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ABSTRACT
Sound methods of analysis and comparison of software
processes 1 are crucial for such tasks as process un-
derstanding, process correctness veri�cation, evolution
management, process classi�cation, process improve-
ment, choosing the appropriate process for a certain
project.

The aim of this work is to lay the foundations for a sys-
tematic and rigorous comparison of processes by estab-
lishing �xed methods and conceptual frameworks that
are able to assure that comparison e�orts will yield pre-
dictable, reproducible results.

The comparison process presented here assumes that
the comparison will be done relative to a �xed standard
feature classi�cation schemas for the processes used, and
with the use of a �xed formalism for modeling the pro-
cesses. The aspect of the process described in this paper
is focused on functional comparison of processes accord-
ing to the prede�ned comparison topics. The process
assumes that the compared processes are functionally
similar at the top level of abstraction. The suggested
comparison process is based on comparison of artifacts
2 produced by the processes when given the same input.
This �xed feature classi�cation schema for artifact ele-
ments is used as a point of reference for the comparison
and it enables one to avoid making conclusions based
on interpretation of process activities names.

The paper describes our comparison process and its ap-
plication comparing two versions of a logistics software
process from the telecommunication domain.

1A software process is thought of as a way of producing prod-

ucts or delivering services speci�ed in software and requiring hu-

man involvement
2This paper uses the term \Artifact" to denote a data structure

of a software process.

Keywords
Software Process, Comparison

1 Introduction
This work presents a novel approach for comparing soft-
ware processes that enables one to signi�cantly increase
the objectivity and repeatability of comparisons. To our
knowledge, this is the �rst attempt at a partially auto-
mated comparison of software processes based on the
artifacts they produce. While our work focuses on the
application of the comparison process to software pro-
cess comparison, it is more general. It is also applicable
in domains other than software process, such as data-
based comparison of software applications, for instance,
for evaluation of continuous program optimization tech-
niques ([18]).

It is our belief that certain tasks (e.g. software devel-
opment) are very unlikely to be completely automated
in the foreseeable future if ever. Thus there will be a
need for software process systems with human involve-
ment in their execution. We believe that the operation
of such systems can be properly described and analyzed
with the use of the concept of a software process as in-
troduced in ([19]).

One of the hallmarks of a mature scienti�c or engineer-
ing discipline is its ability to support the comparison
and evaluation of the artifacts with which it deals. Sys-
tematic comparisons rest upon classi�cation. Thus we
believe that the establishment of a discipline of process
engineering requires the development of techniques and
structures for supporting the classi�cation, comparison,
veri�cation, evaluation, and improvement of processes.
Systematic, rigorous and automatable comparison tech-
niques can help achieve the goals of process engineering.

In their earlier work on this topic, Xiping Song and
Leon Osterweil proposed techniques and structures for
a disciplined and rigorous software process comparison,
and demonstrated their use by carrying out classi�ca-
tions and comparisons of processes drawn from the nar-
row and specialized domain of software design processes
[20], [21]. These comparisons were guided by a for-
mal comparison process, Comparison of Design Meth-
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ods (CDM), and were performed according to a �xed
base framework. The base framework can be thought
of as a classi�cation schema and provides guidelines for
grouping comparable activities, artifacts, and features.

The accuracy of such a comparison is limited by the
accuracy of process models. It is very likely that any
process comparison method is limited by the accuracy
of the models. While the CDM was one of the �rst steps
toward systematic process comparison, it was performed
manually without any automation. The classi�cation
of activities and artifacts relied on the subjective in-
terpretation by the comparer of the names and model
descriptions.

Our work builds on experience with the CDM by using
the concept of the base framework, a systematic com-
parison process, and formal process models. It must be
noted that structure, content, and construction method
of our BF, comparison process, and process models are
di�erent from the CDM. The improvements, over the
previous work in this area, we strive to achieve are in-
creased objectivity and greater repeatability of compar-
ison results, more focused comparisons, more general
applicability than the domain of software development
methods, addressing the ambiguity introduced by hu-
man involvement in process execution, and partial au-
tomation of the comparison process.

The suggested comparison approach assumes that the
two compared entities (software processes or applica-
tions) are in the same problem domain and have a sim-
ilar purpose, but might have certain di�erences in how
they achieve their goals starting from the input of the
same kind and providing output of the same kind. The
approach is based on the comparison of artifacts pro-
duced by the compared processes along the execution
paths prompted by the same input (e.g. the same formal
requirements for a software system fed to di�erent soft-
ware development processes). Thus the approach also
makes an assumption that the paths traversed through
the compared processes in response to the same input
are comparable and produce comparable artifacts.

Metaphorically speaking, the approach suggests \color-
ing" semantically similar portions of the input artifacts
of the compared processes or applications in the same
\color". The approach also suggests ensuring the conti-
nuity of this \coloring" throughout the elements of the
artifacts along the executed path in such a way that el-
ements from artifacts of di�erent stages of the process
execution that deal with the same concern retain the
same \color". Then the compared processes (applica-
tions) are instrumented so that activity decomposition
units would get \painted" by the artifact concerns3 after

3A meaningful portion of the product artifact whose evolu-

tion can be traced from input to output in a sequence of artifact

execution. The analysis for functional comparison en-
tails determining the artifact concerns related to speci�c
comparison topics and then identifying the sets of ac-
tivity decomposition units that got \painted" by those
artifact concerns during execution. Thus the compar-
ison approach points out the di�erences or similarities
in the produced artifacts in the portions identi�ed as
semantically identical. The approach also suggests sets
of comparable process activities for the compared pro-
cesses and functional di�erences between them without
basing these results on the activities' naming.

In this paper we describe our comparison process and
its validation by way of a case study application to an
industrial telecommunications logistics process.

In Section 2 we describe the related work. The ap-
proach is introduced in Section 4. Section 5 covers
our experience with the comparison process applied to a
telecommunications logistics process. We conclude with
description of future research directions in Section 6.

2 Related Work
The work by Xiping Song and Leon Osterweil was aimed
at comparing software processes rigorously modeled in
software process languages according to a base frame-
work (BF) speci�cally de�ned for the CDM. The decom-
position units of activities and artifacts in their method
were classi�ed according to the BF by manual compar-
ison of the description of an activity and/or artifact in
the process model or the original source with the de-
scription of the BF class. The further comparison of
the so classi�ed and hence comparable process decom-
position units of the two compared processes was also
done manually, guided by a comparison process formal-
ized at a rather high abstraction level. The comparison
process described in [21] assumes that the process mod-
els are at suÆcient level of accuracy and elaboration
for the complete comparison by artifacts and activities.
Our approach also uses the concept of a base framework,
though its structure, content, and construction method
are di�erent from the one suggested by the CDM pro-
cess. We chose a at framework that, initially, only
includes classes for atomic elements of artifacts (as per
a process source description) from a speci�c problem
domain. The comparison approach provides for pro-
cess decomposition unit groupings at a later stage. Our
comparison process is generalized for use with processes
from di�erent problem domains rather than being fo-
cused on software design methods as the CDM.

The need to compare modeled processes according to
a �xed base framework was also recognized somewhat
earlier by Sjaak Brinkkemper et al. ([13]). However,
their comparison had no guidelines as explicit and for-
mal as the CDM. The BF suggested in ([13]) has a at
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structure as well. The content and construction method
are di�erent from the BF in our approach. The BF
classes in ([13]) are constructed on the basis of the ele-
ments of the process and artifact decomposition units of
the compared processes. Instead we treat our BF as a
pre-de�ned ontology for a speci�c problem domain onto
which we initially map only those artifact units that
need to be examined for a focused comparison. Thus the
BF construction in our approach is incremental and it is
guided by the comparison topics instead of an across-the
board comprehensive comparison.

Both of these approaches used process models based on
the original descriptions of the process authors. Thus
their comparison is as accurate as the process models
are suÆcient in accuracy and elaboration. The compar-
ison is also as complete as the base framework and the
process models allow them to be.

Analysis of in-place software processes and measure-
ment of the correspondence of a particular process ex-
ecution to its model have similar goals with process
comparison in that they attempt to evaluate processes.
Some fairly recent work in these directions has been
done by Jonathan Cook and Alexander Wolf ([7], [8],
[9]).

3 Motivating example
As our motivating example we used a telecommunica-
tions ordering process employed by Telcordia. The or-
dering process elaborates the activity of adding a service
to a customer. This company uses a proprietary process
speci�cation language for rigorous speci�cation of such
logistics processes. Their logistics processes also use a
prede�ned set of artifact formats. In addition to the
format speci�cation, there is a set of well-formedness
conditions de�ned for the artifacts. One of the chal-
lenges the developers of these processes face is the task
of change management. After a change is made to the
process the developers have to make sure that the pro-
cess still produces artifacts complying with the well-
formedness conditions. If the new version of the pro-
cess produces an undesirable result then the developers
have to �nd out the cause. This is not always as trivial
as it would seem even for relatively small processes as
not a single developer understands the process in its en-
tirety. There are also di�erent possible interpretations
of the process by developers. The suggested comparison
approach alleviates some of these problems by provid-
ing a rigorous analysis of process artifacts and suggest-
ing possible causes for the di�erences based on such an
analysis.

The study assumed that two seemingly identical ver-
sions of the same process need to be compared to �nd
out if the artifacts produced comply to a certain well-
formedness condition, and to point out the reason for

the di�erences if there are any. Such a set-up is likely to
highlight the bene�ts of the artifact-based trace analy-
sis technique that can be used to complement the static
analysis of the process template speci�cation such as by
Jamieson Cobleigh et al. ([6]).

OrderProcess

CollectCustData

customerData

CreateOrder

order

customerData

AssociateBundleToFeature

order

billDBupdate
features

SetupIPService

FQDNspec

agent: Manager

order

ConfigCallAgent

features
customerData
FQDN

configOutcome
FQDN

agent: ServiceRepBots

loc: order
loc: customerData

loc: billDBupdate
loc: FQDN
loc: features
loc: preorderOutcome

out: customerData
agent: OrderMgtBots
in: customerData
out: order

agent: BillingSysBots
in: order
out: billDBupdate
out: features

agent: NetworkSvcBots
in: orderSpec
out: FQDNSpec
loc: IPaddress
loc: modemConfig

agent: CallAgentBots
in: features
in: customerData
out: configOutcome
in/out: FQDN

Figure 1: Order process

The representation of the motivating example process
template is depicted in Fig. 1. This �gure shows a func-
tional decomposition of process steps. The steps' in-
terfaces include speci�cation of an agent class (agent:
pre�x)4, local parameters (loc: pre�x), input param-
eters (in: pre�x, and output parameters (out: pre�x).
The data ow is depicted along the decomposition links:
the inscriptions near the arrow into a step contain in-
put parameters and that near the arrow out of a step
contain output parameters. A complete process speci�-
cation also includes the resource model that speci�es the
agents available in the environment, the artifacts spec-
i�cation, and the agents' problem solver components
speci�cation that de�ne the transformations from input
artifact formats to output ones. The process program
declares the agent classes for steps. The actual agents
are bound to steps during process execution, therefore
it is possible to run the same process template in dif-
ferent environments. A more detailed description of the
motivating process is given in Section 5.

An example of a well-formedness condition for this
telecommunications ordering process is the need to base
voice communication service on a data communication
service. If the ordering process does not establish that a
customer ordering the voice communication also needs
the data communication then the process creates mal-
formed artifacts that result in billing the customer for
the voice service that will not function. To avoid this
scenario the executing software process (including the
template and functionality of the agents responsible for

4An agent is an entity responsible for execution of a step.



performance of the steps) has to be shown to comply
with the well-formedness condition. Any di�erences and
their possible causes must be found, be they in the pro-
cess template or agent functionality, and must be re-
ported. Our comparison approach suggests a rigorous
and automated way to provide these results.

4 Overview of the comparison approach
In this section we will give a brief overview of the ap-
proach to artifact-based comparison and de�nitions of
the main concepts and terms.

De�nitions
First we introduce the notions and terms that describe
the compared entities, aspects of the comparison ap-
proach, and some qualitative measures of comparison
results.

Software process, artifact, base framework, comparison
topic, agent
By the term software process we understand a way,
speci�ed in software, of producing a product or deliv-
ering a service. A software process describes the set
of activities, constraints on the order of execution of
those activities, and data structures (artifacts) that the
activities manipulate. One of the major di�erences be-
tween a software process and a software system is the
assumption that some of the software process activities
cannot be completely automated and hence have to be
performed by human agents. The need for human in-
volvement in process execution is also one of the main
reasons why programming languages are not suitable
for the speci�cation of software processes. Instead, a
number of software process speci�cation languages that
take into account the peculiarities of software processes
have been developed over the years (Little-JIL [3], [24],
APPL/A [22], Oz [2], Weaver [4], APEL [17], SPADE
[1], MERLIN [15], ALF [12], DYNAMITE [16]). We
assume that the software process to be compared has
already been described either in a structural form of
English or in a process language. It is also possible to
capture a software process speci�cation from its enact-
ment in a certain organization even if the process has
not been speci�ed explicitly.

The term software process artifact (or artifact) is
used in this paper to denote some data structure ma-
nipulated by the activities of a software process (such
as documents, code, test cases etc.).

The base framework denotes a problem domain
speci�c framework for software process decomposition
units, and features or metrics that can be derived on
their basis. The base framework can be thought of as a
classi�cation schema that provides guidelines for group-
ing comparable activities, artifacts, features, or metrics
of software processes from the same problem domain.
Software processes are likely to be in the same problem

domain if their purpose and functionality largely over-
lap and if their input and output artifacts are largely
the same by nature and content.

Our approach focuses on the comparison of explicitly
de�ned aspects of software processes. The software pro-
cess aspects to be compared are de�ned by compari-
son topics. These topics relate the vaguely de�ned
high-level topics to formally de�ned conditions on the
content and/or structure of process artifacts. They de-
scribe the comparer's assumption that if a certain set
of �rst order logic formulas de�ned on content and/or
structure of artifacts evaluates to be true then it is the
case that a certain high-level feature of a software pro-
cess is present. The de�nition of comparison topics is
one of the decision-making aspects in the comparison
approach that allows variance of opinion.

The term agent is used in this paper to denote an entity
that is

� intelligent in that it can optimize its actions to
achieve a goal,

� independent in that it can choose the set of actions
to achieve a goal by itself,

� interactive in that it interacts and cooperates with
other agents to achieve its goals.

This term is used in conjunction with the kind of soft-
ware process speci�cation and design of software process
execution systems we assume.

Comparison approach
Briey, the approach is based on:

� the use of the artifact section of base framework
common for the compared processes (this results in
common naming of semantically similar low level
artifact elements)

� the speci�cation of comparison topics as �rst or-
der logic formulas on the semantically similar low
level artifact elements to make sure that the same
condition is speci�ed for the compared processes

� the instrumentation of software processes (results
in annotated traces of artifacts)

� the execution or simulation of instrumented soft-
ware processes given the same input

� the derivation of sets of activities/agents from an-
notations in artifact traces, such that those activi-
ties/agents are responsible for compliance or viola-
tion of the �rst order logic formulas that describe
comparison topics



The comparison approach is outlined in Fig. 2. The
sections that follow refer to Fig. 2 while detailing the
comparison approach. We now use a functional notation
to express the comparison process of Fig. 2 rigorously.
The process consists of the following principal functional
transformations, spaces and sets:

1. Process ModelingMF;AMF : SP !
SP ModelMF;AMF ,
where SP is a space of all software processes with
a similar purpose and SP ModelMF;AMF is a
space of models of SPs in the modeling formalism
MF such that the artifact formats of MF are ex-
pressed in the artifact meta-format AMF.

2. Artifact ModelingMF;AMF : AF sp !
AF Model

sp
MF;AMF ,

where AF sp is a space of formats of all arti-
facts of process sp 2 SP , and AF Model

sp
AMF

is a space of artifact formats AF sp of the
process modeling formalism MF such that the
formats themselves are expressed in the arti-
fact meta-format AMF. Functional transforma-
tion Artifact ModelingMF;AMF is a subset of
transformation Process ModelingMF;AMF .

3. Operations =
(Create;Derive;Retain;Modify)

4. Activity InstrumentationMF;AMF :
Act Atomssp !
(Act Atomssp � Operations),
where Act Atomssp is a set of atomic activ-
ities of process sp. Operations is a �nite,
�xed set of the prede�ned kinds of operations
on artifact elements expressed in artifact meta
format AMF . Reasoning involved in assign-
ing operation kinds to atomic activities is ex-
plained in Section ??. Functional transformation
Activity InstrumentationMF;AMF is a sub-
set of transformation
Process ModelingMF;AMF .

5. Classify ArtifactsMF;BF :
AF Atomssp ! AF GroupingsBF;MF ,
where AF Atomssp is a space of all artifact
format elements at the lowest level of decompo-
sition (atomic elements) from process sp where
AF GroupingsBF;MF is a space of all artifact
format atomic elements, structured by BF.

6. Formalize TopicsCT : CT !
FeaturesAF ClAtomssp ,
where CT is a space of comparison topics and
FeaturesAF ClAtomssp = ffig is a set of
artifact-based features formalized as �rst order
logic expressions fi operating on a set of atomic

artifact elements AF Atomssp, such that
AF ClAtomssp = fel 2 AF Atomssp j el 2
grouping&
grouping 2 AF GroupingsBF;MFg. Thus,
AF ClAtomssp is a set of atomic artifact ele-
ments of process sp classi�ed (grouped) according
to the base framework BF and represented in the
modeling formalism MF . It is also required that
the artifact formats ofMF are speci�ed in the ar-
tifact meta-format AMF common for the models of
the compared processes.

7. Executionsp Model;spInput :
SP ModelMF;AMF !
f(Asp ModelMF;AMF ;spInput; AnnotsAF Atomssp)g
,
where Asp ModelMF;AMF ;SPinput is a set of
artifacts that represents a trace of the ex-
ecution path through software process model
sp ModelMF;AMF when given a certain input SPin-
put and AnnotsAF Atomssp is a set of annota-
tions for atomic artifact elements.

AnnotsAF Atomssp = fAnnotig; 0 � i �
jAF Atomsspj, where Annoti = fannoti;jg;
0 � i � jAF Atomsspj; 0 � j �
jAct Atomssp;atomAF

i
j.

Act Atomssp;atomAF
i

is a set of atomic activities
of process sp that created or modi�ed the atomic
artifact element atomAF

i and the atomic artifact
elements that address the same low-level concern
throughout the process execution (sets of the ele-
ments addressing single low-level concerns are im-
plicitly determined by process modeling, subsection
on instrumentation expands on this issue below).

annoti;j is a tuple
(AF atom

sp
i ; operationi;j; activityIDi;j;

agentIDi;j ; timestampi;j; runIDi;j) ,
0 � i � jAF Atomsspj; 0 � j �
jAct Atomssp;atomAF

i
j ,

where AF atom
sp

i is an atomic element from ar-
tifact formats of process sp. operationi;j is the
operation performed by agent agentIDi;j while
executing activity activityIDi;j on its runIDi;j

run on atomic artifact element AF atom
sp
i

at time timestampi;j . Set of annota-
tions AnnotsAF atom

sp

i
for artifact element

AF atom
sp
i is a set partially ordered by time:

timestampi;j � timestampi;j+1.

8. Feature CheckerFeaturesAF Atomssp
:

SP ModelMF;AMF ! Z� ,
where SP ModelMF;AMF is a space of models of
SPs in the modeling formalism MF and Z� is the
set of non-negative integers.



9. SP Comparisonsp1;sp2;BF is a set of tuples
(featurei; Asp1 ModelMF;AMF;featurei

;spInput;

Asp2 ModelMF;AMF;featurei
;spInput) ,

0 � i <

jFeaturesAF ClAtomssp1\AF ClAtomssp2 j ,
where Asp1 ModelMF;AMF;featurei

is a set of arti-
facts produced by software process sp1 on input
spInput such that they have to be examined to es-
tablish if sp1 complies with conditions for having
featurei. Asp2 ModelMF;AMF;featurei

is de�ned
in the same way, but for process sp2.

10. Feature Comparator

FeaturesAF ClAtomssp1\AF ClAtomssp2 ; BF :
Asp1 ModelMF;AMF ;spInput �
Asp2 ModelMF;AMF ;spInput !
SP Comparisonssp1;sp2;BF ,
where SP Comparisonssp1;sp2;BF is a space of
comparisons of features identi�ed by BF between
processes sp1 and sp2.

Modeling
Formalism
(MF)

SP: Software Process

SP1 annot. trace

SP2 annot. trace

Executable Artifact
Meta
Format

Base
Framework
(BF)

BF artifact
section

Formalize

Informal

(AMF)

Process
Execution

Execution
Process

Input
Data

Formal
Artifact−based

Artifact based

Comparator

Artifact Based
Features Feature

Specifications

Feature

Framework
Base
Initial
Construct

Classify
Artifacts

Model1

Model2

Modeling

Process

guiding control

Legend: 
activity artifact data flow

SP1

SP2

Topics
Comparison

based upon MF, BF, AMF

SP Trace Comparisons

Figure 2: Comparison Approach Overview

The �rst activity of the comparison approach is the def-
inition of the artifact section of the BF and the clas-
si�cation of the lowest-level artifact elements 5 of the
compared process by it. This comparison activity is
diÆcult to automate: it requires substantial human in-
volvement. It is one of the major decision-making points
of the approach that allows for variance of opinion. A
reasonably good understanding of the domain is likely
to make this variance manageable. The rest of the com-
parison approach bootstraps from the de�nition of the
artifact section. The decisions made in this activity in-
uence the comparison results as much as the compari-
son topics formalization. While this activity is not auto-
mated, the comparison approach speci�es a systematic

5Meaning the artifact elements at the lowest level of decompo-

sition as speci�ed in a given process model.

way to classify the artifacts. This activity is depicted in
Fig. 2 as Construct Initial Base Framework.

The artifacts of the compared processes have to
be de�ned using a meta-format common for the
artifacts of the compared processes. This activ-
ity corresponds to the functional transformation 2,
Artifact ModelingMF;AMF . It is part of the func-
tional trans-
formation 1, Process ModelingMF;AMF , and it is
depicted in Fig. 2 as Process modeling. The choice
of the meta-format depends on the problem domain of
the compared processes.

The comparison approach uses process model instru-
mentation for gathering data about the manipulations
of artifacts. Most of the comparison results are based on
the way the artifact elements are manipulated. Hence it
is important to properly model and elaborate the activi-
ties that perform these manipulations. We assume that
an activity is atomic if it performs a single operation
to produce an atomic artifact element. A more speci�c
de�nition of an atomic activity depends on the chosen
Artifact Meta Format. The speci�cation of atomic ac-
tivities corresponds to the functional transformation1,
Process ModelingMF;AMF , and it is reected in
Fig. 2 as Process Modeling. The instrumentation
part of Process ModelingMF;AMF corresponds to
the functional transformation
4, Activity InstrumentationMF;AMF . The inten-
tion of the comparison approach is to base instrumen-
tation decisions on the basic manipulations possible on
artifact elements expressed in the chosen Artifact Meta
Format.

Having de�ned the artifact section of the base frame-
work common for the compared processes as a point of
reference, the comparer should express comparison top-
ics as �rst order logic formulas on the artifact elements
that map to the common artifact section of BF. This
activity corresponds to the functional transformation 6,
Formalize TopicsCT , and it is shown in Fig. 2 as
Formalize Artifact Based Features. The term fea-
ture is used in the �gure to denote a formalized com-
parison topic which is a set of �rst order logic formulas
de�ned on the artifact elements that evaluates to true
if the process possesses a speci�ed property.

The comparison activity of execution of compared pro-
cesses corresponds to the functional transformation 7,
Executionsp Model;spInput, and it is shown in Fig. 2
as Process Execution.

Once the traces of artifacts have been produced, they
are analyzed to �nd out the sets of leaf activities that
are most likely responsible for complying to or violat-
ing conditions for compared features. The basic activ-
ity of such an analysis is checking a set of artifacts



against formalized comparison topics. This compari-
son activity corresponds to the functional transforma-
tion 10, Feature Comparator, and it is shown in
Fig. 2 as Artifact Based Feature Comparator.

5 Case study with a telecommunications pro-
cess

Base framework artifact section
Since this study used the change management task
the compared processes use the same artifact for-
mat for artifact representation. Therefore the com-
mon artifact portion of the base framework consists
of the elements of the artifact formats de�ned by
the process. Thus the functional transformation 5,
Classify ArtifactsMF;BF , is foregone in this case.

Process modeling
This section describes modeling of the telecommuni-
cations process from the original description that was
obtained from Telcordia Research representatives (for-
merly at MCC) via interviews and inspection of the
original process speci�cation in the company's propri-
etary process language, the Collaboration Management
Infrastructure (CMI). The telecommunications process
used in the study is proprietary and its detailed descrip-
tion has not appeared in open publications at the time
of this writing. Some information about the CMI and
experience of its application can be obtained from [14],
[10], [11].

The process modeling activity described below corre-
sponds to the functional transformation 1,
Process ModelingMF;AMF , introduced in Section 4
where the MF modeling formalism used is the Little-JIL
([24]), AMF (Artifact Meta-Format) is a graph-based
meta-format.

The versions di�er in an execution of one step so the
description is largely the same for them both. The pro-
cess top step OrderProcess speci�es sequential execution
of its substeps. It also requires an agent of the Man-
ager resource class and declares a number of local arti-
facts. The process is started when a customer connects
a new modem to the cable which triggers collection of
information about the customer (CollectCustData step).
The Little-JIL implementation uses an agent of resource
class ServiceRepBots for execution of this step that cre-
ates a new customer description artifact (customerData)
without the actual information collection. The output
artifact, customerData, contains information about the
customer's name, address, and request for service con-
�guration.

Next, the CreateOrder step is executed by an agent of
the OrderMgtBots resource class. The input to this
step is the customerData artifact; the order artifact is
the output. The step's agent transforms the format of
customerData artifact into that of the order artifact by

adding the CustomerOrderClass artifact element and
its instances. The CustomerOrderClass artifact element
contains more detailed technical information about the
service request.

VoiceService UserAccount Bundle Package Feature DataService

Customer1223027

BundleForVoice

PackageForVoice

FeatureCallWaiting

VoiceService

DataService

Figure 3: billDBupdate artifact instance

The next step to be performed, AssociateBundleToFea-
ture, suggests the new service con�guration for the cus-
tomer based on the service request. It is the execution
of this step that makes the di�erence between the two
process versions. The order artifact containing the ser-
vice request forms input to the step. The output con-
sists of the billDBupdate (an example is in Fig. 3) and
features artifacts. The features artifact is auxiliary and
it is a subset of the billDBupdate artifact. This step
is performed by an agent of the BillingSysBots resource
class. The con�guration contained in billDBupdate spec-
i�es aggregations of low-level services and dependencies
between them at di�erent levels. Such services as a data
connection and voice connection form the lowest level.
The next level up includes entities representing aspects
of the services, these aspects are called features in the
telecommunication logistics process terminology. For
instance, call waiting is a feature of a voice connection.
While the features might be thought of as attributes of
services, they are represented as individual entities that
build up on the services. Features are aggregated into
packages. A package is aggregated by technical consid-
erations of the service implementation. The packages
are further aggregated into bundles that take into ac-
count business considerations for aggregation. A bundle
is then attached to a user account. The telecommunica-
tion logistics process terminology does not di�erentiate
between the kinds of relationships such as aggregation
or dependence in the service con�guration. The orig-
inal artifact format speci�cations refer to all of them
as relationships. Thus they are modeled with the same
relationship kind.



The SetIPService step is executed next. Even though
there is no data-dependence between the SetIPService
and AssociateBundleToFeature steps the original pro-
cess speci�cation requires sequential execution. This
step is performed by an agent of the NetworkSvcBots
resource class. The input consists of the order artifact,
while the output is the FQDNSpec artifact (Fully Qual-
i�ed Domain Name speci�cation).

The Con�gCallAgent step con�gures a \call agent" and
con�rms that the requested service has been properly
set up. The \call agent" in the step's name is a telecom-
munication logistics process term that has nothing to do
with the Little-JIL agents. This step is executed by an
agent of the CallAgentBots resource class. Its input con-
sists of the features, customerData, and FQDN artifacts.
Its output consists of the con�gOutcome (con�guration
outcome) artifact that signals either success or failure
of the service set-up.

The �nal process model has been presented to the au-
thors of the original process speci�cations and it was
deemed accurate for the purpose of the comparison.

Process simulation
The ordering processes speci�ed in the Little-JIL have
been run in the Juliette environment using the same
resource model and input. The process execution pro-
duced two traces of artifacts. An entry corresponds to
an artifact instance name which consists of a times-
tamp, the name of the agent that processed or pro-
duced the artifact, the name of the step the agent per-
formed, the name of the artifact, and a run ID. This
activity corresponds to the functional transformation 7,
Executionsp Model;spInput.

Comparison topic and its formalization
The well-formedness condition to be checked is the re-
quirement for a voice service to rely on an existing data
service in the customer's service con�guration. This re-
quirement is reected in a relationship from the voice
service to the data service in the billDPupdate artifact.
One version of the process checks for the data service
and establishes the necessary relation. The other ver-
sion omits this action and produced a malformed ar-
tifact which would lead to a failure of the service re-
quest set-up in a deployed telecommunications process.
The comparison process determines this di�erence and
points to the step/agent combinations that are respon-
sible for it. This activity corresponds to the functional
transformation 6, Formalize TopicsCT .

This comparison topic is formalized as a �rst order
logic rule in the Xlinkit rule speci�cation language
([5]). The formalized comparison topic is phrased as
8vs 2 voiceservices 9link 2 associations s.t.
link:source = vs _ link:destination = ds; ds 2
dataservices. The Xlinkit rule speci�cation of the

...
<consistencyrule id="wellform1">

<header>
<description>

Voice service should be associated to data service
</description>

</header>

<forall var="vs" in="$voiceservices">
<exists var="l" in="$associations">

<and>
<equal op1="$vs/@name"

op2="$l/@source"/>

<exists var="ds" in="$dataservices">
<equal op1="$ds/@name"

op2="$l/@dest"/>
</exists>

</and>
</exists>

</forall>

</consistencyrule>
</consistencyruleset>

Figure 4: Comparison topic example

comparison topic is shown in Fig. 4.

Process comparison
The comparison process next ran the Xlinkit consis-
tency checker on the artifacts from the traces of the two
processes using the rule speci�cation in Fig. 4. This
activity corresponds to the functional transformation 8,
Feature CheckerFeaturesAF Atomssp

. The output of
this comparison process step is a set of consistency links
between the rule and the artifact elements from the arti-
fact traces. The checker produced a consistent link from
the rule to the VoiceService artifact element in the ar-
tifact billDBupdate of the �rst process version (Fig. 3).
The checker produced an inconsistent link from the rule
to the VoiceService artifact element in the artifact billD-
Bupdate of the second process version.

Finally, the comparison process performed the func-
tional transformation 10, Feature Comparator.
The annotation lists for the VoiceService elements from
the artifacts billDBupdate showed that both artifact el-
ements were produced by the same step (Associate-
BundleToFeature), but by di�erent agents. The com-
parison process thus showed that the second version of
the process does not comply with the well-formedness
condition and the reason for that is a di�erent agent for
the execution of the AssociateBundleToFeature step.

6 Conclusions and future work
The experiment with the ordering process showed that
the comparison approach is viable for comparison of pro-
cess executions di�ering in interpretation of the same
steps. This result would be impossible to obtain using
static analysis of process template speci�cation. The
approach is useful for comparison of processes dealing
with transformation of artifacts of prede�ned formats.
In case of a change management task we did not have
a great variance of opinion about correspondence of ar-



tifact elements between the two processes. Therefore
identi�cation of common artifact portion of the base
framework was trivial. We expect it to be the case in the
area of logistics processes because in such processes the
set of prede�ned artifact formats does not vary nearly
as often as the processes that manipulate them. The
decision-making that allows for variance of opinion is
con�ned by the comparison process largely to the choice
of the common artifact portion of the base framework.
Such a focussed localization of decision-making enables
higher repeatability of the comparison process results
done by di�erent comparers once they decide on a rea-
sonably good understanding of the artifacts from the
problem domain of the compared processes.

The comparison results seem to be more useful if the
compared processes are elaborated to the level of ex-
plicit speci�cation of manipulation of the lowest level
artifact elements. For instance, for useful comparison,
in case of artifacts represented as graphs, the compared
processes would have to explicitly specify the transfor-
mations of nodes, links, and their attributes between
artifacts from di�erent stages of the process.

In summary, it is important to emphasize that this ex-
periment is strongly encouraging in that it indicates
that rigorous, reproducible comparison of processes is
quite feasible. This line of research was undertaken in
reaction to a long string of process comparison work that
was completely informal, o�ering no basis for scienti�c
validation through reproducible experimentation. It
was our goal that process comparison be made rigorous,
semantically well-founded, and reproducible through
the use of formally de�ned comparison processes (such
as CDM), comparison schemas (such as BF), and se-
mantically well-based modeling formalisms. This work
continues to provide evidence that this sort of rigor and
reproducibility is possible.

There are several directions of further work worth pur-
suing, particularly that of experimenting with an ap-
proach in non-software process domains. One of such
experimentation directions is the application of the com-
parison process to the evaluation of path speci�c opti-
mization techniques for user-guided applications (such
as GUIs). The authors of continuous optimization tech-
niques ([18]) assume that a user is likely to make the
application traverse the same execution path when the
same user accomplishes the same kind of task. Hence
the optimizer takes the traversed path into account
when scheduling the instructions. Our approach can
help in data-based evaluation of the optimizers by keep-
ing track of instructions that were applied to elements
of application's data structures. Thus it would be pos-
sible to show di�erent emphasis the optimized execu-
tion paths put on application's data elements and ex-
plain possible variance in performance of the optimizers.

These comparison results might be used by AI tech-
niques for choosing the appropriate path-speci�c opti-
mization technique during an application's execution.

Another experimentation direction is application of the
comparison to more extensive processes.

The comparison process itself can be evolved. One evo-
lution is a more generalized set of possible kinds of ar-
tifact elements transformations based on the nature of
artifacts. Once such a set is identi�ed for a certain prob-
lem domain, the agents for process steps of this domain
could be assembled from such a basic set of manipu-
lations. Identi�cation of such a set would also help an
automated elaboration of the compared processes to the
same level of speci�city which will further aid the com-
parison by parceling out the comparable and function-
ally analogous portions of the steps from the compared
processes.
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