
Automatically analyzing software processes: Experience report

Rodion M. Podorozhny
UT Advanced Research In Software Engineering (UT ARISE)

The University of Texas, Austin
podorozh@mail.utexas.edu

Dewayne E. Perry
UT Advanced Research In Software Engineering (UT ARISE)

The University of Texas, Austin
perry@ece.utexas.edu

Leon J. Osterweil
Laboratory for Advanced Software Engineering (LASER)

The University of Massachusetts, Amherst
ljo@cs.umass.edu

Abstract

Sound methods of analysis and comparison of software
processes are crucial for such tasks as process under-
standing, process correctness verification, evolution man-
agement, process classification, process improvement, and
choosing the appropriate process for a certain project.

The purpose of our research is to lay the foundations for
a systematic and rigorous comparison of processes by es-
tablishing fixed methods and conceptual frameworks that
are able to assure that comparison efforts will yield pre-
dictable, reproducible results.

The analysis framework presented here assumes that the
comparison will be done relative to a fixed standard feature
classification schema for the processes used, and with the
use of a fixed formalism for modeling the processes. The
aspect of the system described in this paper is focused on
functional analysis of processes according to the predefined
comparison topics, well formedness constraints, and instru-
mented agents.

The paper describes our experience using our analysis
system and its application to a logistics software process
from the telecommunication domain.

1 Introduction

This work presents a novel approach for analyzing and
comparing software processes that enables one to signifi-

cantly increase the objectivity and repeatability of compar-
isons. To our knowledge, this is the first attempt at a par-
tially automated analysis and comparison of software pro-
cesses based on the artifacts they produce. While our work
focuses on the application of our analysis system to soft-
ware process analyses and comparisons, it is more general.
It is also applicable in domains other than software process,
such as data-based comparison of software applications for
evaluation of continuous program optimization techniques
([10]).

It is our belief that certain tasks (e.g. software develop-
ment) are very unlikely to be completely automated in the
foreseeable future if ever. Thus there will be a need for
software process systems with human involvement in their
execution. We believe that the operation of such systems
can be properly described and analyzed with the use of the
concept of a software process as introduced in [12].

One of the hallmarks of a mature scientific or engineer-
ing discipline is its ability to support the analysis, compari-
son and evaluation of the artifacts with which it deals. Sys-
tematic analyses and comparisons rest upon classification.
Thus we believe that the establishment of a discipline of
process engineering requires the development of techniques
and structures for supporting the classification, compari-
son, verification, evaluation, and improvement of processes.
Systematic, rigorous and automatable analysis techniques
can help achieve the goals of process engineering.

The analysis system discussed here assumes that the ana-
lyzed and compared processes are in the same problem do-
main and have a similar purpose, but might have certain

differences in how they achieve their goals starting from the
input of the same kind and providing output of the same
kind. Our approach is based on the analysis and compar-
ison of artifacts produced by the processes along the exe-
cution paths prompted by similar input (e.g. similar formal
requirements for a software system fed to different software
development processes). Thus our approach also makes an
assumption that the intent of the analyzed processes is in
response to the similar input is comparable and produces
comparable artifacts.

In this paper we describe our experience analyzing and
comparing two versions of a telecommunications logistics
process, what results we get from the process analysis,
how our system compares to other approaches, and lessons
learned from the experience.

2 Logistics process example

As our example we used a telecommunications ordering
process employed by Telcordia. The ordering process elab-
orates the activity of adding a service to a customer. This
company uses a proprietary process specification language
for rigorous specification of such logistics processes. Their
logistics processes also use a predefined set of artifact for-
mats. In addition to the format specification, there is a set of
well-formedness conditions defined for the artifacts. One of
the challenges the developers of these processes face is the
task of change management. After a change is made to the
process the developers have to make sure that the process
still produces artifacts complying with the well-formedness
conditions. If the new version of the process produces an
undesirable result then the developers have to find out the
cause. This is not always as trivial as it would seem even
for relatively small processes as not a single developer un-
derstands the process in its entirety. There are also dif-
ferent possible interpretations of the process by develop-
ers. The suggested comparison approach alleviates some of
these problems by providing a rigorous analysis of process
artifacts and suggesting possible causes for the differences
based on such an analysis.

The study assumed that two seemingly identical versions
of the same process need to be compared to find out if the
artifacts produced comply to a certain well-formedness con-
dition, and to point out the reason for the differences if there
are any. Such a set-up is likely to highlight the benefits of
the artifact-based trace analysis technique that can be used
to complement the static analysis of the process template
specification such as by Jamieson Cobleigh et al. ([5]).

The representation of the motivating example process
template is depicted in Fig. 1. We use the Little-JIL pro-
cess language ([3]) to show software processes in this pa-
per. The visual representation of the Little-JIL is based on
a functional decomposition. The steps are depicted as rect-

OrderProcess

CollectCustData

customerData

CreateOrder

order

customerData

AssociateBundleToFeature

order

billDBupdate
features

SetupIPService

FQDNspec

agent: Manager

order

ConfigCallAgent

features
customerData
FQDN

configOutcome
FQDN

agent: ServiceRepBots

loc: order
loc: customerData

loc: billDBupdate
loc: FQDN
loc: features
loc: preorderOutcome

out: customerData
agent: OrderMgtBots
in: customerData
out: order

agent: BillingSysBots
in: order
out: billDBupdate
out: features

agent: NetworkSvcBots
in: orderSpec
out: FQDNSpec
loc: IPaddress
loc: modemConfig

agent: CallAgentBots
in: features
in: customerData
out: configOutcome
in/out: FQDN

Figure 1. Order process

angles with a step’s name above the rectangle. The steps’
interfaces include specification of an agent class (agent:
prefix)1, local parameters (loc: prefix), input parameters
(in: prefix, and output parameters (out: prefix). The data
flow is depicted along the decomposition links: the inscrip-
tions near the arrow into a step contain input parameters
and that near the arrow out of a step contain output param-
eters. A complete process specification also includes the
resource model that specifies the agents available in the en-
vironment, the artifacts specification, and the agents’ prob-
lem solver components specification that define the trans-
formations from input artifact formats to output ones. The
process program declares the agent classes for steps. The
actual agents are bound to steps during process execution,
therefore it is possible to run the same process template in
different environments.

An example of a well-formedness condition for this
telecommunications ordering process is the need to base
voice communication service on a data communication ser-
vice. If the ordering process does not establish that a cus-
tomer ordering the voice communication also needs the data
communication then the process creates malformed artifacts
that result in billing the customer for the voice service that
will not function. To avoid this scenario the executing soft-
ware process (including the template and functionality of
the agents responsible for performance of the steps) has to
be shown to comply with the well-formedness condition.
Any differences and their possible causes must be found, be
they in the process template or agent functionality, and must
be reported. Our comparison approach suggests a rigorous
and automated way to provide these results.

1An agent is an entity responsible for execution of a step.

2

CmprByArtifacts

Process modeling Process execution

ModelProcess A ModelProcess B Run process A Run process B

Construct initial
BF

Formalize Analyze
traces

ModelA, ModelB

BF, MF,
AMF,
source desc.
of Proc A, B

Model A ModelB

ProcA, BF, MF ProcB, BF, MF

ModelA
ModelB

TraceA
TraceB

ModelA ModelB

AMF, Environment AMF, Environment
TraceA TraceBClassify

arifact
elements

Tag same
meaning
elements

modelInput

Obtain traces

Trace and Topics

AMF, Proc A, B

BF

Formalized Comparison Topics, TraceA, TraceB,

Comparison results
(sets of step/agent combinations

 per a comparison topic)

Formalized

Comparison Topics

Comparison
Topics, BF, AMF

Comparison Topics

Contribution measure

 ranked by contribution measure

Figure 2. Steps in analysis and comparison

3 Steps in analyzing and comparing pro-
cesses

In this section we discuss the use of an analysis system
to analyze and compare the example processes. Figures 2
and 3 illustrate the steps required by the analysis system
illustrated in the Little-JIL.

The current implementation of the process focuses on an
artifact-based analysis and comparison of two software pro-
cesses. The software processes are assumed to have struc-
tured artifacts with predefined formats such that the pro-
cesses specify transformations between the artifact formats.

The process of analysis and comparison shown in Fig. 2
is automated by a toolset. The steps for process execution
and trace analysis are completely automated. The rest of
the steps such as creation of the base framework, process
modeling, comparison topics specification have to be exe-
cuted by a user in a systematic way by following guidelines.
The toolset assists the user in executing the non-automated
steps. For instance, it provides the Artifact Meta-Format for
artifact base framework specification and an agent frame-
work for process specification. The non-automated steps
are provided with guidelines for a systematic manual exe-
cution.

3.1 Artifact ontology specification

The analysis process starts with constructing an initial
base framework (BF) for the artifact section (stepCon-
struct initial BF). Thebase frameworkdenotes a problem
domain specific framework for artifacts, software process
decomposition units, and process features that can be de-
rived on their basis. The base framework can be thought of
as a classification schema or ontology that provides guide-

Analyze traces

Define artifact Define artifact Perform consistency
checking

Decide on termination
Analyze traces

TraceA

TraceB

ArtSetA1
ArtSetB1

Form.
Comp.
Topics

Subset of
Form Comp
Topics

ArtSetA1, ArtSetB1, Subset of Form. Comp. Topics,
Influence measure

Sets of step/agent combinations ranked

Termination
Decision

by influence measure(comparison results)

Input to the initial instance of Analyze traces and results
of the previous iteration

set A set B
Choose formalized
comparison topic

Figure 3. Analyze traces

<Node>
<MetaComponentClass>

<Attribute attrClass="java.lang.String"
name="name"
value="customerData"/>

<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027"/>

<Attribute attrClass="java.lang.String"
name="customerPhoneNumber"

value="000-000-00-00"/>
<Attribute attrClass="java.lang.String"

name="defaultName"
value="defaultValue"/>

<Attribute attrClass="java.lang.String"
name="customerStreetAddress"

value=""/>
<Attribute attrClass="java.lang.String"

name="customerZipCode"
value="11111"/>

</MetaComponentClass>
</Node>

<Node>
<MetaLinkClass>

<Attribute attrClass="java.lang.String"
name="name"
value="association"/>

<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027RequestsServiceReq8745"/>

<Attribute attrClass="java.lang.String"
name="type"
value="association"/>

</MetaLinkClass>
</Node>

Figure 4. Example of BF specification

3

lines for grouping comparable activities, artifacts, or fea-
tures of software processes from the same problem domain.
Software processes are likely to be in the same problem do-
main if their purpose and functionality overlap.

The step is decomposed into theTag same meaning el-
ementsandClassify artifact elementssubsteps to be ex-
ecuted sequentially. This step has a substantial subjective
involvement of a human user. The BF can be constructed
either from an existing ontology or it is generalized from
the artifact formats of the analyzed processes. The goal is
to identify the semantically overlapping portions of the ar-
tifact formats and tag the semantically similar elements of
those formats. This is done in theTag same meaning ele-
mentssubstep based on the source descriptions of the pro-
cessesProc A andProc B. The output of this substep is a
table of correspondence of artifact elements from the orig-
inal process descriptions and their common naming. The
correspondence is needed only between artifact elements in
the overlapping portion of the semantics of artifacts. Such
an overlapping is likely to exist in processes from the same
problem domain and with the same purpose.

In the case of our analysis system we used a common ar-
tifact meta-format (AMF) and the artifact element naming
conventions for tagging. Thus artifact elements are classi-
fied according to the AMF (stepClassify artifact elements)
and artifact elements with the same meaning are named
the same in the process models and artifacts of the same
class. TheTag same meaning elementssubstep precedes
the Classify artifact elementssince it is beneficial to re-
duce the number of elements to be classified. This reduction
is the result of giving the same names to the elements with
the same meaning, so the classification decision is made
only once for both same named elements from different pro-
cesses. In our example the BF corresponds to the formats
of artifacts used by the telecommunications process. The
process’s authors at Telcordia have already specified the ar-
tifact formats rigorously. Since the two analyzed processes
use the same artifact formats the task of identifying com-
mon ontology (BF) is simplified. The categories of the arti-
fact elements map directly to the categories of the ontology.
To obtain the BF specification in our example we wrote ev-
ery artifact template from Telcordia’s source process speci-
fication in the AMF. Thus we obtained BF specification for
all categories in artifacts used by both analyzed versions of
the process:customerData, order, billDBupdate, FQDN,
FQDNSpec, features, modemConfig, IPaddress, preorder-
Outcome, configOutcome. An example of BF specification
is shown in Fig. 4. This figure shows specification of BF
artifact categoriescustomerDataandassociation. The cate-
gory specifications also indicate their properties. The actual
artifacts used by pre-ordering processes would contain ele-
ments that map to these categories and that might be consid-
ered their instances. A user would specify the BF categories

manually using the Artifact Meta Format to describe the ar-
tifact BF categories found in the original description of the
analyzed or compared process.

3.2 Process modeling

Once the artifact section of the BF is defined, the model-
ing of the processes in the same executable process mod-
eling formalism can proceed. The input to this step in-
cludes the base framework (BF), process modeling formal-
ism (MF), artifact meta-format (AMF), and the source de-
scription of the analyzed processesProc A andProc B. It is
preferable to feed rigorous specifications of processes elab-
orated to the level of manipulation of the lowest level de-
composition units of artifacts.

This step is further decomposed into modeling of the in-
dividual processes that can proceed in parallel. This step
may require substantial human involvement but can be au-
tomated in the case if the source descriptions are rigorously
defined by building a translator from the formalism used in
the source descriptions to the common formalism used for
analysis.

The expressiveness of the process formalisms can influ-
ence the analysis results if they do not allow modeling of
the artifact elements or steps that manipulate them related
to the comparison topics. The output of the modeling step
consists of the process models in the common modeling for-
malism (ModelA, ModelB). In our implementation we use
the Little-JIL as the common modeling formalism for pro-
cess analysis and comparison. Thus the modeling involves
representation of the functional decomposition of the pro-
cess, specification of the process step interfaces, specifica-
tion of the artifact formats in the AMF, specification and
development of the agents to execute the steps, instrumen-
tation of the agents per a step kind, specification and devel-
opment of the step-specific GUIs, and the definition of the
environment to be the same for both processes (the devel-
oped agents are included into the environment).

The original Little-JIL has been extended to generalize
the agent and instrumentation specification for individual
problem domains. The user must take care not to overspec-
ify the agents beyond the elaboration of the lowest level ac-
tivities from the source processes. If the source processes
assume certain common low level activities then it is ad-
visable to use the same implementation for the agents from
both processes. The extended Little-JIL agent architecture
allows for reuse of agents’ problem solving components.
The Little-JIL artifact specification and the agents must use
the artifact formats specified in AMF and complying with
the naming conventions for the artifact elements with over-
lapping semantics.

In our implementation of the analysis system the user
would specify the process template in the Little-JIL using

4

the visual editor. An example of a process template we cre-
ated is shown in Fig. 1. We created two process templates
for the analyzed processes.

The user would also specify the agents for the process
template using Java and the domain specific agent frame-
work. The framework allows specification of low level
agent actions (operations) and then specifying the sets of
actions that agents must execute in response to incoming
events. In our case the vast majority of events processed
by agents are generated by the Little-JIL interpreter. These
events carry information about assignment of certain tasks
to agents. A task corresponds to an instantiation of process
steps. Any task assigned to an agent goes onto that agent’s
agenda list. The agent framework simplifies the specifica-
tion of agents by providing a uniform way to specify ac-
tions and by providing a generalized way to instrument the
process. Every time a certain agent executes an action the
information about the action’s result is written to the arti-
fact trace. The user only has to specify an action without
explicit specification of the instrumentation code.

The analysis system is limited by the level of elabora-
tion of the source processes. If the source process does not
describe the activities at the level of manipulation of arti-
fact elements then this method is unlikely to be applicable.
The generalized instrumentation components simplify the
user’s task in the process modeling stage. Nevertheless, the
user must make subjective decisions regarding continuity
of the artifact concerns. The user must decide on the kind
of operation a given agent performs on a given artifact el-
ement when performing a certain step (Operations =
(Create;Derive;Retain;Modify)). Thus every
agent, when executing, would add an entry to the annotation
lists of the output artifact elements explaining the operation
it performed on that element and noting agent and step IDs
and the timestamp. Also, the user must decide which out-
put artifact elements are going to inherit the annotation lists
from the input artifact elements. It is this decision that en-
sures the continuity of artifact concern traces. It is likely
that specifics of a given problem domain might simplify
this task. For instance, in logistics processes there is often
a limited, predefined set of artifact formats with predefined
and explicit relationships between elements from artifacts
of different stages of a process.

Actions comprise the problem solving component of an
agent. Part of the problem solver for the NetworkSvcBots
agent is shown in Fig. 5 as an example. In this figure the
startedmethod is invoked in response to an event signifying
the start of a certain task assigned to an agent. If the task’s
name isResetModemStepNamethen the agent will perform
theGetFQDNaction among others. The example shows the
generalization of action specification. An action is instan-
tiated and then the action is executed when it is passed the
input artifacts in a graph-based Artifact Meta-Format (im-

...
public synchronized void
started(AgendaItemEvent evt) {
AgendaItem item = evt.getAgendaItem();
...

if (itemName.equals(ResetModemStepName)) {
...
GetFQDN getFQDN = new GetFQDN();
ArchGraph[] args = {modemConfig};
ArchGraph fqdn = getFQDN.execute(args, agentStepID);
item.complete();
...

}
}

Figure 5. Example of specification of Net-
workSvcBots agent’s problem solver

plemented as ArchGraph). Having a set of domain specific
actions it is fairly easy to create agents using this frame-
work. The user would create or reuse a set of actions spe-
cific to the problem domain of analyzed processes so that
to specify agents. Thus agents for the two versions of the
pre-ordering process reused a number of actions.

First we wrote a set of actions in Java for the agents of
the analyzed processes. The actions used the artifact cate-
gories specified in the AMF to represent manipulation of
artifacts. For instance, thegetFQDNaction manipulates
the artifact BF categoryFQDN. Then we wrote the auto-
mated agents that used the actions. Our analysis system
also allows for specification of human-assisting and human-
modeling agents by providing a framework for step-specific
GUI specification. For instance, the agents we specified for
the analyzed process in Fig. 1 areServiceRepBots, Order-
MgtBots, BillingSysBots, NetworkSvcBots, CallAgentBots.

3.3 Process execution

The next step of the analysis system,Process execu-
tion, requires execution of the so modeled and instrumented
processes (ModelA, ModelB) on the same input (modelIn-
put). The result of such an execution is a set of two traces
of artifacts whose elements are annotated with a list of oper-
ations, agents, and steps that were performed on them. The
annotation lists in an artifact would cover the trace until this
artifact is produced. Thus product artifacts would contain
the most comprehensive annotation lists. The annotations
of artifact elements are partially ordered by timestamps by
construction via the instrumentation code that is run during
the process execution. Thus every artifact element relevant
to the comparison topic2 must have a history of all manipu-
lations done to it in the annotation list. This step outputs the
traces of artifacts with annotation lists (TraceA, TraceB).
The traces follow the execution paths through the process

2the one that needs to be checked in order to determine if an artifact
complies with a certain comparison topic

5

...
<Node>

<MetaComponentInstance>
<Attribute attrClass="graph.model.ComponentClass"

name="class" value="customerData"/>
<Attribute attrClass="java.lang.String"

name="name" value="Customer1223027"/>
<Attribute attrClass="java.lang.String"

name="customerPhoneNumber"
value="617-234-92-32"/>

<Attribute attrClass="java.lang.String"
name="customerName" value="Edward Jackson"/>

<Attribute attrClass="java.lang.String"
name="customerStreetAddress"
value="962 Hill Dr."/>

<Attribute attrClass="java.lang.String"
name="customerZipCode" value="01403"/>

</MetaComponentInstance>
</Node>

<Node>
<MetaLinkInstance>

<Attribute attrClass="java.lang.String"
name="class" value="association"/>

<Attribute attrClass=
"graph.model.ComponentInstance"

name="source" value="Customer1223027"/>
<Attribute attrClass=

"graph.model.ComponentInstance"
name="dest" value="ServiceReq8745"/>

</MetaLinkInstance>
</Node>
...

Figure 6. customerData artifact in graph-
based AMF

modelsModelA, ModelB that correspond to the same in-
putmodelInput and hence are considered comparable.

The user obtains the artifact traces automatically by start-
ing the Little-JIL environment and running a process spec-
ification with the environment containing the domain spe-
cific agents. Since the artifact ontology and consequently
the artifact formats used by the agents of the processes are
the same then it is possible to conduct a meaningful anal-
ysis and comparison of the artifacts. In our example we
ran the analyzed processes and obtained two traces of an-
notated artifacts specified in the AMF. Unlike the BF spec-
ification in Fig. 4 the artifacts contain the actual elements
corresponding to the BF categories. An example ofcus-
tomerDataartifact specification is shown in Fig. 6. It was
produced automatically by running the process.

3.4 Comparison topic specification

The step for definition and formalization of comparison
topics (Formalize Comparison Topicsstep) can be exe-
cuted after the initial BF is constructed and in parallel with
the Process modelingandProcess execution. This is re-
flected by auxiliary decomposition stepsTrace and Topics
andObtain traces. This step implies specification of com-
parison topics in terms of first order logic formulas operat-
ing on the artifact elements with common naming conven-

...
<consistencyrule id="wellform1">

<header>
<description>

Voice service should be associated to data service
</description>

</header>
<forall var="vs" in="$voiceservices">

<exists var="l" in="$associations">
<and>

<equal op1="$vs/@name"
op2="$l/@source"/>
<exists var="ds" in="$dataservices">

<equal op1="$ds/@name"
op2="$l/@dest"/>

</exists>
</and>

</exists>
</forall>

</consistencyrule>
</consistencyruleset>

Figure 7. Comparison topic example

tions. This step outputsFormalized Comparison Topics
as a set of first order logic formulas. In the case of our
example the comparison topic is whether both processes
fulfill the requirement that a voice service must rely on an
existing data service in the customer’s service configura-
tion. This requirement is reflected in a relationship from
the voice service to the data service in thebillDPupdate
artifact. One version of the process checks for the data
service and establishes the necessary relation. The other
version omits this action and produces a malformed artifact
which would lead to a failure of the service request set-up
in a deployed telecommunications process. This compar-
ison topic is formalized as a first order logic rule in the
Xlinkit rule specification language ([4]). The formalized
comparison topic is phrased as8vs 2 voiceservices

9link 2 associations s.t. link:source = vs ^

link:destination = ds; ds 2 dataservices. The
Xlinkit rule specification we wrote for the comparison topic
in our example is shown in Fig. 7.

3.5 Artifact trace analysis

Next, the analysis process calls for analysis of artifact
tracesTraceA, TraceB by way of consistency checking to
the formalized comparison topics. This analysis is done in
theAnalyze tracesstep. The step’s input consists ofFor-
malized Comparison Topicsand annotated artifact traces
TraceA, TraceB.

The step’s output forms the results of the artifact-based
comparison - consistency links between formalized com-
parison topics and process artifact elements and sets of
step/agent combinations ranked by the contribution mea-
sure per a comparison topic. One of the main outcomes
of such an analysis is comparison of consistency links from
the same comparison topic to artifact elements in different

6

Specify art set1 Specify art set2 Specify topics

Analyze

Analysis

Area for visualization of artifacts and analysis results

Figure 8. Process analysis toolset GUI

processes. The consistency links help highlight whether:

� both comparison processes comply with a certain com-
parison topic,

� both comparison processes violate a certain compari-
son topic,

� one process complies with a certain comparison topic
while the other violates it.

The annotation lists help point out the steps and agents that
are responsible for the analysis outcome. In addition, it is
very likely that the sets of step/agent combinations from
different traces (processes) corresponding to the same com-
parison topic are comparable. Such pairs of sets can give
insights about the functional similarities or differences be-
tween processes and aid the user in making a more objective
process comparison.

3.5.1 Choice of initial artifact sets

The set of product artifacts quite often is most useful to
be used as the initial artifact set because they contain the
most comprehensive annotation lists and they are likely to
contain all the artifact elements that need to be checked for
comparison topics. Another advantage to this choice of the
initial set is high likelihood that the product artifacts are ex-
plicitly defined in the process source description. To reduce
the amount of computation it is advisable to choose artifacts
that are known to be relevant for the chosen comparison top-
ics. Thus, the initial artifact setsArtSetA1 andArtSetB1
are defined by the stepsDefine artifact set A andDefine
artifact set B. At this point the user can use the developed
toolset to specify the artifact sets to be analyzed from the

Bundle User account

Package

Call waiting feature

Voice service

Data service

wellform1 rule

Due to "Associate Bundle to Feature" step by BillingSysBots
agent

Figure 9. Example of analysis results

lists of artifacts in the traces. The toolset visualizes the arti-
facts as graphs based on their Artifact Meta-Format specifi-
cation. A general layout of the toolset’s interface is shown
in Fig. 8. In our example, using the toolset’s interface, we
chose the artifact trace produce by one analyzed processes
as ArtSetA1 and the artifact trace produced by the other
analyzed process asArtSetB1.

3.5.2 Choice of comparison topics

Once the artifact sets are chosen, the user should choose the
comparison topic to be used for consistency checking. This
is done in theChoose formalized comparison topicstep.
The process analysis toolset also lets the user to choose the
topics from a list of files with specification such as in Fig. 7.

3.5.3 Checking of artifacts’ consistency to formalized
comparison topics

Once the initial artifact sets for both processes and the for-
malized comparison topic are chosen, the comparison pro-
cess runs a consistency checker that produces consistency
links between the formalized comparison topics and artifact
elements of the analyzed processes. The current implemen-
tation of the comparison process uses the Xlinkit consis-
tency checker by Christian Nentwich et al. ([4], [11]). Next,
the user analyzes the two sets of artifact elements that have
consistency links to the same formalized comparison topics,
but belong to different processes. By using the toolset, the
user clicks the “Analyze” button and receives results as sets
of consistency links between the specified comparison top-
ics and artifact elements. The toolset also shows the steps
and agents responsible for the consistencies or inconsisten-
cies based on the information collected in the annotation
lists of the traces. An example of analysis results is shown

7

in Fig. 9. In the figure thebillDBupdateartifact is shown as
a graph. The rulewellform1corresponds to the comparison
topic specified in Fig. 7. It stipulates that any voice service
must be based on a data service. In this case the consistency
link from the rule’s representation points to the artifact el-
ement responsible for the complience (Voice service). The
toolset also points out that the stepAssociate Bundle to
Feature and agentBillingSysBots are responsible for the
complience.

In our example, after we chose the artifact sets and chose
the file with the comparison topic, we pressed the “Analyze”
button and received results representation that indicated the
consistency link between thewellformed1topic andvoice
serviceartifact element of thebillDBupdateartifact for the
first process. The toolset also showed it was due to the
way agentBillingSysBotsperformed stepAssociate Bundle
to Feature. There was no consistency link from thewell-
formed1topic to elements in the artifacts of the traces of
the other process. Thus the two processes were functionally
different due to actions theBillingSysBotsagent performed
in stepAssociate Bundle to Feature.

4 A closer look at artifacts and agents

In this section we describe one possible way of imple-
menting the analysis process testbed. The ability to execute
a rigorously modeled software process is required by the
process. The analysis process also assumes that a software
process specification is viewed as a template that is instanti-
ated and run in a specific environment that includes agents,
among other resources needed by processes. Agents are as-
sumed to be capable of performing different portions of the
process. Thus, one of the most important components of
our implementation is a software process execution envi-
ronment that uses the notion of agents.

We chose the Juliette process environment and the asso-
ciated Little-JIL process specification language ([3], [15]).
This choice is due to a sufficient expressiveness of the
Little-JIL language for our purpose and the use of the notion
of an agent in the Little-JIL and Juliette.

Nevertheless, the implementation of the comparison ap-
proach required two main extensions to be made to the Juli-
ette environment: a problem-domain specific agent frame-
work and a generalized artifact specification.

The addition of the agent framework allows for greater
software reuse, greater focus of agents’ definitions and
hence their greater comprehensibility, and it also reduced
the time it takes to define new agents in the same problem
domain. Essentially, by restricting the structure of an agent
and providing agent templates we gain a great deal of lever-
age in defining agent-based processes.

The use of Artifact Meta-Format (AMF) enables us to
define artifacts according to the chosen common artifact

section of BF which is the cornerstone of the comparison
analysis. In addition, the use of AMF allows for unified
handling of artifacts by agents and facilitates generalized
instrumentation.

4.1 Agent framework overview

The Juliette software process environment requires only
that agents be able to listen to agenda item events. No
guidelines are given as to the structure of the agent and its
problem solving component. Neither are there any guide-
lines about the representation of artifacts. The software pro-
cess designer using the Little-JIL is left to make his/her own
decisions regarding the structure of the agents and regarding
the format of the communication between them. After spec-
ifying several software processes and building agent struc-
tures from scratch a software process designer is likely to
recognize that it might be beneficial to introduce more con-
strained frameworks that provide a predefined structure for
the agents that spells out how to go about constructing an
agent and enables the reuse of the agents originally written
for other processes in the same problem domain. It is un-
derstandable that the freedom the stock Little-JIL provides
is needed because it is impossible to envision and generalize
all areas of application. On the other hand, once such areas
of application are recognized, it is beneficial to introduce
extensions to the software process environment specific to
that application area.

This reasoning led to development of the agent frame-
work for problem domain specific processes shown in
Fig. 10. The framework has been developed in Java with
the use of XML for artifact meta-format specifications.

4.1.1 Agent framework structure

The framework consists of a hierarchy of classes for the def-
inition of agent components at different levels of generaliza-
tion: the AutoAgent class, process specific agent, StepPro-
duction, and GraphStepProduction classes. The framework
also includes the StepGUI class for step specific GUI spec-
ification, ArchGraph class as a container for a generalized
artifact definition via a graph-based Artifact Meta-Format
and artifact reader and writer classes.

The AutoAgent and process specific agent classes are
to be inherited by the user agents. The StepProduction
and GraphStepProduction classes are to be inherited by the
problem solving components that are parts of a user agent.
A problem solving component defines the ways in which
an agent performs its tasks. In case of software processes
that transform artifacts from one format to another a prob-
lem solving component corresponds to specification of an
artifact format transformation.

The AutoAgent class generalizes functionality for
matching the step that the agent is requested to perform with

8

a set of actions that accomplish the step. This class imple-
ments mapping of step names to action sets, artifact storing,
and interface with the Little-JIL language interpreter.

The process specific agent class obligates its subclasses
to have a certain common functionality set and a certain
common structure specifically suited for process agents
from a given problem domain. Part of that common func-
tionality provides for communication with the external en-
vironment, in this case - with other components of the Juli-
ette software process environment (such as the Little-JIL
language interpreter). The framework also provides for ac-
tion specifications interchangeable between the agents. The
set of actions defines the functionality of a particular agent.
The process specific agent invokes problem solving compo-
nents in response to the step related events from the Little-
JIL language interpreter.

Depending on the degree of the desired automation the
agents can be:

� Human assistants (such an agent would invoke a step-
specific GUI and try to assist the human in accomplish-
ing the step)

� Human-modeling (such an agent would attempt to
model the duties of a human for process simulation or
guidance purposes)

� Automated (such an agent would accomplish steps
amenable to complete automation)

The abstract StepProduction class declares a gen-
eral functionality for an action which is anObject exe-
cute(Object[] args)method. Thus the framework forces
many to one artifact transformations for the actions of an
agent. The GraphStepProduction class enforces the use of
the graph-based format for the artifacts that actions manipu-
late. The domain and/or process specific actions are extend-
ing the GraphStepProduction class with implementation of
specific actions for artifact transformations. An agent in-
stance instantiates the set of process specific actions that de-
fine that agent’s functionality and calls theexecutemethods
on them in response to the agenda events from the process
language interpreter.

Any software process is likely to require step specific
GUIs because of human involvement in the process execu-
tion. This need is recognized in the agent framework by
defining a set of step specific GUIs that is checked by the
agent every time it receives a new agenda item.

4.2 Artifact Meta-Format overview

The Artifact Meta-Format introduces a graph-based gen-
eralization for the artifact formats. It allows definition of
a class hierarchy of nodes, links, and their attributes. The

Data flow

Agent

Part−of

Legend:

Generalization

Component

Class

Area specific problem solver
components

Process specific problem solver
components

Problem solver

Artifact persistent
storage

Step GUI

AutoAgent
class

Process specific
agent class

StepProduction
class

GraphStepProduction
class

Artifact reader/writer

Figure 10. Agent structure

meta-format supports inheritance of node and link attributes
by type and value. The meta-classes of the meta-format are:

� MetaComponentClass- a node class

� MetaComponentInstance- a node instance

� MetaLinkClass - a link class

� MetaLinkInstance - a link instance

The entries of the attribute lists of the meta-class in-
stances are defined by the tuples of their class (attrClass),
name, and value.

The artifacts defined in the graph-based AMF are stored
persistently as XML files. The corresponding Java frame-
work allows instantiation of a persistent artifact represen-
tation via instances of Java classes. The AMF reader class
can be thought of as a graph-based AMF class-loader. The
framework also provides a writer class that provides func-
tionality for storing artifact instantiations. A visual editor
has been developed to support the execution of processes
that use this AMF for artifact specification. The artifact
graph classes and instances are attributed. The attributes
are specified with triples of attribute class, name, and value.
The AMF supports inheritance of attributes by types and
values.

5 Selected comparison with other process
analysis approaches

In their earlier work on this topic, Xiping Song and
Leon Osterweil proposed techniques and structures for a
disciplined and rigorous software process comparison, and
demonstrated their use by carrying out classifications and

9

comparisons of processes drawn from the narrow and spe-
cialized domain of software design processes [13], [14].
These comparisons were guided by a formal comparison
process, Comparison of Design Methods (CDM), and were
performed according to a fixed base framework. The base
framework can be thought of as a classification schema and
provides guidelines for grouping comparable activities, ar-
tifacts, and features.

The need to compare modeled processes according to a
fixed base framework was also recognized somewhat earlier
by Sjaak Brinkkemper et al. ([9]). However, their compar-
ison had no guidelines as explicit and formal as the CDM.
The BF suggested in ([9]) has a flat structure as well. The
content and construction method are different from the BF
in our approach. The BF classes in ([9]) are constructed on
the basis of the elements of the process and artifact decom-
position units of the compared processes.

An approach to the analysis of processes based on the
event data produced by an actual process execution has been
suggested in [16]. The kinds of analysis in this work fo-
cused on performance characteristics such as times between
artifact production and duration of communication events
related to a localized aspect of the system produced by the
analyzed process.

Analysis of in-place software processes and measure-
ment of the correspondence of a particular process execu-
tion to its model have similar goals with process compari-
son in that they attempt to evaluate processes. Some fairly
recent work in these directions has been done by Jonathan
Cook and Alexander Wolf ([6], [7], [8]).

While the above mentioned work by Alexander Wolf,
David Rosenblum, Jonathan Cook is a kind of retrospective
analysis just as ours is, the kinds of properties investigated
by them focused on real-time performance of process activ-
ities.

There has also been work on analysis of processes based
on a Petri-net-like specification ([2]). Such properties as
safety and liveliness (e.g. freedom from deadlock) can be
detected through the analysis of this kind. Unlike ([16], [6],
[7], [8], [2]) our focus has been on functional analysis of
the processes regardless of the dynamic characteristics of
process execution.

One of the more recent approaches in process compari-
son is by Abrahamsson et al. [1]. The authors present com-
parison of Agile processes. They use an ad-hoc comparison
method for comparing processes by high level topics. The
focus of their comparison is on organizational and activity
sequencing issues rather than on the functional differences.
This is primarily due to the fact that Agile software devel-
opment processes (such as Extreme Programming) omit any
description of the guidelines for artifact transformation by
their activities. Instead they focus on organizational and ac-
tivity sequencing issues.

6 Lessons learned and Future directions

The lessons learned from using our process analysis sys-
tem to compare and analyze the two versions of the telecom-
munications logistics processes center around the artifact
focus, the substantial amount of preparation, and the utility
and advantages of the use of the system.

Artifact Focus. The focus on artifacts produced by pro-
cesses is a very useful one. First, it represents the raison
d’etre of processes: the production of processes and ser-
vices on the basis of various input artifacts. Second, it
avoids the tarpit of the widely varying and differing ways
that one might accomplish the same tasks. The focus is on
the results of the tasks and activities, which parts of the pro-
cess affect them in which ways, and whether they have cer-
tain desired properties or not. And finally, while the ways in
which artifacts may be produced vary widely, the artifacts
themselves in the same domain are far more likely to be
much less variable and far less the subject of disagreement.

Initially, Substantial Preparation . Process analysis
and comparisons do not come for free. There is, at least
initially, substantial preparation to set the stage for the anal-
ysis system. Currently very few processes are sufficiently
specified – in fact, this posed a significant problem in our
research: there were very few process descriptions in use
that we could find that were defined in enough detail to per-
form our experiments with our analysis system. However,
if we are to mature as an engineering discipline and move
out the current craft stage, this will have to change.

While there is substantial initial preparation, it should be
noted that this preparation serves in a variety of ways for
subsequent analyses and comparisons or processes in the
same domain. For example, once the processes have been
formally specified, they may be used in a variety of com-
parisons and analyses. Once the base framework has been
established for a given domain, it can basically serve for the
analyses and comparisons of other related processes. The
same is true for the ontology and well-formedness condi-
tions. They are substantially applicable to other work in the
same process domain.

Advantages. First, the most obvious advantage is the
level of automation provided by the process analysis sys-
tem. Once the initial preparation has been done, the rest of
the analysis is done automatically depending on what input
is provided to the system. This is a significant improvement
in the state of the art for process comparisons and analyses.

Second, the various analyses and comparisons are re-
peatable. The points of variability are well defined and have
been determined in the preparation. The only remaining
point of variability is that where human responses are re-
quired in the execution of the processes and that input is
controllable as part of the system execution.

And finally, as understanding of the processes grows,

10

the various automated analyses and comparisons can be
extended and evolved in various ways to provide deeper
knowledge of the processes under consideration.

Limits . Because of the artifact focus, little has been done
at this point to support various useful kinds of process per-
formance analysis. For example, we currently do not sup-
port time and cost analyses for process - i.e. comparisons of
race and lapse times of processes, nor the amount of effort
involved in process execution.

Future Directions. This line of research was undertaken
in reaction to a long string of process comparison work that
was completely informal, offering no basis for scientific
validation through reproducible experimentation. It was
our goal that process comparison be made rigorous, seman-
tically well-founded, and reproducible through the use of
formally defined comparison processes (such as the CDM),
comparison schemas (such as BF), and semantically well-
based modeling formalisms. This work continues to pro-
vide evidence that this sort of rigor and reproducibility is
possible.

One possible direction of future research is performance
analysis of software processes. To conduct such analyses
the process steps would have to be characterized by their du-
ration, cost, and quality of the artifacts they produce. These
step characteristics would have to be obtained by observa-
tions of in-place processes. The accuracy of estimates of
these characteristics would most influence the reliability of
the performance estimates of processes.

Another direction is increase of the level of automation
of the analysis system. Greater automation is possible with
a more generalized set of possible kinds of artifact element
transformations based on the nature of artifacts. Once such
a set is identified for a certain problem domain, the agents
for process steps of this domain could be assembled from
such a basic set of manipulations. Identification of such a
set would help an automated elaboration of the compared
processes to the same level of specificity which will fur-
ther aid the comparison by parceling out the comparable
and functionally analogous portions of the steps from the
analyzed processes.

We would also like to validate the approach further by
experiments with a greater variety of more extensive pro-
cesses from other problem domains.

References

[1] P. Abrahamsson, J. Warsta, M. T. Siponen, and
J. Ronkainen. New Directions on Agile Methods: A
Comparative Analysis. InProceedings of the 25th Interna-
tional Conference on Software Engineering (ICSE 2003),
Portland, USA, pages 244–254, May 2003.

[2] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza.
SPADE: An Environment for Software Process Analysis,
Design, and Enactment. In A. Finkelstein, J. Kramer, and

B. Nuseibeh, editors,Software Process Modelling and Tech-
nology, chapter 9, pages 223–248. Research Studies Press,
Ltd., Taunton, Somerset, England, 1994.

[3] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil,
S. M. Sutton, Jr., and A. Wise. Little-JIL/Juliette: A Pro-
cess Definition Language and Interpreter. InProceedings of
the 22nd International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland, pages 754–757, June 2000.

[4] C.Nentwich, L.Capra, W.Emmerich, and A.Finkelstein.
xlinkit: a consistency checking and smart link generation
service. InACM Transactions on Internet Technology, 2(2),
pages 151–185, May 2002.

[5] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Veri-
fying Properties of Process Definitions. InProceedings of
the ACM Sigsoft 2000 International Symposium on Software
Testing and Analysis (ISSTA 2000), pages 96–101. Portland,
OR, August 2000.

[6] J. E. Cook, L. G. Votta, and A. L. Wolf. Cost-Effective Anal-
ysis of In-Place Software Processes.IEEE Transactions on
Software Engineering, SE-24(8):650–663, August 1998.

[7] J. E. Cook and A. L. Wolf. Discovering Models of Software
Processes from Event-Based Data.ACM Transactions on
Software Engineering and Methodology, 7(3):215–249, July
1998.

[8] J. E. Cook and A. L. Wolf. Software Process Validation:
Quantitatively Measuring the Correspondence of a Process
to a Model.ACM Transactions on Software Engineering and
Methodology, 8(2):147–176, April 1999.

[9] S. B. Geert van den Goor, Shuguang Hong. A Comparison of
Six Object-Oriented Analysis and Design Methods. Techni-
cal report, University of Twente, Enschede, the Netherlands,
1992.

[10] T. Kistler and M. Franz. Continuous Program Optimization:
Design and Evaluation.IEEE Transactions on Computers,
50(6):549–566, June 2001.

[11] C. Nentwich, W. Emmerich, and A. Finkelstein. Static
Consistency Checking for Distributed Specifications. In
Proceedings of Automated Software Engineering 2001, San
Diego, USA, 2001.

[12] L. J. Osterweil. Software Processes are Software Too. In
Proceedings of the Ninth International Conference of Soft-
ware Engineering, pages 2–13, Monterey CA, March 1987.

[13] X. Song and L. J. Osterweil. Engineering Software Design
Processes to Guide Process Execution,. Technical Report
TR–94–23, University of Massachusetts, Computer Science
Department, Amherst, MA, February 1994. Appendix ac-
cepted and published in Preprints of the Eighth International
Software Proces Workshop.

[14] X. Song and L. J. Osterweil. Experience with an approach to
comparing software design methodologies.IEEE Transac-
tions on Software Engineering, 20(5):364–384, May 1994.

[15] A. Wise. Little-JIL 1.0 Language Report. Technical report
98-24, Department of Computer Science, University of Mas-
sachusetts at Amherst, 1998.

[16] A. L. Wolf and D. S. Rosenblum. A Study in Software Pro-
cess Data Capture and Analysis. InICSP 2 - 2nd Inter-
national Conference on Software Process, pages 115–124,
February 1993.

11

