A Multi-Agent Framework for an Architecting Process
Environment: A Position Paper

Rodion M. Podorozhny

Dewayne E. Perry

UT Advanced Research In Software Engineering UT Advanced Research In Software Engineering

(UT ARISE)
University of Texas
Austin, Texas 78712

podorozh @ mail.utexas.edu

ABSTRACT

This paper describes experience in extending and generaliz-
ing the design of the multi-agent aspect of an existing soft-
ware process environment '. The software processes used
for gaining experience with the system focus on recover-
ing the software architecture of an existing software system.
These software processes are considered to be architecting
processes as they manipulate and produce software architec-
ture > artifacts.

The main goal of the framework is to simplify specification
and development of software processes in an agent-based
software process execution system. The described multi-
agent framework suggests a general approach to modeling
agents needed for software process specification, allows for
greater software reuse, and accelerates agent specification.

Although a rigorous and complete specification of the model
and system is beyond the scope of this paper, the descrip-
tions provided suffice to support an explanation of the expe-
rience we have had in applying our multi-agent framework.

The result was greater clarity about the architecture of agents
in SPEs, a more comprehensive (and comprehensible) pro-
cess specification, provisions for rigorous software process
analysis, and an acceleration of process specification activ-

!The notion of software process environment is understood
as a system for supporting the development, execution, eval-
uation, and evolution of a broad range of software develop-
ment processes encoded in a rigorous software process lan-
guage.

2The notion of software architecture is understood as it is
defined in ([9]), namely: a set of a software system’s ele-
ments, their interactions, and the constraints on those ele-
ments and their interactions necessary to provide a frame-
work in which to satisfy the requirements for the software
system and serve as a basis for the design.

(UT ARISE)
University of Texas
Austin, Texas 78712

perry @ece.utexas.edu

ity itself.

A range of future work in this area is indicated at the con-
clusion of the paper.

Keywords
Multi-agent systems, software architecture, software pro-
cess, process programming

1. INTRODUCTION

Software processes environments (SPEs) are a type of soft-
ware systems that benefits from agent-oriented approaches.
This is due primarily to a reasonable mapping of the en-
vironment for software process execution onto an agent-
based framework. The software process specifications can
be viewed as templates, whose decomposition units (steps)
are executed by humans or automated tools (agents) of some
concrete environment. Autonomy is one of the main prop-
erties of the notion of an agent. Such entities as humans
or automated tools used in software processes quite often
exhibit a great deal of autonomy, so an agent-oriented ap-
proach seems to be better suited for modeling software pro-
cess environments than other approaches, for example, an
object-oriented approach. Software development processes
can (and in many cases do) have several thousands of agents
executing.

Some SPEs (Little-JIL/Juliette [13], APEL [3], DYNAMITE
[6]) describe entities similar to agents, even though not al-
ways in exactly the same sense as in the AI multi-agent
community. Most SPEs focus on the process specification
formalisms rather than the details of modeling the environ-
ment in which those processes would execute. Consequently
little attention has been given to description of agents, their
place, and their structure in SPEs. Filling this void is bene-
ficial to both the multi-agent and the software process com-
munities.

This work resulted from the need to accelerate software pro-
cess specifications and their enaction in agent-based software
process environments. Agent-based SPEs require the speci-
fication of agents as part of the specification of the software
processes. The SPEs (e.g. Little-JIL/Juliette [8], [13]), as
well as AI multi-agent frameworks (e.g. JAF [12]), provide
for substantial flexibility in agent specifications. The down-
side of such freedom is an almost complete lack of guidelines



Visual-JIL

,
,
,
.
’ e
/ .
’ e
/, i -
/! Step

/ Repository
I
'

Little-JIL
Interpreter

Resource
Manager

Message
Manager

Agenda
Manager

T

Agents

Tools

Object 1
<

A
! Scheduling |
! Service i

T Activity
O Artifact

[
I___' Optional component

- -> Possible communication

Figure 1: Little-JIL environment architecture

for the problem-solving part of agent specifications. Thus
the agent specification becomes one of the major bottlenecks
in process specifications, as every new process, even in the
same domain, requires agents to be specified almost from
scratch.

The aim of this work is to simplify the specification and de-
velopment of software processes in agent-based SPEs by con-
straining the agent structure, making it more specific, mak-
ing it more immediately suitable for the needs of software
processes. QOur framework presents an initial attempt at
extending an existing, agent-based SPE (Little-JIL/Juliette
[13]) with an agent framework for execution of processes. We
illustrate our approach by using processes dealing with soft-
ware architectures. We show that by restricting the struc-
ture of an agent and providing agent templates we gain a
great deal of leverage in defining agent-based processes.

2. OVERVIEW

The Little-JIL/Juliette SPE was developed at the Labora-
tory for Advanced Software Engineering at UMass, Amherst.
Juliette is a Software Process Environment that supports the
development and execution of software processes represented
in a software process language, Little-JIL. The high-level de-
sign of the Little-JIL/Juliette SPE is shown in Fig. 1

Little-JIL is a visual language intended for the specification
of software processes. Programs in Little-JIL describe the
coordination and communication between agents that en-
able them to perform a process.

Little-JIL agents are intelligent, autonomous entities that
are experts in some part of the process described by a Little-
JIL program. Agents may be human or automata. In either
case, they are assigned work and required to report back the
success or failure of that work when they are done.

Steps are specifications of units of work assigned to agents.
Each step contains information and resources that are re-
quired (e.g., a detailed design for a programming task), pre-
conditions that must be satisfied before an agent can begin
the work, the decomposition of the work into smaller steps,
and post-conditions to check that the work was completed
correctly.

Parents and children in the sub-step hierarchy of a Little-
JIL program can transmit objects between each other. The
objects are stored in a persistent repository managed by an
object manager.

Different agents are assigned to some step and its substeps.
Thus the assignment of an agent to a step means that the
agent has the responsibility for accomplishing that step rather
than executing all of the substeps of that step.

A step is assigned to an agent by posting it on an agenda.
Each agent has one or more agendas that the agent can
examine to determine the work assigned to it. An agent
can choose different alternatives of accomplishing an agenda
item corresponding to some step. The alternatives can be
either elaborated in the process represented by Little-JIL,
both in pro-active and reactive control, or they can be “hid-
den” in agent’s implementation. The current state of the



environment (for example, resource model) can influence the
agent’s decision making. There is a provision for agents to
exchange messages directly, rather than transmit them along
the sub-step hierarchy. It is mainly these features that en-
able us to claim that agents in Little-JIL are autonomous.
Currently, the Juliette SPE lacks a scheduling component
which somewhat constrains the degree of variance of alter-
natives. Most AI multi-agent systems (e.g. JAF [12], DE-
CAF [5]) provide its agents with complex schedulers that
help arriving at alternative ways to accomplish a certain
goal, producing both the sets of predefined atomic opera-
tions and their schedules. Negotiation mechanisms in such
AT multi-agent systems increase the overall utility of the ac-
tions of a set of agents by helping them conduct a distributed
search over their local schedules. The agent-oriented SPEs
are moving in that direction, while placing a greater empha-
sis on the fact that software processes almost always involve
humans as agents and are tending to define alternatives ex-
plicitly in the process specification, both via pro-active and
reactive control constructs. Nevertheless, we feel that SPEs,
Little-JIL/Juliette in particular, provide enough autonomy
for its agents to be viewed as multi-agent systems.

An agenda item corresponding to some concrete step goes
through several states according to predefined finite-state
machine (among others, they include STARTED, COM-
PLETED, RETRACTED, CANCELED). The Juliette SPE
only requires that agents be able to listen to agenda item
events. No guidelines are given as to the structure of the
agent and its problem solving component. Neither are there
any guidelines about the representation of artifacts. The
software process designer using the Little-JIL is left to make
his/her own decisions regarding the structure of the agents
and regarding the format of the communication between
them. After specifying several software processes and build-
ing agent structures from scratch a software process designer
is likely to recognize that it might be beneficial to intro-
duce more constrained frameworks that provide a predifined
structure for the agents that spells out how to go about
constructing an agent and enables the reuse of the agents
originally written for other processes in the same problem
domain. It is understandable that the freedom the stock
Little-JIL provides is needed because it is impossible to en-
vision and generalize all areas of application. On the other
hand, once such areas of application are recognized, it is
beneficial to introduce extensions to the SPE specific to that
application area.

The topic of this work is description of an agent framework
which is part of such an extension for processes dealing with
software architectures. To a great extent, it is the nature of
the process artifacts that define the agent’s problem solving
component and its functionality in our framework. We be-
lieve that the architecting processes serve as a surrogate for
the rest of the development processes. Consequently, we be-
lieve that our framework would apply to other development
processes equally well.

In case of architecting processes, the artifacts are software
architecture and design specifications represented with ar-
chitecture description languages. The steps of architecting
processes manipulate these specifications by adding, delet-
ing or reorganizing their components. Thus the activities

of agents that execute such steps can be thought of as pro-
ductions. The notion of production is used because such ac-
tivities most often transform an expression of the language
used to represent the input artifact into the language of the
output artifact (which can be a different subset of the same
language). The set of productions used by some agent can
vary and it depends on the needs of the executed process.
The design and architecture specifications themselves can be
represented in a meta-language such as XML (e.g. XArch
project [4]) to generalize some common manipulation activ-
ities that do not depend on peculiarities of specific archi-
tecture description languages. The use of XML for artifact
representation also makes it easier to integrate XML-aware
external tools. Because the software processes often require
humans as agents it is important to make provisions for
step-specific or artifact specific GUIs to help them.

This reasoning led to development of the agent framework
for architecting processes shown in Fig. 2. The architecting
agent class obligates its subclasses to have a certain common
functionality set and a certain common structure specifically
suited for architecting process agents. Part of that common
functionality provides for communication with the external
environment, in this case - with other components of the
Juliette SPE (such as Little-JIL language interpreter).

The process specific agent class has some knowledge of the
steps that might appear in a certain process. This class
essentially matches the steps and activities that the agent
would execute to accomplish those steps. Depending on the
degree of desired automation the agents can be:

e Human assistants (such an agent would invoke a step-
specific GUI and try to assist the human in accom-
plishing the step)

e Human-modeling (such an agent would attempt to model
the duties of a human for process simulation or guid-
ance purposes)

e Automated (such an agent would accomplish steps amenable

to complete automation)

It is because of this that we get a very large set of agents in
existence at any one time: large numbers of human agents
are executing the software process concurrently and may
use one or more of these agents for its own purposes for
interaction, guidance or automation.

Any software process is likely to require step specific GUIs.
This need is recognized in the agent framework by defining a
set of step specific GUIs that is checked by the agent every
time it receives a new agenda item. The table that puts
GUI classes and process steps in correspondence is defined
as part of the process specification.

3. EXPERIENCES WITH OUR APPROACH

The agent framework described above has been used to model
several simple architecture recovery processes. The frame-
work made it much easier to implement new processes. Only
the description of the set of steps recognized by the agent
and the productions it would use to accomplish them had



Area specific production set
~

N ,
Production set

I
! Legend:

Process specific production set

Architecting agent class
N
\

\

Specific process
agent class

Object management

(artifact repository)

Figure 2: Agent structure

to be changed for the agent to work with a new architecting
process defined in Little-JIL.

One such process is MapOnArchitecture, it takes source
code of some software system as input and produces a set
of the software system’s elements and relationships between
them which can be viewed as an architectural description.
The process initially obtains the class diagram from the
source code and then transforms the class diagram into an
architectural description. This process’ root step, MapOnAr-
chitecture, is decomposed into four sequential steps: Id-
Classes - identification of classes, IdRelationships identifica-
tion of relationships, IdClassProperties identification of class
properties, and CreateArchitecture - mapping of the class di-
agram onto an architectural template, thus shifting from a
class diagram to an architecture. A human assistant agent
was assigned to MapOnArchitecture and CreateArchitecture
steps, while automated agents performed IdClasses, IdRela-
tionships, IdClassProperties steps.

The process programmer has to make a decision about the
level of elaboration of a process. It is a trade-off between in-
terpreted behavior and built-in precompiled behavior speci-
fication. In this case it is broken up between Little-JIL spec-
ifications and production specifications. Every automated
step has a corresponding production that constructs output
artifacts from the input ones. The human assistant agent
provides the GUIs to assist the user with supervising the
process execution and with the architecture mapping activ-

ity.

The activity that the human assistant agent performs on
reception of an CreateArchitecture agenda item can serve as
an example of a production. The human assistant agent at
first executes that production and then opens a GUI that
allows viewing the input artifact to the step (a class diagram
showing the set of classes and relationships between them)
and the first attempt at the output artifact (an architecture
showing a run-time snapshot of the software system). This
production specifies just one possible way of generating an

—=> Generalization
--= Part-of
— Data flow

O Class

[T Component

architectural view from the class diagram. It is used more
as a test case for the agent framework than a full-fledged,
comprehensive architecture recovery process.

The production for one of the agents that can perform the
CreateArchitecture step specifies that:

e every leaf class in the input artifact (class diagram)
generates an instance of that class in the output arti-
fact (architecture).

e every non-leaf class that is meant to be instantiated
generates an instance of that class in the architecture
(such a non-leaf class is likely to have other than gen-
eralization relationships to other classes in the class di-
agram, so this condition is used to guess which classes
are to be instantiated).

e every non-generalization relationship is transferred from
the classes in the class diagram to the corresponding
instances in the architecture

e duplicate relationships are removed from the architec-
ture

Other agents can have different productions for the same
step. The user (human agent) responsible for the CreateArchi-
tecture agenda item can edit the output of this production
in the GUI provided by the human assistant agent.

4. RELATED WORK

Few SPEs pay any attention to agent specifications. Those
SPEs that mention agents (or entities in agent roles: soft-
ware development team member roles, tools) usually de-
scribe the skill sets needed from them and the activities they
need to perform (e.g. APEL [3], DYNAMITE [6]). The AI
multi-agent systems do focus on the agent frameworks for
particular problem domains (e.g. [7], [10]). However, Al
multi-agent systems do not pay attention to the needs of
software process execution, primarily to the fact that a lot
of agents in SPEs play the role of human assistants. There
is also very little support for human agents (for instance,
artifact-specific GUIs or provisions for development of hu-
man assistant agents) in the frameworks and environments
for development of multi-agent systems ([1], [2], [5], [11],
[12]). We believe that attending to the needs of human
agents in multi-agent systems will enable a more effective
use of the multi-agent approach for development of agent-
based SPEs.

S. EVALUATION AND FUTURE WORK

The architecting process agent framework enables greater
software reuse and accelerated specification of architecting
processes. The use of productions made the process and
agent description more comprehensive and more amenable
to analysis. The use of XML for artifact representation en-
abled greater inter-operability with external tools and made
their integration into the agents and process execution eas-
ier.

One of the future directions of the framework’s improve-
ment involves the generalization of artifact GUISs (as process-
specific tools). There is a need for an automatic GUI gener-
ator based on artifact formats; it would greatly reduce the
specification of new processes. It would be beneficial for the



GUT’s to reflect the peculiarities of the languages used for
artifact specification. Another direction is further general-
ization of production specifications, such as an XML-based
language defining the transformation or generation of arti-
fact elements.

The framework will be tested on more complex processes, re-
quiring greater a level of communication between the agents
(not just along the substep hierarchy or via resource man-
ager). Part of this effort involves encoding agent communi-
cation processes in Little-JIL.

6. ACKNOWLEDGMENTS

The authors wish to thank Prof. Lee Osterweil and Sandy
Wise for making available the Little-JIL/Juliette software
process environment and providing further help with the
environment.

7. REFERENCES

[1] K. S. Barber, A. Goel, D. C. Han, J. Kim, D. N. Lam,
T. H. Liu, M. T. MacMahon, R. M. McKay, and C. E.
Martin. Infrastructure for Design, Deployment and
Experimentation of Distributed Agent-based Systems:
The Requirements, the Technologies, and an Example.
In Autonomous Agents and Multi-Agent Systems
(AAMAS-2001), 2001.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A
FIPA-compliant agent framework. In Proceedings of
PAAM’99, pages 97-108, London, April 1999.

[3] S. Dami, J. Estublier, and M. Amiuor. APEL: a
Graphical Yet Executable Formalism for Process
Modeling. Technical report, LSR, Actimart Bat 8, av.
de Vignate, 38610 Gieres France, 1997.

[4] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An
Infrastructure for the Rapid Development of
XML-based Architecture Description Languages. In
International Conference on Software Engineering
2002, 2002.

[5] J. Graham and K. Decker. Towards a Distributed,
Environment-Centered Agent Framework. In The 1999
Intl. Workshop on Agent Theories, Architectures, and
Languages [ATAL-99], Orlando, FL, July 1999.

[6] P. Heimann, G. Joeris, C.-A. Krapp, and
B. Westfechtel. DYNAMITE: Dynamic task nets for
software process management. In The 18th
International Conference on Software Engineering,
pages 331-341, March 1996.

[7] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker,
K. Rawlins, and V. Lesser. Distributed Sensor
Network for Real Time Tracking. In 5th International
Conference on Autonomous Agents, pages 417-424,
Montreal, June 2001.

[8] B. S. Lerner, L. J. Osterweil, J. Stanley M. Sutton,
and A. Wise. Programming process coordination in
Little-JIL. In V. Gruhn, editor, Proceedings of the 6th
European Workshop on Software Process Technology
(EWSPT ’98), number 1487 in Lecture Notes in
Computer Science, pages 127-131, Weybridge, UK,
September 1998. Springer-Verlag.

[9] D. E. Perry and A. L. Wolf. Foundations for the Study
of Software Architecture. In ACM SIGSOFT Software
Engineering Notes, pages 40-52, October 1992.

[10] V.Gorodetski, O.Karsaev, A.Khabalov, I.Kotenko,
L.Popyack, and V.Skormin. Agent-based model of
Computer Network Security System: A Case Study. In
International Workshop on Mathematical Methods,
Models and Architectures for Computer Network
Security, volume 2052, pages 39-50. Lecture Notes in
Computer Science, Springer Verlag, 2001.

[11] V.Gorodetski, O.Karsaev, I.Kotenko, and A.Khabalov.
Software Development Kit for Multi-agent Systems
Design and Implementation. International Workshop
of Central and Eastern FEurope on Multi-agent
Systems (CEEMAS-2001), September 2001.

[12] R. Vincent, B. Horling, and V. Lesser. An Agent
Infrastructure to Build and Evaluate Multi-Agent
Systems: The Java Agent Framework and
Multi-Agent System Simulator. Lecture Notes in
Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent
Systems, 1887:102-127, 2001.

[13] A. Wise. Little-JIL 1.0 Language Report. Technical
report 98-24, Department of Computer Science,
University of Massachusetts at Amherst, 1998.



