 4 in the context of the prescription design  

Step 4 

Problem Oriented Prescription

feedback to Step 3

 From  Step 3 

Solution Oriented Prescription

Architectural Goals 
Architectural Styles 
Compatibility Goals 

From Non Problem 
Domain specifications 
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Fig. 11 shows how step 4 interacts with the other steps in the architectural 

prescription design process.  As we can see, in general, the fourth step is iterated 

till we have achieved all of the non-domain goals.  This step may also be iterated 

with step three.  In that case, alternative problem domain goal refinements and/or 

components may be chosen to make the last prescription design steps possible or 

easier to perform.   

It’s important to distinguish between the artifact of the third step and the 

one of the fourth.  The third step produces an artifact whose only constraints come 

from the problem domain, that can be reused with similar systems without over-

constraining them.  On the other hand, after the fourth step we obtain a 

prescription that takes into account also constraints that we introduced for the 

particular product we are developing, such the use of a particular architectural 

style or the compatibility with a certain industry standard.  While the artifact of 

step four may be reused with other systems that we want to develop in a similar 

manner, we also want to be able to easily reuse a prescription in systems that we 

want to implement with different non domain constraints, such as different 

architectural styles.  For this reason we distinguish between the specification of 

the prescription of after 3, which we call Problem Oriented Architectural 

Prescription (POAP), from the one after step 4, which we call Solution Oriented 

Architectural Prescription (SOAP).   

Given the Problem Oriented Architectural Prescription for the system and 

the non-domain driven goals, step four proceeds similarly to step three.  It takes as 

inputs a POAP and  the non problem domain goals and gives a SOAP as a result.  
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In this step the non-domain goals are assigned as constraints to some POAP 

components and/or the topology of the POAP may be modified in order to 

achieve them (in this step we may reintroduce some of the KAOS components 

that we discarded at step three).   

A Solution Oriented Architecture Prescription specification is similar to a 

POAP specification, but it includes one or more of the following additional 

attributes: Architectural Goals, Architectural Styles and Compatibility Goals 

Specification.  These new attributes are needed to keep track of the specifications 

of the non problem domain goals (which are generated by the software architects 

and/or product managers).  As we said for a POAP, the Problem Goals 

specification can be in KAOS or in a similar goals specification language.  The 

specification language used is indicated by parenthesis next to the name of the 

specification.  The Architectural Goals attribute points to the specification of the 

additional useful properties we want our architecture to achieve.  They can be 

expressed in any goal specification language (it can be KAOS).  The Architectural 

Styles attribute indicates the specification of the styles that the architecture has to 

satisfy, and the Compatibility Goals attribute takes into account the lowest level 

goals that the system has to accomplish.  Also these last two can be specified with 

a similar notation. 

Figure 12. contains shows of the initial part of the SOAP specification of 

the example we’ll consider in section 7.2: 
 
Preskriptor Specification: MaintainanceSystem  
Problem Goals Specification: MaintainanceSystemReqs (KAOS) 
Architectural Goal Specifications: / 
Architectural Styles Specification: / 
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Compatibility Goals: CORBA (KAOS) 
Components: 
 
… 

Figure 12: The beginning of a SOAP specification  

In the remainder of this chapter we will illustrate the fourth step with two 

examples.  In paragraph 6.1 we will show how the prescription for the Paper 

Selection system can be refined to achieve the architectural goal of reusability.  In 

paragraph 6.2 we will consider a new example to show how to take into account a 

CORBA compatibility goal and how to use requirements specification languages 

other than KAOS as the starting artifact. 

 

7.1 Reusability Goal Example 

How could we modify the prescription obtained in chapter 6. to make it 

achieve a reusability goal?  A way to get a better reusability may be by 

decomposing a component so that its subcomponents have disjoint sets of 

constraints.  In such a way we get less complex components that can be more 

easily reused in other systems that have only part of the set of constraints of the 

original system.  We note that the requirements that SelectionManagerEngine has 

to achieve can be split into two main groups: the first six, that provide assistance 

in choosing assistant editor and evaluators, and the last six, which automate the 

paper and evaluation documents handling.  Since these two groups of services are 

different in their nature, some other systems we want to develop in the future may 
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need only one of these kinds of services.  We assign the constraints to different 

sub-components as follows: 
 

Component PeopleSelectionManager [1,1] 
Type Processing 
Constraints  

Avoid[ConflictOfInterestesWithAssociatedEditor], 
Avoid[SurchargeAssociatedEditor],  
Achieve[ListOfPotentialEvaluators], 
Avoid[ConflictsWithEvaluator],  
Maintain[CommitedEvaluator],  
Avoid[SurchargeEvaluator],  

Composed of  … 
Uses PeopleConnect to interact with (ChiefEditorAgent, 

AssociatedEditorAgent, EvaluatorAgent) 
 
Component SelectionProcessManager [1,1] 
Type Processing 
Constraints  

Maintain[FeedbackOnPaper],  
Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission],  
Maintain[IntegrityOfEvaluation],  
Maintain[ConfidentialityOfSensibleDocument] 

Composed of  … 
Uses   

PeopleConnect to interact with (AutorAgent, ChiefEditorAgent, 
AssociatedEditorAgent, EvaluatorAgent), 

Conn1 to interact with Document,  
Conn2 to interact with Paper,  

… 

Figure 13: Component decomposition according to constraints  

 A way to increase the reusability of connectors is to prescribe 

different connectors for the interactions of a component with different types of 

components.  In such a way, we reduce the complexity of the connectors, and we 
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can reuse them in systems in which a component interacts only with a subset of 

the types of components of the original system.  By using this criterion, we can 

decompose PeopleConnect into: AuthorConnect, ChiefEditorConnect, 

AssistantEditorConnect, and EvaluatorConnect.  They provide the user interface 

respectively with the authors, editors, assistant editors and evaluators. 
 

Component PeopleConnect [1,n] 
Type Connector 
Constraints  

Maintain[FeedbackOnPaper],  
Maintain[InformationOnEvolutionOfSubmission],

 Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission], 
Maintain[ConfidentialityOfSensibleDocument],  
Maintain[IntegrityOfEvaluation] 

ComposedOf  
AuthorConnect [1,n],  
ChiefEditorConnect [1,n],  
AssistantEditorConnect [1,n], 
EvaluatorConnect [1,n] 

 
Component AuthorConnect 
Type Connector 
Constraints  

Maintain[FeedbackOnPaper],  
Maintain[InformationOnEvolutionOfSubmission],

 Maintain[ConfidentialityOfPapers],  
Maintain[IntegrityOfPapers],  
Maintain[ConfidentialityOfSubmission], 
Maintain[ConfidentialityOfSensibleDocument],  
Maintain[IntegrityOfEvaluation] 

… 

Figure 14: Connector decomposition according to types of interaction   
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7.2 CORBA Compatibility Goal Example 

 
How can we use a requirements specification in a non-goal-oriented 

language as a starting point for our method and how can we specialize a 

prescription in order to provide CORBA compatibility? 

The system we will consider in the following example is part of a 

Supervision and Control System, namely the one considered in [Coen 00].  The 

subsystem we consider, the MaintainanceSystem, has to detect and manage the 

failures in the devices of a power plant.  The system is specified in the TRIO 

requirements specification language.  TRIO includes a logic language (first order 

temporal logic) for specifying requirements, and object oriented concepts such as 

classes and inheritance to specify the elements the requirements refer to.  In the 

following sections we show how we can derive a prescription from TRIO, rather 

than from KAOS.  We also outline the design of a Problem Oriented Architecture 

Prescription (POAP) and of a Solution Oriented Architectural Prescription 

(SOAP) that enforces CORBA compatibility, by performing all the steps of the 

prescription design process we introduced previously. 

7.2.1 Step 1  

 
By knowing the fundamental goal of the system, 

Achieve[DetectFailuresAndMalfunctions], we can design its basic architecture 

prescription: 
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Preskriptor Specification: MaintainanceSystem 
Domain Goals Specification: MaintainanceSystemReqs (KAOS) 
Components: 
 
Component MS [1,1] 
Type Processing 
Constraints  Achieve[DetectFailuresAndMalfunctions] 
Composed of … 
Uses  
       UserInterface to interact with (HumanOperator) 
       DevicesConnector to interact with (Devices) 
 
 
Component UserInterface [1,n] 
Type Connector 
Constraints Maintain[DetectFailuresAndMalfunctions] 
Composed of  … 
Uses / 
 
Component MeasuringChannel [1,n] 
Type Connector 
Constraints Maintain[DetectFailuresAndMalfunctions] 
Composed of  … 
Uses / 
 

Figure 15: Root POAP specification 

 

7.2.2 Step 2 
 

From the classes in the TRIO requirements specification we derive the 

following candidate components for the refinement of the basic prescription we 

obtained at the previous step: 
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Component IMS [1,1] 
Type Processing 
Constraints … 
 
Component ControlSystem [1,1] 
Type Processing 
Constraints … 
 
Component AlarmManager [1,1] 
Type Processing 
Constraints … 
 
Component GPDB [1,1] 
Type Data 
Constraints … 
 
Component MeasuringChannel [1,n] 
Type Connector 
Constraints … 
 
Component CS-IMS_Conn [1,1] 
Type Connector 
Constraints … 
 
Component IMS-GPDB_Conn [1,1] 
Type Connector 
Constraints … 
 
Component AM-IMS_Conn [1,1] 
Type Connector 
Constraints … 
 
Component UserInterface [1,n] 
Type Connector 
Constraints Maintain[DetectFailuresAndMalfunctions] 
Composed of  … 
Uses / 

Figure 16: Potential subcomponents   
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7.2.3 Step 3 
 

In order to perform this step we have first to translate the constraints for 

the Supervision and Control System from TRIO to KAOS.  This translation is 

pretty straightforward, as the specification of a goal in KAOS includes an optional 

formal definition for the goal.  We will get the KAOS goal specification 

corresponding to a TRIO axiom by assign the TRIO axiom to the formal 

definition of the KAOS goal. 

The following axiom in TRIO states that whenever a self test is started or 

a command is sent to a device, the IMS has acquired the access rights from the 

control system: 

 

[axiom1] (test_request(i,MC,test_cmd) ∨  command_send(i,dev,dev_cmd)) ⇒  

access_avail 

 

Here is the corresponding goal in KAOS: 

 

Goal Maintain[AccessConsistency] 

FormalDef (test_request(i,MC,test_cmd) ∨  command_send(i,dev,dev_cmd)) ⇒  

access_avail 
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A similar kind of translation to KAOS could be applied to other formal 

requirements specification.  This means, we can use our architectural prescription 

design process with virtually any goal oriented or formal requirements 

specification languages. 

Despite the fact that a TRIO specification does not provide different 

degrees of requirements refinement, we can achieve them in the corresponding 

KAOS specification by generalizing the goals we derived from TRIO.  This 

means we can require, at step three, a lower degree of constraint for the system 

than the one directly induced by the TRIO specification.  For simplicity, in our 

example we’ll consider the goals derived directly from TRIO. 

 Here is part of the Problem Oriented Architecture Prescription (POAP) for 

the system: 

 

Preskriptor Specification: MaintainanceSystem 
Problem Goals Specification: MaintainanceSystemReqs (KAOS) 
Components: 
 
Component IMS [1,1] 
Type Processing 
Constraints Maintain [AccessConsistency], … 
 
Component ControlSystem [1,1] 
Type Processing 
Constraints Maintain [AccessConsistency], … 
 
Component GPDB [1,1] 
Type Data 
Constraints … 
 



 46

Component MeasuringChannel [1,n] 
Type Connector 
Constraints … 
 
Component CS-IMS_Conn [1,1] 
Type Connector 
Constraints Maintain [AccessConsistency], … 

Figure 17: A refined POAP specification 

 

7.2.4: Step 4 

 
Now we want to design a Solution Oriented Architecture Prescription 

(SOAP) that guarantees that the system will be CORBA compatible.  A SOAP is 

a kind of architecture specification that is at a higher level of abstraction than the 

specification used in [Coen 00] and [Prad 00].  In fact, they consider a design that 

is at the CORBA level of abstraction, while a SOAP is still at the architecture 

prescription level.  This means a SOAP leaves up to the successive design 

artifact(s) (architecture description, low level design) the decisions on how to 

implement the components in order to satisfy their constraints.  These decisions 

include choosing the already existing applications or components, classes, 

attributes, operations and protocols to implement each of the prescription’s 

components.   

 We assign the CORBA_compatibility only to those components that will 

have to interact with other CORBA components.  By CORBA_compatibility we 
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mean that the implementation of the component will be according to CORBA, i.e. 

it will be implemented as one (or more) CORBA object(s).  A component that 

contributes to achieve different domain goals, only some of which can take 

advantage of CORBA, can be split into two sub-components, so that CORBA will 

be prescribed for a component only when it’s strictly required. 

 Here is the outline of a CORBA compatible SOAP for the 

MaintenanceSystem: 

Preskriptor Specification: MaintainanceSystem 
Problem Goals Specification: MaintainanceSystemReqs (KAOS) 
Compatibility Goal Specification: CG Name (Specification Language) 
Components: 
 
Component IMS [1,1] 
Type Processing 
Constraints Maintain [AccessConsistency], CORBA_compatibility, … 
 
Component ControlSystem [1,1] 
Type Processing 
Constraints Maintain [AccessConsistency], CORBA_compatibility, … 
 
Component GPDB [1,1] 
Type Data 
Constraints CORBA_compatible, … 
 
Component MeasuringChannel [1,n] 
Type Data 
Constraints … 
 
Component CS-IMS_Conn [1,1] 
Type Connector 
Constraints Maintain [AccessConsistency],  
 
… 

Figure 18: A SOAP specification for CORBA compatibility   
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Chapter 8:  Conclusion 

In this thesis we have advocated the use of structured, systematic and 

rigorous techniques to perform the different phases of the software development 

process. We focused on what we consider the most important of these phases: the 

one that bridges requirements and architecture.  To achieve the method we are 

proposing we have introduced the concept of an architecture prescription 

language (APL), which specifies a high level architecture (prescription).  An 

architecture prescription provides the basic framework of the system to achieve 

the requirements.  It specifies the structure of the software system and its 

components with the terms of the application domain.  We then described the 

prescription design process and illustrated it with practical examples. 

There is a growing community of researchers studying the interplay 

between the requirements and the architecture.  A. Egyed et al., in [Egyed 01], 

developed a technique to pass from requirements specified in the WinWin 

language to an architectural model for the system called CBSP.  Their technique, 

while providing a framework to pass from requirements to architecture, still 

provides little guidance to the architects.  Moreover it bases the choices of  the 

components and their importance on a vote by all the stakeholders involved.  We 

don’t believe that a democratic vote is the best way to design an architecture.  

Other researchers have produced object-oriented techniques to pass from 
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requirements to architecture.  These techniques, though, provide only a little 

guidance to the architect and they are limited to an object oriented architectural 

design. 

Our goal is to design a systematic and rigorous technique to pass from the 

requirements to an architectural prescription.  The rigor is necessary to make sure 

that none of the requirements are neglected, and that we don’t introduce any 

useless one 

As for our future work, we will investigate how particular non-functional 

goals affect architectural prescriptions.  We’ll look for ways to generate a 

prescription bottom-up (from more constrained to less constrained specifications).   

Most importantly, we will perform experiments to validate our hypotheses and 

gain new insights.  Finally, we plan to build a tool set based on our methodology. 

 

 

 

 

 

 

 

 

 



 50

Appendix 

 

 
Preskriptor Specification: [Prescription’s name] 
(Domain Goals Specification: [Domain specification’s name] ([Language’s 
name]))? 

(Architectural Goals Specification: [Architecture specification’s name] 
([Language’s name]))? 

(Architectural Styles Specification: [Styles specification’s name] ([Language’s 
name]))? 

(Compatibility Goals Specification: [Compatibility specification’s name] 
([Language’s name]))? 

 
Components: ( 
 
Component [Component’s name] ([num1, num2])& 

Type {Processing | Data | Connector} 
Constraints ([Constraint’s name], )+ 

(Composed of ([Component’s name] [num1, num2], )* )? 
(Extends [Component’s name])? 

(Generalizes ([Component’s name], )+)? 

(Uses [Connector’s name] to interact with ([Component’s name], )+)* 

)+ 

 
 

The terms between brackets denote the meaning of the identifier that will be at that place.  “*” means 
that the immediately preceding expression can be present from zero to an arbitrary number of times.  
“+” is the same than "*" except that it has to be present at least once.  “?” means the expression can 
be present either zero or one time.  The new symbol “&” means that the expression is required only 
for the specification of the components that belong to the first layer of the components refinement 
tree. 
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