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ABSTRACT

Sound methods of analysis and comparison of software pro-
cesses ! are crucial for such tasks as process understanding,
process correctness verification, evolution management, pro-
cess classification, process improvement, choosing the appro-
priate process for a certain project.

The aim of this work is to lay the foundations for a system-
atic and rigorous comparison of processes by establishing
fixed methods and conceptual frameworks that are able to
assure that comparison efforts will yield predictable, repro-
ducible results.

The comparison process presented here assumes that the
comparison will be done relative to a fixed standard feature
classification schemas for the processes used, and with the
use of a fixed formalism for modeling the processes. The as-
pect of the process described in this paper is focused on
functional comparison of processes according to the pre-
defined comparison topics. The process assumes that the
compared processes are functionally similar at the top level
of abstraction. The suggested comparison process is based
on the comparison of artifacts 2 produced by the processes
when given the same input. This fixed feature classification
schema for artifact elements is used as a point of reference
for the comparison and it enables one to avoid making con-
clusions based on interpretation of process activities’ names.

The paper describes our comparison process and its appli-
cation comparing two versions of a logistics software process
from the telecommunication domain.

LA software process is thought of as a way of producing
products or delivering services specified in software and re-
quiring human involvement

2This paper uses the term “Artifact” to denote a data struc-
ture of a software process.
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1. INTRODUCTION

This work presents a novel approach for comparing software
processes that enables one to significantly increase the objec-
tivity and repeatability of comparisons. To our knowledge,
this is the first attempt at a partially automated comparison
of software processes based on the artifacts they produce.
While our work focuses on the application of the comparison
process to software process comparison, it is more general.
It is also applicable in domains other than software process,
such as data-based comparison of software applications for
evaluation of continuous program optimization techniques

([8])-

It is our belief that certain tasks (e.g. software development)
are very unlikely to be completely automated in the foresee-
able future if ever. Thus there will be a need for software
process systems with human involvement in their execution.
We believe that the operation of such systems can be prop-
erly described and analyzed with the use of the concept of
a software process as introduced in [10].

One of the hallmarks of a mature scientific or engineering
discipline is its ability to support the comparison and eval-
uation of the artifacts with which it deals. Systematic com-
parisons rest upon classification. Thus we believe that the
establishment of a discipline of process engineering requires
the development of techniques and structures for support-
ing the classification, comparison, verification, evaluation,
and improvement of processes. Systematic, rigorous and au-
tomatable comparison techniques can help achieve the goals
of process engineering.

In their earlier work on this topic, Xiping Song and Leon Os-
terweil proposed techniques and structures for a disciplined
and rigorous software process comparison, and demonstrated
their use by carrying out classifications and comparisons of
processes drawn from the narrow and specialized domain
of software design processes [11], [12]. These comparisons
were guided by a formal comparison process, Comparison
of Design Methods (CDM), and were performed according
to a fixed base framework. The base framework can be
thought of as a classification schema and provides guidelines



for grouping comparable activities, artifacts, and features.

The accuracy of such a comparison is limited by the accuracy
of the compared process models. It is very likely that any
process comparison method is limited by the accuracy of the
models. While the CDM was one of the first steps toward
systematic process comparison, it was performed manually
without any automation. The classification of activities and
artifacts relied on the subjective interpretation by the com-
parer of the names and model descriptions.

Our work builds on experience with the CDM by using
the concept of the base framework, a systematic compar-
ison process, and formal process models. It must be noted
that structure, content, and construction method of our BF,
comparison process, and process models are different from
the CDM. The improvements, over the previous work in
this area, we strive to achieve are increased objectivity and
greater repeatability of comparison results, more focused
comparisons, more general applicability than the domain
of software development methods, addressing the ambiguity
introduced by human involvement in process execution, and
partial automation of the comparison process.

The suggested comparison approach assumes that the com-
pared entities (software processes or applications) are in the
same problem domain and have a similar purpose, but might
have certain differences in how they achieve their goals start-
ing from the input of the same kind and providing output
of the same kind. The approach is based on the compari-
son of artifacts produced by the compared processes along
the execution paths prompted by the same input (e.g. the
same formal requirements for a software system fed to dif-
ferent software development processes). Thus the approach
also makes an assumption that the paths traversed through
the compared processes in response to the same input are
comparable and produce comparable artifacts.

In this paper we describe a motivating example from the area
of telecommunications logistics processes, our comparison
process, and the testbed design.

In Section 2 we describe related work. The motivating ex-
ample is introduced in Section 3. The comparison process
is introduced in Section 4. Section 5 describes some details
of the implementation for the comparison process testbed.
We conclude with description of future research directions
in Section 6.

2. RELATED WORK

The work by Xiping Song and Leon Osterweil ([12]) was
aimed at comparing software processes rigorously modeled
in software process languages according to a base framework
(BF) specifically defined for the CDM. The decomposition
units of activities and artifacts in their method were classi-
fied according to the BF by manual comparison of the de-
scription of an activity and/or artifact in the process model
or the original source with the description of the BF class.
The further comparison of the so classified and hence com-
parable process decomposition units of the two compared
processes was also done manually, guided by a comparison
process formalized at a rather high abstraction level. Our
approach also uses the concept of a base framework, though

its structure, content, and construction method are different
from the one suggested by the CDM process. We chose a flat
framework that, initially, only includes classes for atomic el-
ements of artifacts (as per a process source description) from
a specific problem domain. The comparison approach pro-
vides for process decomposition unit groupings at a later
stage. Our comparison process is generalized for use with
processes from different problem domains rather than being
focused on software design methods as the CDM.

The need to compare modeled processes according to a fixed
base framework was also recognized somewhat earlier by
Sjaak Brinkkemper et al. ([7]). However, their compari-
son had no guidelines as explicit and formal as the CDM.
The BF suggested in ([7]) has a flat structure as well. The
content and construction method are different from the BF
in our approach. The BF classes in ([7]) are constructed on
the basis of the elements of the process and artifact decom-
position units of the compared processes. Instead we treat
our BF as a pre-defined ontology for a specific problem do-
main onto which we initially map only those artifact units
that need to be examined for a focused comparison. Thus
the BF construction in our approach is incremental and it
is guided by the comparison topics instead of an across-the
board comprehensive comparison.

Both of these approaches used process models based on the
original descriptions of the process authors. Thus their com-
parison is as accurate as the process models are sufficient in
accuracy and elaboration. The comparison is also as com-
plete as the base framework and the process models allow
them to be.

Analysis of in-place software processes and measurement of
the correspondence of a particular process execution to its
model have similar goals with process comparison in that
they attempt to evaluate processes. Some fairly recent work
in these directions has been done by Jonathan Cook and
Alexander Wolf ([4], [5], [6]).

3. MOTIVATING EXAMPLE

As our motivating example we used a telecommunications
ordering process employed by Telcordia. The ordering pro-
cess elaborates the activity of adding a service to a customer.
This company uses a proprietary process specification lan-
guage for rigorous specification of such logistics processes.
Their logistics processes also use a predefined set of arti-
fact formats. In addition to the format specification, there
is a set of well-formedness conditions defined for the arti-
facts. One of the challenges the developers of these processes
face is the task of change management. After a change is
made to the process the developers have to make sure that
the process still produces artifacts complying with the well-
formedness conditions. If the new version of the process
produces an undesirable result then the developers have to
find out the cause. This is not always as trivial as it would
seem even for relatively small processes as not a single devel-
oper understands the process in its entirety. There are also
different possible interpretations of the process by develop-
ers. The suggested comparison approach alleviates some of
these problems by providing a rigorous analysis of process
artifacts and suggesting possible causes for the differences
based on such an analysis.
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Figure 1: Order process

The study assumed that two seemingly identical versions of
the same process need to be compared to find out if the
artifacts produced comply to a certain well-formedness con-
dition, and to point out the reason for the differences if there
are any. Such a set-up is likely to highlight the benefits of
the artifact-based trace analysis technique that can be used
to complement the static analysis of the process template
specification such as by Jamieson Cobleigh et al. ([3]).

The representation of the motivating example process tem-
plate is depicted in Fig. 1. This figure shows a functional
decomposition of process steps. The steps’ interfaces include
specification of an agent class (agent: prefix)®, local param-
eters (loc: prefix), input parameters (in: prefix, and output
parameters (out: prefix). The data flow is depicted along the
decomposition links: the inscriptions near the arrow into a
step contain input parameters and that near the arrow out
of a step contain output parameters. A complete process
specification also includes the resource model that specifies
the agents available in the environment, the artifacts spec-
ification, and the agents’ problem solver components speci-
fication that define the transformations from input artifact
formats to output ones. The process program declares the
agent classes for steps. The actual agents are bound to steps
during process execution, therefore it is possible to run the
same process template in different environments.

An example of a well-formedness condition for this telecom-
munications ordering process is the need to base voice com-
munication service on a data communication service. If the
ordering process does not establish that a customer ordering
the voice communication also needs the data communication
then the process creates malformed artifacts that result in
billing the customer for the voice service that will not func-
tion. To avoid this scenario the executing software process
(including the template and functionality of the agents re-
sponsible for performance of the steps) has to be shown to
comply with the well-formedness condition. Any differences
and their possible causes must be found, be they in the
process template or agent functionality, and must be re-

3An agent is an entity responsible for execution of a step.
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ported. Our comparison approach suggests a rigorous and
automated way to provide these results.

4. COMPARISON PROCESS

In this section we will describe our comparison process. The
description of the comparison process will refer to the dia-
gram of its Little-JIL representation in Figs. 2, 3.

The current implementation of the process is intended for
artifact-based comparison of two software processes. The
software processes are assumed to have structured artifacts
with predefined formats such that the processes specify trans-
formations between the artifact formats.

The comparison process starts with constructing an initial
base framework (BF) for the artifact section (step Con-
struct initial BF). The step is decomposed into the Tag
same meaning elements and Classify artifact elements
substeps to be executed sequentially. This step has a sub-
stantial subjective involvement of a human comparer. The
BF can be constructed either from an existing ontology or it



is generalized from the artifact formats of the compared pro-
cesses. The goal of the comparer is to identify the semanti-
cally overlapping portions of the artifact formats and tag the
semantically similar elements of those formats. This is done
in the Tag same meaning elements substep based on the
source descriptions of the processes Proc A and Proc B.
The output of this substep is a table of correspondence of
artifact elements from the original process descriptions and
their common naming. The correspondence is needed only
between artifact elements in the overlapping portion of the
semantics of artifacts. Such an overlapping is likely to exist
in processes from the same problem domain and with the
same purpose.

In the case of our process implementation we used a com-
mon artifact meta-format (AMF') and the artifact element
naming conventions for tagging. Thus artifact elements are
classified according to the AMF (step Classify artifact el-
ements) and artifact elements with the same meaning are
named the same in the process models and artifacts of the
same class. The Tag same meaning elements substep
precedes the Classify artifact elements since it is benefi-
cial to reduce the number of elements to be classified. This
reduction is the result of giving the same names to the ele-
ments with the same meaning, so the classification decision
is made only once for both same named elements from dif-
ferent processes.

Once the artifact section of the BF is defined, the modeling
of the processes in the same executable process modeling
formalism can proceed. The input to this step includes the
base framework (BF), process modeling formalism (MF),
artifact meta-format (AMF), and the source description of
the compared processes Proc A and Proc B. It is prefer-
able to feed rigorous specifications of processes elaborated to
the level of manipulation of the lowest level decomposition
units of artifacts.

This step is further decomposed into modeling of the in-
dividual processes that can proceed in parallel. This step
requires substantial human involvement and it can be auto-
mated in the case if the source descriptions are rigorously
defined by building a translator from the formalism used in
the source descriptions to the common formalism used for
comparison.

The expressiveness of the process formalisms can influence
the comparison results if they do not allow modeling of the
artifact elements or steps that manipulate them related to
the comparison topics. The output of the modeling step
consists of the process models in the common modeling for-
malism (ModelA, ModelB). In our implementation we use
the Little-JIL as the common modeling formalism for pro-
cess comparison. Thus the modeling involves representation
of the functional decomposition of the process, specification
of the process step interfaces, specification of the artifact
formats in the AMF, specification and development of the
agents to execute the steps, instrumentation of the agents
per a step kind, specification and development of the step-
specific GUIs, and the definition of the environment to be
the same for both processes (the developed agents are in-
cluded into the environment).

The original Little-JIL has been extended to generalize the
agent and instrumentation specification for individual prob-
lem domains. The comparer must take care not to over-
specify the agents beyond the elaboration of the lowest level
activities from the source processes. If the source processes
assume certain common low level activities then it is ad-
visable to use the same implementation for the agents from
both processes. The extended Little-JIL agent architecture
allows for reuse of agents’ problem solving components. The
Little-JIL artifact specification and the agents must use the
artifact formats specified in AMF and complying with the
naming conventions for the artifact elements with overlap-
ping semantics.

The comparison process is limited by the level of elabora-
tion of the source processes. If the source process does not
describe the activities at the level of manipulation of arti-
fact elements then this method is unlikely to be applica-
ble. The generalized instrumentation components simplify
the comparer’s task in the process modeling stage. Nev-
ertheless, the comparer must make subjective decisions re-
garding continuity of the artifact concerns. The comparer
must decide on the kind of operation a given agent performs
on a given artifact element when performing a certain step
(Operations = (Create, Derive, Retain, Modify)).
Thus every agent, when executing, would add an entry to
the annotation lists of the output artifact elements explain-
ing the operation it performed on that element and noting
agent and step IDs and the timestamp. Also, the comparer
must decide which output artifact elements are going to in-
herit the annotation lists from the input artifact elements.
It is this decision that ensures the continuity of artifact con-
cern traces. It is likely that specifics of a given problem
domain might simplify this task. For instance, in logistics
processes there is often a limited, predefined set of artifact
formats with predefined and explicit relationships between
elements from artifacts of different stages of a process.

In software development processes it is also possible to iden-
tify the portions of different artifacts that correspond to the
same concern. For example, it is possible to trace the arti-
fact elements describing the evolution of the same function-
ality of the developed system from requirements to design
and architecture specifications. Such domain specific knowl-
edge can aid the comparer in making decisions during the
instrumentation phase. An example of a process model for
the motivating example is given in Fig.1 while Fig. 7 shows
an example of an artifact specification using a graph-based
AMF.

The next step of the comparison process, Process execu-
tion, requires execution of the so modeled and instrumented
processes (ModelA, ModelB) on the same input (mod-
ellnput). The result of such an execution is a set of two
traces of artifacts whose elements are annotated with a list of
operations, agents, and steps that were performed on them.
The annotation lists in an artifact would cover the trace un-
til this artifact is produced. Thus product artifacts would
contain the most comprehensive annotation lists. The anno-
tations of artifact elements are partially ordered by times-
tamps by construction via the instrumentation code that
is run during the process execution. Thus every artifact



<consistencyrule id="wellforml">
<header>
<description>
Voice service should be associated to data service
</description>
</header>
<forall var="vs" in="$voiceservices">
<exists var="1" in="$associations">
<and>
<equal opl="$vs/@name"
op2="$1/@source"/>
<exists var="ds" in="$dataservices">
<equal opl="$ds/@name"
op2="§1/@dest"/>
</exists>
</and>
</exists>
</forall>
</consistencyrule>
</consistencyruleset>

Figure 4: Comparison topic example

element relevant to the comparison topic* must have a his-
tory of all manipulations done to it in the annotation list.
This step outputs the traces of artifacts with annotation
lists (TraceA, TraceB). The traces follow the execution
paths through the process models ModelA, ModelB that
correspond to the same input modellnput and hence are
considered comparable.

The step for definition and formalization of comparison top-
ics (Formalize Comparison Topics step) can be executed
after the initial BF is constructed and in parallel with the
Process modeling and Process execution. This is re-
flected by auxiliary decomposition steps Trace and Topics
and Obtain traces. This step implies specification of com-
parison topics in terms of first order logic formulas operating
on the artifact elements with common naming conventions.
This step outputs Formalized Comparison Topics as a
set of first order logic formulas. In the case of the motivat-
ing example the comparison topic is whether both processes
fulfill the requirement that a voice service must rely on an
existing data service in the customer’s service configuration.
This requirement is reflected in a relationship from the voice
service to the data service in the billDPupdate artifact. One
version of the process checks for the data service and es-
tablishes the necessary relation. The other version omits
this action and produces a malformed artifact which would
lead to a failure of the service request set-up in a deployed
telecommunications process. This comparison topic is for-
malized as a first order logic rule in the Xlinkit rule speci-
fication language ([2]). The formalized comparison topic is
phrased as Yvs € voiceservices Ilink € associations
s.t. link.source = vs V link.destination = ds,ds €
dataservices. The Xlinkit rule specification of the com-
parison topic is shown in Fig. 4.

Next, the comparison process calls for analysis of artifact
traces TraceA, TraceB by way of consistency checking to
the formalized comparison topics. This analysis is done in
the Analyze traces step. The step’s input consists of For-
malized Comparison Topics, annotated artifact traces

4the one that needs to be checked in order to determine if
an artifact complies with a certain comparisons topic

TraceA, TraceB, and contribution measure. The con-
tribution measure quantifies the degree to which a certain
step of a compared process influences the result of consis-
tency checking to a particular formalized comparison topic.
For instance, the difference between the number of consis-
tency links from a formalized topic to the step’s output arti-
facts and the number of consistency links to the step’s input
artifacts might serve as a measure of the step’s contribu-
tion. The step’s output forms the results of the artifact-
based comparison - consistency links between formalized
comparison topics and process artifact elements and sets of
step/agent combinations ranked by the contribution mea-
sure per a comparison topic. One of the main outcomes
of such an analysis is comparison of consistency links from
the same comparison topic to artifact elements in different
processes. The consistency links help highlight whether:

both comparison processes comply with a certain com-
parison topic,

both comparison processes violate a certain compari-
son topic,

e one process complies with a certain comparison topic
while the other violates it.

The annotation lists help point out the steps and agents
that are responsible for the analysis outcome. In addition,
it is very likely that the sets of step/agent combinations
from different traces (processes) corresponding to the same
comparison topic are comparable. Such pairs of sets can
give insights about the functional similarities or differences
between processes and aid the comparer in making a more
objective process comparison.

The functional decomposition of the Analyze traces step
is elaborated in Fig. 3. The analysis essentially consists of
iterative consistency checking of sets of artifacts against the
formalized comparison topics. The next artifact set is de-
termined by the annotations of the artifact elements from
the previous artifact set. The analysis subactivities are de-
scribed below.

4.1 Choice of initial artifact sets

The set of product artifacts quite often is most useful to
be used as the initial artifact set because they contain the
most comprehensive annotation lists and they are likely to
contain all the artifact elements that need to be checked for
comparison topics. Another advantage to this choice of the
initial set is high likelihood that the product artifacts are
explicitly defined in the process source description. To re-
duce the amount of computation it is advisable to choose
artifacts that are known to be relevant for the chosen com-
parison topics. Thus, the initial artifact sets ArtSet A1l and
ArtSetB1 are defined by the steps Define artifact set A
and Define artifact set B.

4.2 Choice of comparison topics

Once the artifact sets are chosen, the comparer should choose
the comparison topic to be used for consistency checking.
This is done in the Choose formalized comparison topic
step.



Artifact OutA8.1 \
AnnotList A AnnotList B AmnotList C
Formal coparison topic | - - -~~~ 7] clementA
(FOLmle) — p--m=--2 element B
——— annot from A annot from B annot from C
™ clementC

Step A7 Step C3
consistency

links Output artifacts Output artifacts Output artifacts
of Step A7 of Step BS of Step C3

Legend: __ -

> association links

D entity

Figure 5: Step and artifact relationships for the next
artifact set formation

4.3 Checking of artifacts’ consistency to for-

malized comparison topics
Once the initial artifact sets for both processes and the for-
malized comparison topic are chosen, the comparison pro-
cess runs a consistency checker that produces consistency
links between the formalized comparison topics and artifact
elements of the compared processes. The current implemen-
tation of the comparison process uses the Xlinkit consis-
tency checker by Christian Nentwich et al. ([2], [9]). Next,
the comparer analyzes the two sets of artifact elements that
have consistency links to the same formalized comparison
topics, but belong to different processes.

4.4 Choice of next set of artifacts for consis-

tency rules

If the comparer wants to assess the contributions of all the
steps responsible for the analysis outcome then the consis-
tency checking must be done on all relevant artifacts along
the step/agent path. This path is stored in the annotation
lists of artifact elements pointed to by consistency links from
one comparison topic. Thus an iterative analysis has to be
performed and the next set of artifacts has to be chosen.
The iteration termination decision is made in the Decide
on termination step. The analysis might stop once the an-
notation sets for all related artifact elements are exhausted
or it might terminate earlier, once the artifacts with last
modifications/additions to the related artifact elements are
reached.

The next set of artifacts to be compared is determined from
the annotations lists in the following way. For a given set
of artifact elements, the process retrieves the annotations
that correspond to the immediately preceding manipulation
and retrieves from the annotations the steps responsible for
the manipulations. For example, let us suppose that the
latest consistency checking produced links from a certain
formal comparison topic to the elements A, B, C of arti-
fact OutA8.1 (as in Fig. 5). Each of these elements also
has an associated annotation list. The penultimate elements
of these lists will contain annotations describing the imme-

diately preceding manipulations on these elements. From
these annotations we can obtain the step IDs that identify
individual runs of process steps (e.g. A7, B5, C3 in Fig. 5).
It’s the output artifacts of these steps that can be used to
form the next set of artifacts. The steps A7, B5, C3 are
not necessarily immediately preceding the step A8 that pro-
duced the OutA8.1 artifact because some artifact elements
might have been passed on by some steps without modifica-
tion.

5. OVERVIEW OF THE DESIGN EXTEN-

SIONTO THE JULIETTE ENVIRONMENT

In this section we will describe one possible way of imple-
menting the comparison process testbed. The ability to exe-
cute a rigorously modeled software process is required by the
process. The comparison process also assumes that a soft-
ware process specification is viewed as a template that is
instantiated and run in a specific environment that includes
agents, among other resources needed by processes. Agents
are assumed to be capable of performing different portions
of the process. Thus, one of the most important compo-
nents of our implementation is a software process execution
environment that uses the notion of agents.

We chose the Juliette process environment and the associ-
ated Little-JIL process specification language ([1], [13]). The
Little-JIL process language has been designed from the start
for specification of software processes and it incorporates a
number of features that take into account the peculiarities
of software processes. To name a few, these features in-
clude proactive and reactive control specification, the use
of a multi-agent approach to model software process envi-
ronment, specification of communication, coordination and
collaboration between the agents, orthogonal specification of
resource environment. The Little-JIL process specifications
can be thought of as process templates. The Julliete pro-
cess environment has been designed to instantiate Little-JIL
process specifications.

This choice is due to a sufficient expressiveness of the Little-
JIL language for our purpose and the use of the notion of
an agent in the Little-JIL and Juliette. Nevertheless, the
implementation of the comparison approach required two
main extensions to be made to the Juliette environment:
a problem-domain specific agent framework and a general-
ized artifact specification. These extensions allow for unified
specification and reuse of the whole agents and their prob-
lem solving components®, unified code instrumentation, and
common artifact specification (via an Artifact Meta-Format)
required for artifact-based comparison.

The addition of the agent framework allows for greater soft-
ware reuse, greater focus of agents’ definitions and hence
their greater comprehensibility, and it also reduced the time
it takes to define new agents in the same problem domain.
Essentially, by restricting the structure of an agent and pro-
viding agent templates we gain a great deal of leverage in

5This feature of the agent framework is important for consis-
tency of comparison because the compared processes might
specify the same activity to be performed. This would most
likely be the case if the comparison is done between differ-
ent versions of the same process for the purpose of change
management



defining agent-based processes.

The use of Artifact Meta-Format (AMF) enables us to define
artifacts according to the chosen common artifact section of
BF which is the cornerstone of the comparison analysis. In
addition, the use of AMF allows for unified handling of arti-
facts by agents and facilitates generalized instrumentation.

5.1 Agent framework overview

The Juliette software process environment requires only that
agents be able to listen to agenda item events. No guide-
lines are given as to the structure of the agent and its prob-
lem solving component. Neither are there any guidelines
about the representation of artifacts. The software process
designer using the Little-JIL is left to make his/her own de-
cisions regarding the structure of the agents and regarding
the format of the communication between them. After spec-
ifying several software processes and building agent struc-
tures from scratch a software process designer is likely to
recognize that it might be beneficial to introduce more con-
strained frameworks that provide a predefined structure for
the agents that spells out how to go about constructing an
agent and enables the reuse of the agents originally written
for other processes in the same problem domain. It is un-
derstandable that the freedom the stock Little-JIL provides
is needed because it is impossible to envision and generalize
all areas of application. On the other hand, once such areas
of application are recognized, it is beneficial to introduce
extensions to the software process environment specific to
that application area.

This reasoning led to development of the agent framework
for problem domain specific processes shown in Fig. 6. The
framework has been developed in Java with the use of XML
for artifact meta-format specifications.

5.1.1 Agent framework structure

The framework consists of a hierarchy of classes for the def-
inition of agent components at different levels of generaliza-
tion: the AutoAgent class, process specific agent, StepPro-
duction, and GraphStepProduction classes. The framework
also includes the StepGUI class for step specific GUI spec-
ification, ArchGraph class as a container for a generalized
artifact definition via a graph-based Artifact Meta-Format
and artifact reader and writer classes.

The AutoAgent and process specific agent classes are to
be inherited by the user agents. The StepProduction and
GraphStepProduction classes are to be inherited by the prob-
lem solving components that are parts of a user agent. A
problem solving component defines a certain low level activ-
ity that an agent can perform. In case of software processes
that transform artifacts from one format to another a prob-
lem solving component corresponds to specification of an
artifact format transformation.

The AutoAgent class generalizes functionality for matching
the step that the agent is requested to perform with an ac-
tivity that accomplishes the step. This class implements
mapping of step names to problem solving components, ar-
tifact storing, and interface with the Little-JIL language in-
terpreter.

Some methods implemented by the AutoAgent class:

e protected void initialize(String[] args, AutoAgent agent)
- initialization of the agent environment: agent regis-
tration, step mapping initialization, self-localization in
the file system, determination of the paths for artifact
storage

o public void storeStepParam(Agendaltem item, ...) -
generalized storage of artifacts for forming an artifact
trace per an agent

e posted ( AgendaEvent evt ) - making a decision whether
this agent is able and willing to execute the step cor-
responding to the given agenda event

The process specific agent class obligates its subclasses to
have a certain common functionality set and a certain com-
mon structure specifically suited for process agents from a
given problem domain. Part of that common functionality
provides for communication with the external environment,
in this case - with other components of the Juliette software
process environment (such as the Little-JIL language inter-
preter). The framework also provides for problem solver
components interchangeable between the agents. The set of
problem solving components defines the functionality of a
particular agent. The process specific agent invokes problem
solving components in response to the step related events
from the Little-JIL language interpreter.

Depending on the degree of the desired automation the agents
can be:

e Human assistants (such an agent would invoke a step-
specific GUI and try to assist the human in accom-
plishing the step)

e Human-modeling (such an agent would attempt to model
the duties of a human for process simulation or guid-
ance purposes)

e Automated (such an agent would accomplish steps amenable

to complete automation)

The abstract StepProduction class declares a general func-
tionality for a problem solving component which is an Object
execute(Object[] args) method. Thus the framework forces
many to one artifact transformations for the atomic activ-
ities of an agent. The GraphStepProduction class enforces
the use of the graph-based format for the artifacts that prob-
lem solving components manipulate. The domain and/or
process specific problem solving components are to extend
the GraphStepProduction class with implementation of spe-
cific activities or artifact transformations. An agent instance
instantiates the set of process specific problem solving com-
ponents that define that agent’s functionality and calls the
execute methods on them in response to the agenda events
from the process language interpreter.

Any software process is likely to require step specific GUIs
because of human involvement in the process execution.
This need is recognized in the agent framework by defin-
ing a set of step specific GUIs that is checked by the agent
every time it receives a new agenda item.
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5.2 Artifact Meta-Format overview

The Artifact Meta-Format introduces a graph-based gen-
eralization for the artifact formats. It allows definition of
a class hierarchy of nodes, links, and their attributes. The
meta-format supports inheritance of node and link attributes
by type and value. The meta-classes of the meta-format are:

e MetaComponentClass - a node class
e MetaComponentInstance - a node instance
e MetaLinkClass - a link class

e MetaLinkInstance - a link instance

The entries of the attribute lists of the meta-class instances
are defined by the tuples of their class (attrClass), name,
and value.

The artifacts defined in the graph-based AMF are stored
persistently as XML files. The corresponding Java frame-
work allows instantiation of a persistent artifact represen-
tation via instances of Java classes. The AMF reader class
can be thought of as a graph-based AMF class-loader. The
framework also provides a writer class that provides func-
tionality for storing artifact instantiations. A visual editor
has been developed to support the execution of processes
that use this AMF for artifact specification.

An example of a persistent artifact representation is given

in Fig. 7. This figure depicts a portion of the customerData

artifact which was produced by the agent ServiceRepAgent

when executing the CollectCustData step on run 1045706480.

The tags MetaComponentClass, MetaComponentInstance,

MetaLinkClass, MetaLinkInstance correspond to meta-classes
of the AMF. The artifact graph classes and instances are

attributed. The attributes are specified with triples of at-

tribute class, name, and value. The AMF supports inheri-

tance of attributes by types and values.

6. CONCLUSIONS AND FUTURE WORK

This line of research was undertaken in reaction to a long
string of process comparison work that was completely infor-
mal, offering no basis for scientific validation through repro-
ducible experimentation. It was our goal that process com-
parison be made rigorous, semantically well-founded, and
reproducible through the use of formally defined compari-
son processes (such as the CDM), comparison schemas (such
as BF), and semantically well-based modeling formalisms.
This work continues to provide evidence that this sort of
rigor and reproducibility is possible.

There are also other avenues of further work worth pursu-
ing, particularly that of experimenting with an approach in
non-software process domains. One of such experimenta-
tion directions is the application of the comparison process
to the evaluation of path specific optimization techniques
for user-guided applications (such as GUIs). The authors of
continuous optimization techniques ([8]) assume that a user
is likely to make the application traverse the same execu-
tion path when the same user accomplishes the same kind
of task. Hence the optimizer takes the traversed path into
account when scheduling the instructions. Our approach
can help in data-based evaluation of the optimizers by keep-
ing track of instructions that were applied to elements of
application’s data structures. Thus it would be possible to
show different emphasis the optimized execution paths put
on application’s data elements and explain possible variance
in performance of the optimizers. These comparison results
might be used by Al techniques for choosing the appropriate
path-specific optimization technique during an application’s
execution. Another experimentation direction is application
of the comparison to more extensive processes.

The comparison process itself can be evolved. One such di-
rection is a more generalized set of possible kinds of artifact
elements transformations based on the nature of artifacts.
Once such a set is identified for a certain problem domain,
the agents for process steps of this domain could be assem-
bled from such a basic set of manipulations. Identification
of such a set would also help an automated elaboration of
the compared processes to the same level of specificity which
will further aid the comparison by parceling out the compa-
rable and functionally analogous portions of the steps from
the compared processes.
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