Automatically analyzing software processes:
Experience report

Rodion M. Podorozhny, Dewayne E. Perry and Leon J. Osterweil
rp3l@txstate.edu; perryQece.utexas.edu; ljo@cs.umass.edu

Texas State University, San Marcos; The University of Texas at Austin; University of
Massachusetts, Amherst

Abstract. Sound methods of analysis and comparison of software pro-
cesses are crucial for such tasks as process understanding, process correct-
ness verification, evolution management, process classification, process
improvement, and choosing the appropriate process for a certain project.
The purpose of our research is to lay the foundations for a systematic
and rigorous comparison of processes by establishing fixed methods and
conceptual frameworks that are able to assure that comparison efforts
will yield predictable, reproducible results. The analysis framework pre-
sented here assumes that the comparison will be done relative to a fixed
standard feature classification schema for the processes used, and with
the use of a fixed formalism for modeling the processes. The aspect of the
system described in this paper is focused on functional analysis of pro-
cesses according to the predefined comparison topics, well formedness
constraints, and instrumented agents. The paper describes our experi-
ence using our analysis system and its application to a logistics software
process from the telecommunication domain.

1 Introduction

This work presents a novel approach for analyzing and comparing software pro-
cesses that enables one to significantly increase the objectivity and repeatability
of comparisons. To our knowledge, this is the first attempt at a partially au-
tomated analysis and comparison of software processes based on the artifacts
they produce. While our work focuses on the application of our analysis sys-
tem to software process analyses and comparisons, it is more general. It is also
applicable in domains other than software process, such as data-based compar-
ison of software applications for evaluation of continuous program optimization
techniques ([10]).

It is our belief that certain tasks (e.g. software development) are very unlikely
to be completely automated in the foreseeable future if ever. Thus there will be
a need for software process systems with human involvement in their execution.
We believe that the operation of such systems can be properly described and
analyzed with the use of the concept of a software process as introduced in [12].

One of the hallmarks of a mature scientific or engineering discipline is its
ability to support the analysis, comparison and evaluation of the artifacts with

which it deals. Systematic analyses and comparisons rest upon classification.
Thus we believe that the establishment of a discipline of process engineering
requires the development of techniques and structures for supporting the clas-
sification, comparison, verification, evaluation, and improvement of processes.
Systematic, rigorous and automatable analysis techniques can help achieve the
goals of process engineering.

The analysis system discussed here assumes that the analyzed and compared
processes are in the same problem domain and have a similar purpose, but might
have certain differences in how they achieve their goals starting from the input
of the same kind and providing output of the same kind. Our approach is based
on the analysis and comparison of artifacts produced by the processes along the
execution paths prompted by similar input (e.g. similar formal requirements for
a software system fed to different software development processes). Thus our
approach also makes an assumption that the intent of the analyzed processes is
in response to the similar input is comparable and produces comparable artifacts.

In this paper we describe our experience analyzing and comparing two ver-
sions of a telecommunications logistics process, what results we get from the
process analysis, how our system compares to other approaches, and lessons
learned from the experience.

2 Logistics process example

As our example we used a telecommunications ordering process employed by
Telcordia. The ordering process elaborates the activity of adding a service to
a customer. This company uses a proprietary process specification language for
rigorous specification of such logistics processes. Their logistics processes also use
a predefined set of artifact formats. In addition to the format specification, there
is a set of well-formedness conditions defined for the artifacts. One of the chal-
lenges the developers of these processes face is the task of change management.
After a change is made to the process the developers have to make sure that the
process still produces artifacts complying with the well-formedness conditions. If
the new version of the process produces an undesirable result then the developers
have to find out the cause. This is not always as trivial as it would seem even
for relatively small processes as not a single developer understands the process
in its entirety. There are also different possible interpretations of the process by
developers. The suggested comparison approach alleviates some of these prob-
lems by providing a rigorous analysis of process artifacts and suggesting possible
causes for the differences based on such an analysis.

The study assumed that two seemingly identical versions of the same process
need to be compared to find out if the artifacts produced comply to a certain
well-formedness condition, and to point out the reason for the differences if there
are any. Such a set-up is likely to highlight the benefits of the artifact-based
trace analysis technique that can be used to complement the static analysis of
the process template specification such as by Jamieson Cobleigh et al. ([5]).

agent: Manager
loc: customerData o

loc: order OrderProcess
loc: billDBupdate
loc: FQDN
loc: features

features
customerData

configOutcome

customerData FQDN

ConfigCallAgent

CollectCustData CreateOrder

agent: ServiceRepBots agent: O agent: Billi agent: CallAgentBots

out: customerData in: customerData in: order in: features
out: order out: billDBupdate in: customerData
out: features out: configOutcome
infout: FQDN

Fig. 1. Order process

The representation of the motivating example process template is depicted
in Fig. 1. We use the Little-JIL process language ([3]) to show software processes
in this paper. The visual representation of the Little-JIL is based on a functional
decomposition. The steps are depicted as rectangles with a step’s name above
the rectangle. The steps’ interfaces include specification of an agent class (agent:
prefix)!, local parameters (loc: prefix), input parameters (in: prefix, and output
parameters (out: prefix). The data flow is depicted along the decomposition links:
the inscriptions near the arrow into a step contain input parameters and that
near the arrow out of a step contain output parameters. A complete process
specification also includes the resource model that specifies the agents available
in the environment, the artifacts specification, and the agents’ problem solver
components specification that define the transformations from input artifact
formats to output ones. The process program declares the agent classes for steps.
The actual agents are bound to steps during process execution, therefore it is
possible to run the same process template in different environments.

An example of a well-formedness condition for this telecommunications or-
dering process is the need to base voice communication service on a data com-
munication service. If the ordering process does not establish that a customer
ordering the voice communication also needs the data communication then the
process creates malformed artifacts that result in billing the customer for the
voice service that will not function. To avoid this scenario the executing software
process (including the template and functionality of the agents responsible for
performance of the steps) has to be shown to comply with the well-formedness
condition. Any differences and their possible causes must be found, be they in the

1 An agent is an entity responsible for execution of a step.

CmprByArifacts

AMF, Proc A, B
Formalized Comparison Topics, TraceA, Trace,
Contribution mezsure

Comparison
\Ioplm BF, AMM

Comparison results

(sets of steplagent combinations.

ranked by contribution measire:
per acomparison topic)

Formalize Andlyze
Process modeling Process execution Comparison Topics

Fm‘sm N G AN
. Envron R ey

Tegsame Classity Modd A 4 N ModelB Tracen
meaning arifact
demenis dements ModelProcessA ModelProcessB RunprocessA Run process B

Fig. 2. Steps in analysis and comparison

process template or agent functionality, and must be reported. Our comparison
approach suggests a rigorous and automated way to provide these results.

3 Steps in analyzing and comparing processes

In this section we discuss the use of an analysis system to analyze and compare
the example processes. Figures 2 and 3 illustrate the steps required by the
analysis system illustrated in the Little-JIL.

The current implementation of the process focuses on an artifact-based analy-
sis and comparison of two software processes. The software processes are assumed
to have structured artifacts with predefined formats such that the processes spec-
ify transformations between the artifact formats.

The process of analysis and comparison shown in Fig. 2 is automated by a
toolset. The steps for process execution and trace analysis are completely au-
tomated. The rest of the steps such as creation of the base framework, process
modeling, comparison topics specification have to be executed by a user in a
systematic way by following guidelines. The toolset assists the user in executing
the non-automated steps. For instance, it provides the Artifact Meta-Format for
artifact base framework specification and an agent framework for process speci-
fication. The non-automated steps are provided with guidelines for a systematic
manual execution.

3.1 Artifact ontology specification

The analysis process starts with constructing an initial base framework (BF)
for the artifact section (step Construct initial BF). The base framework

O Input to the initial instance of Analyze traces and results
Andlyze traces of the previous iteration

ArtSetA1, ArtSetB1, Subset of Form. Comp. Topics,

Trao;A/ Influence measure
Setsof steplagent combinations ranked
orm by influence measure(comparison results)
Tracs Comp)!
Topigs
A“% ;/ Subset of / \ Terminalion
Anse Form Comy Becison
o, d Topics () O O L
Define artifact Define artifact Choose formalized ~ Perform consistency Decide on termination
stA =B comparisontopic checking Andlyze traces

Fig. 3. Analyze traces

denotes a problem domain specific framework for artifacts, software process de-
composition units, and process features that can be derived on their basis. The
base framework can be thought of as a classification schema or ontology that
provides guidelines for grouping comparable activities, artifacts, or features of
software processes from the same problem domain. Software processes are likely
to be in the same problem domain if their purpose and functionality overlap.

The step is decomposed into the Tag same meaning elements and Clas-
sify artifact elements substeps to be executed sequentially. This step has a
substantial subjective involvement of a human user. The BF can be constructed
either from an existing ontology or it is generalized from the artifact formats of
the analyzed processes. The goal is to identify the semantically overlapping por-
tions of the artifact formats and tag the semantically similar elements of those
formats. This is done in the Tag same meaning elements substep based on
the source descriptions of the processes Proc A and Proc B. The output of
this substep is a table of correspondence of artifact elements from the original
process descriptions and their common naming. The correspondence is needed
only between artifact elements in the overlapping portion of the semantics of ar-
tifacts. Such an overlapping is likely to exist in processes from the same problem
domain and with the same purpose.

In the case of our analysis system we used a common artifact meta-format
(AMF) and the artifact element naming conventions for tagging. Thus artifact
elements are classified according to the AMF (step Classify artifact elements)
and artifact elements with the same meaning are named the same in the process
models and artifacts of the same class. The Tag same meaning elements
substep precedes the Classify artifact elements since it is beneficial to reduce
the number of elements to be classified. This reduction is the result of giving the
same names to the elements with the same meaning, so the classification decision
is made only once for both same named elements from different processes. In our
example the BF corresponds to the formats of artifacts used by the telecommu-
nications process. The process’s authors at Telcordia have already specified the
artifact formats rigorously. Since the two analyzed processes use the same ar-

<Node>
<MetaComponentClass>
<Attribute attrClass="java.lang.String"
name="name"
value="customerData"/>
<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027"/>
<Attribute attrClass="java.lang.String"
name="customerPhoneNumber"
value="000-000-00-00"/>
<Attribute attrClass="java.lang.String"
name="defaultName"
value="defaultValue"/>
<Attribute attrClass="java.lang.String"
name="customerStreetAddress"
value=""/>
<Attribute attrClass="java.lang.String"
name="customerZipCode"
value="11111"/>
</MetaComponentClass>
</Node>

<Node>
<MetalLinkClass>
<Attribute attrClass="java.lang.String"
name='"name"
value="association"/>
<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027RequestsServiceReq8745" />
<Attribute attrClass="java.lang.String"
name="type"
value="association"/>
</MetalinkClass>
</Node>

Fig. 4. Example of BF specification

tifact formats the task of identifying common ontology (BF) is simplified. The
categories of the artifact elements map directly to the categories of the ontology.
To obtain the BF specification in our example we wrote every artifact template
from Telcordia’s source process specification in the AMF. Thus we obtained
BF specification for all categories in artifacts used by both analyzed versions of
the process: customerData, order, billDBupdate, FQDN, FQDNSpec, features,
modemConfig, [Paddress, preorderOutcome, configOutcome. An example of BF
specification is shown in Fig. 4. This figure shows specification of BF artifact
categories customerData and association. The category specifications also indi-
cate their properties. The actual artifacts used by pre-ordering processes would
contain elements that map to these categories and that might be considered
their instances. A user would specify the BF categories manually using the Ar-
tifact Meta Format to describe the artifact BF categories found in the original
description of the analyzed or compared process.

3.2 Process modeling

Once the artifact section of the BF is defined, the modeling of the processes in
the same executable process modeling formalism can proceed. The input to this
step includes the base framework (BF'), process modeling formalism (MF'), arti-
fact meta-format (AMF'), and the source description of the analyzed processes
Proc A and Proc B. It is preferable to feed rigorous specifications of processes
elaborated to the level of manipulation of the lowest level decomposition units
of artifacts.

This step is further decomposed into modeling of the individual processes that
can proceed in parallel. This step may require substantial human involvement
but can be automated in the case if the source descriptions are rigorously defined
by building a translator from the formalism used in the source descriptions to
the common formalism used for analysis.

The expressiveness of the process formalisms can influence the analysis results
if they do not allow modeling of the artifact elements or steps that manipulate
them related to the comparison topics. The output of the modeling step consists
of the process models in the common modeling formalism (ModelA, ModelB).
In our implementation we use the Little-JIL as the common modeling formalism
for process analysis and comparison. Thus the modeling involves representation
of the functional decomposition of the process, specification of the process step
interfaces, specification of the artifact formats in the AMF, specification and
development of the agents to execute the steps, instrumentation of the agents
per a step kind, specification and development of the step-specific GUIs, and the
definition of the environment to be the same for both processes (the developed
agents are included into the environment).

The original Little-JIL has been extended to generalize the agent and instru-
mentation specification for individual problem domains. The user must take care
not to overspecify the agents beyond the elaboration of the lowest level activities
from the source processes. If the source processes assume certain common low
level activities then it is advisable to use the same implementation for the agents
from both processes. The extended Little-JIL agent architecture allows for reuse
of agents’ problem solving components. The Little-JIL artifact specification and
the agents must use the artifact formats specified in AMF and complying with
the naming conventions for the artifact elements with overlapping semantics.

In our implementation of the analysis system the user would specify the pro-
cess template in the Little-JIL using the visual editor. An example of a process
template we created is shown in Fig. 1. We created two process templates for
the analyzed processes.

The user would also specify the agents for the process template using Java
and the domain specific agent framework. The framework allows specification of
low level agent actions (operations) and then specifying the sets of actions that
agents must execute in response to incoming events. In our case the vast ma-
jority of events processed by agents are generated by the Little-JIL interpreter.
These events carry information about assignment of certain tasks to agents. A
task corresponds to an instantiation of process steps. Any task assigned to an

public synchronized void
started (AgendaltemEvent evt) {
Agendaltem item = evt.getAgendaltem();

if (itemName.equals(ResetModemStepName)) {

GetFQDN getFQDN = new GetFQDN();
ArchGraph[] args = {modemConfig};
ArchGraph fqdn = getFQDN.execute(args, agentStepID);
item.complete();
}
}

Fig. 5. Example of specification of NetworkSvcBots agent’s problem solver

agent goes onto that agent’s agenda list. The agent framework simplifies the
specification of agents by providing a uniform way to specify actions and by pro-
viding a generalized way to instrument the process. Every time a certain agent
executes an action the information about the action’s result is written to the ar-
tifact trace. The user only has to specify an action without explicit specification
of the instrumentation code.

The analysis system is limited by the level of elaboration of the source pro-
cesses. If the source process does not describe the activities at the level of ma-
nipulation of artifact elements then this method is unlikely to be applicable. The
generalized instrumentation components simplify the user’s task in the process
modeling stage. Nevertheless, the user must make subjective decisions regard-
ing continuity of the artifact concerns. The user must decide on the kind of
operation a given agent performs on a given artifact element when performing
a certain step (Operations = (Create, Derive, Retain, Modify)). Thus
every agent, when executing, would add an entry to the annotation lists of the
output artifact elements explaining the operation it performed on that element
and noting agent and step IDs and the timestamp. Also, the user must decide
which output artifact elements are going to inherit the annotation lists from the
input artifact elements. It is this decision that ensures the continuity of arti-
fact concern traces. It is likely that specifics of a given problem domain might
simplify this task. For instance, in logistics processes there is often a limited, pre-
defined set of artifact formats with predefined and explicit relationships between
elements from artifacts of different stages of a process.

Actions comprise the problem solving component of an agent. Part of the
problem solver for the NetworkSvcBots agent is shown in Fig. 5 as an example.
In this figure the started method is invoked in response to an event signifying the
start of a certain task assigned to an agent. If the task’s name is ResetModem-
StepName then the agent will perform the GetFQDN action among others. The
example shows the generalization of action specification. An action is instanti-
ated and then the action is executed when it is passed the input artifacts in a
graph-based Artifact Meta-Format (implemented as ArchGraph). Having a set
of domain specific actions it is fairly easy to create agents using this framework.

The user would create or reuse a set of actions specific to the problem domain
of analyzed processes so that to specify agents. Thus agents for the two versions
of the pre-ordering process reused a number of actions.

First we wrote a set of actions in Java for the agents of the analyzed processes.
The actions used the artifact categories specified in the AMF to represent manip-
ulation of artifacts. For instance, the getFFQ DN action manipulates the artifact
BF category FQDN. Then we wrote the automated agents that used the actions.
Our analysis system also allows for specification of human-assisting and human-
modeling agents by providing a framework for step-specific GUI specification.
For instance, the agents we specified for the analyzed process in Fig. 1 are Ser-
viceRepBots, OrderMgtBots, BillingSysBots, NetworkSvcBots, CallAgentBots.

3.3 Process execution

The next step of the analysis system, Process execution, requires execution of
the so modeled and instrumented processes (ModelA, ModelB) on the same
input (modelInput). The result of such an execution is a set of two traces of
artifacts whose elements are annotated with a list of operations, agents, and steps
that were performed on them. The annotation lists in an artifact would cover the
trace until this artifact is produced. Thus product artifacts would contain the
most comprehensive annotation lists. The annotations of artifact elements are
partially ordered by timestamps by construction via the instrumentation code
that is run during the process execution. Thus every artifact element relevant to
the comparison topic? must have a history of all manipulations done to it in the
annotation list. This step outputs the traces of artifacts with annotation lists
(TraceA, TraceB). The traces follow the execution paths through the process
models ModelA, ModelB that correspond to the same input modellnput
and hence are considered comparable.

The user obtains the artifact traces automatically by starting the Little-JIL
environment and running a process specification with the environment contain-
ing the domain specific agents. Since the artifact ontology and consequently the
artifact formats used by the agents of the processes are the same then it is pos-
sible to conduct a meaningful analysis and comparison of the artifacts. In our
example we ran the analyzed processes and obtained two traces of annotated
artifacts specified in the AMF. Unlike the BF specification in Fig. 4 the artifacts
contain the actual elements corresponding to the BF categories. An example of
customerData artifact specification is shown in Fig. 6. It was produced automat-
ically by running the process.

3.4 Comparison topic specification

The step for definition and formalization of comparison topics (Formalize Com-
parison Topics step) can be executed after the initial BF is constructed and in

2 the one that needs to be checked in order to determine if an artifact complies with
a certain comparison topic

<Node>
<MetaComponentInstance>
<Attribute attrClass="graph.model.ComponentClass
name="class" value='"customerData"/>
<Attribute attrClass="java.lang.String"
name="name" value='"Customer1223027"/>
<Attribute attrClass="java.lang.String"
name="customerPhoneNumber"
value="617-234-92-32"/>
<Attribute attrClass="java.lang.String"
name="customerName" value="Edward Jackson'"/>
<Attribute attrClass="java.lang.String"
name="customerStreetAddress"
value="962 Hill Dr."/>
<Attribute attrClass="java.lang.String"
name="customerZipCode" value="01403"/>
</MetaComponentInstance>
</Node>

<Node>
<MetaLinkInstance>
<Attribute attrClass="java.lang.String"
name="class" value="association"/>
<Attribute attrClass=
"graph.model.ComponentInstance"
name="source" value="Customer1223027"/>
<Attribute attrClass=
"graph.model.ComponentInstance"
name="dest" value="ServiceReq8745"/>
</MetaLinkInstance>
</Node>

Fig. 6. customerData artifact in graph-based AMF

parallel with the Process modeling and Process execution. This is reflected
by auxiliary decomposition steps Trace and Topics and Obtain traces. This
step implies specification of comparison topics in terms of first order logic formu-
las operating on the artifact elements with common naming conventions. This
step outputs Formalized Comparison Topics as a set of first order logic for-
mulas. In the case of our example the comparison topic is whether both processes
fulfill the requirement that a voice service must rely on an existing data service
in the customer’s service configuration. This requirement is reflected in a rela-
tionship from the voice service to the data service in the billDPupdate artifact.
One version of the process checks for the data service and establishes the nec-
essary relation. The other version omits this action and produces a malformed
artifact which would lead to a failure of the service request set-up in a deployed
telecommunications process. This comparison topic is formalized as a first order
logic rule in the Xlinkit rule specification language ([4]). The formalized com-
parison topic is phrased as Vvs € woiceservices dlink € associations
s.t. link.source = vs A link.destination = ds,ds € dataservices. The
Xlinkit rule specification we wrote for the comparison topic in our example is
shown in Fig. 7.

<consistencyrule id="wellformi">
<header>
<description>
Voice service should be associated to data service
</description>
</header>
<forall var="vs" in="$voiceservices">
<exists var="1" in="$associations">
<and>
<equal opl="$vs/@name"
op2="$1/@source"/>
<exists var="ds" in="$dataservices">
<equal opl="$ds/Oname"
op2="$1/@dest"/>
</exists>
</and>
</exists>
</forall>
</consistencyrule>
</consistencyruleset>

Fig. 7. Comparison topic example

3.5 Artifact trace analysis

Next, the analysis process calls for analysis of artifact traces TraceA, TraceB
by way of consistency checking to the formalized comparison topics. This analysis
is done in the Analyze traces step. The step’s input consists of Formalized
Comparison Topics and annotated artifact traces TraceA, TraceB.

The step’s output forms the results of the artifact-based comparison - consis-
tency links between formalized comparison topics and process artifact elements
and sets of step/agent combinations ranked by the contribution measure per a
comparison topic. One of the main outcomes of such an analysis is comparison of
consistency links from the same comparison topic to artifact elements in different
processes. The consistency links help highlight whether:

— both comparison processes comply with a certain comparison topic,

— both comparison processes violate a certain comparison topic,

— one process complies with a certain comparison topic while the other violates
it.

The annotation lists help point out the steps and agents that are responsible for
the analysis outcome. In addition, it is very likely that the sets of step/agent com-
binations from different traces (processes) corresponding to the same comparison
topic are comparable. Such pairs of sets can give insights about the functional
similarities or differences between processes and aid the user in making a more
objective process comparison.

Choice of initial artifact sets The set of product artifacts quite often is
most useful to be used as the initial artifact set because they contain the most
comprehensive annotation lists and they are likely to contain all the artifact

Specify art setl ‘ ’mifyaNSetZ ‘ ’Specifytopics‘ ’Andysis‘

Areafor visudization of artifactsand analysisresults

Andyze

Fig. 8. Process analysis toolset GUI

elements that need to be checked for comparison topics. Another advantage to
this choice of the initial set is high likelihood that the product artifacts are
explicitly defined in the process source description. To reduce the amount of
computation it is advisable to choose artifacts that are known to be relevant
for the chosen comparison topics. Thus, the initial artifact sets ArtSetA1 and
ArtSetB1 are defined by the steps Define artifact set A and Define artifact
set B. At this point the user can use the developed toolset to specify the artifact
sets to be analyzed from the lists of artifacts in the traces. The toolset visualizes
the artifacts as graphs based on their Artifact Meta-Format specification. A
general layout of the toolset’s interface is shown in Fig. 8. In our example,
using the toolset’s interface, we chose the artifact trace produce by one analyzed
processes as ArtSetA1l and the artifact trace produced by the other analyzed
process as ArtSetB1.

Choice of comparison topics Once the artifact sets are chosen, the user
should choose the comparison topic to be used for consistency checking. This is
done in the Choose formalized comparison topic step. The process analysis
toolset also lets the user to choose the topics from a list of files with specification
such as in Fig. 7.

Checking of artifacts’ comsistency to formalized comparison topics
Once the initial artifact sets for both processes and the formalized compari-
son topic are chosen, the comparison process runs a consistency checker that
produces consistency links between the formalized comparison topics and ar-
tifact elements of the analyzed processes. The current implementation of the
comparison process uses the Xlinkit consistency checker by Christian Nentwich

Package

Call waiting feature

wellform1 rule

Dueto "Associate Bundle to Feature" step by BillingSysBots

Voice service agent

Dataservice

Fig. 9. Example of analysis results

et al. ([4], [11]). Next, the user analyzes the two sets of artifact elements that
have consistency links to the same formalized comparison topics, but belong to
different processes. By using the toolset, the user clicks the “Analyze” button
and receives results as sets of consistency links between the specified comparison
topics and artifact elements. The toolset also shows the steps and agents respon-
sible for the consistencies or inconsistencies based on the information collected
in the annotation lists of the traces. An example of analysis results is shown in
Fig. 9. In the figure the billDBupdate artifact is shown as a graph. The rule well-
form1 corresponds to the comparison topic specified in Fig. 7. It stipulates that
any voice service must be based on a data service. In this case the consistency
link from the rule’s representation points to the artifact element responsible for
the complience (Voice service). The toolset also points out that the step Asso-
ciate Bundle to Feature and agent BillingSysBots are responsible for the
complience.

In our example, after we chose the artifact sets and chose the file with the
comparison topic, we pressed the “Analyze” button and received results repre-
sentation that indicated the consistency link between the wellformed topic and
voice service artifact element of the billDBupdate artifact for the first process.
The toolset also showed it was due to the way agent BillingSysBots performed
step Associate Bundle to Feature. There was no consistency link from the well-
formed1 topic to elements in the artifacts of the traces of the other process. Thus
the two processes were functionally different due to actions the BillingSysBots
agent performed in step Associate Bundle to Feature.

4 Selected comparison with other process analysis
approaches

In their earlier work on this topic, Xiping Song and Leon Osterweil proposed
techniques and structures for a disciplined and rigorous software process compar-
ison, and demonstrated their use by carrying out classifications and comparisons
of processes drawn from the narrow and specialized domain of software design
processes [13], [14]. These comparisons were guided by a formal comparison pro-
cess, Comparison of Design Methods (CDM), and were performed according to
a fixed base framework. The base framework can be thought of as a classification
schema and provides guidelines for grouping comparable activities, artifacts, and
features.

The need to compare modeled processes according to a fixed base framework
was also recognized somewhat earlier by Sjaak Brinkkemper et al. ([9]). However,
their comparison had no guidelines as explicit and formal as the CDM. The BF
suggested in ([9]) has a flat structure as well. The content and construction
method are different from the BF in our approach. The BF classes in ([9]) are
constructed on the basis of the elements of the process and artifact decomposition
units of the compared processes.

Analysis of in-place software processes and measurement of the correspon-
dence of a particular process execution to its model have similar goals with
process comparison in that they attempt to evaluate processes. Some fairly re-
cent work in these directions has been done by Jonathan Cook and Alexander
Wolf ([6], [7], [8])-

While the above mentioned work by Alexander Wolf, David Rosenblum,
Jonathan Cook is a kind of retrospective analysis just as ours is, the kinds
of properties investigated by them focused on real-time performance of process
activities.

One of the more recent approaches in process comparison is by Abrahamsson
et al. [1]. The authors present comparison of Agile processes. They use an ad-hoc
comparison method for comparing processes by high level topics. The focus of
their comparison is on organizational and activity sequencing issues rather than
on the functional differences. This is primarily due to the fact that Agile software
development processes (such as Extreme Programming) omit any description of
the guidelines for artifact transformation by their activities. Instead they focus
on organizational and activity sequencing issues.

5 Lessons learned and Future directions

The lessons learned from using our process analysis system to compare and
analyze the two versions of the telecommunications logistics processes center
around the artifact focus, the substantial amount of preparation, and the utility
and advantages of the use of the system.

Artifact Focus. The focus on artifacts produced by processes is a very
useful one. First, it represents the raison d’etre of processes: the production of

processes and services on the basis of various input artifacts. Second, it avoids
the tarpit of the widely varying and differing ways that one might accomplish
the same tasks. The focus is on the results of the tasks and activities, which
parts of the process affect them in which ways, and whether they have certain
desired properties or not. And finally, while the ways in which artifacts may be
produced vary widely, the artifacts themselves in the same domain are far more
likely to be much less variable and far less the subject of disagreement.

Initially, Substantial Preparation. Process analysis and comparisons do
not come for free. There is, at least initially, substantial preparation to set the
stage for the analysis system. Currently very few processes are sufficiently spec-
ified — in fact, this posed a significant problem in our research: there were very
few process descriptions in use that we could find that were defined in enough
detail to perform our experiments with our analysis system. However, if we are
to mature as an engineering discipline and move out the current craft stage, this
will have to change.

While there is substantial initial preparation, it should be noted that this
preparation serves in a variety of ways for subsequent analyses and comparisons
or processes in the same domain. For example, once the processes have been
formally specified, they may be used in a variety of comparisons and analyses.
Once the base framework has been established for a given domain, it can basically
serve for the analyses and comparisons of other related processes. The same is
true for the ontology and well-formedness conditions. They are substantially
applicable to other work in the same process domain.

Advantages. First, the most obvious advantage is the level of automation
provided by the process analysis system. Once the initial preparation has been
done, the rest of the analysis is done automatically depending on what input is
provided to the system. This is a significant improvement in the state of the art
for process comparisons and analyses.

Second, the various analyses and comparisons are repeatable. The points of
variability are well defined and have been determined in the preparation. The
only remaining point of variability is that where human responses are required
in the execution of the processes and that input is controllable as part of the
system execution.

And finally, as understanding of the processes grows, the various automated
analyses and comparisons can be extended and evolved in various ways to provide
deeper knowledge of the processes under consideration.

Limits. Because of the artifact focus, little has been done at this point to
support various useful kinds of process performance analysis. For example, we
currently do not support time and cost analyses for process - i.e. comparisons of
race and lapse times of processes, nor the amount of effort involved in process
execution.

References

1. P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New Directions on
Agile Methods: A Comparative Analysis. In Proceedings of the 25th International

10.
11. C

12.

13.

Conference on Software Engineering (ICSE 2003), Portland, USA, pages 244-254,

May 2003. . .
. S.]_;:/andmelh, A. Fuggetta, C. Ghezzi, and L. Lavazza. SPADE: An Environment for

Software Process Analysis, Design, and Enactment. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors, Software Process Modelling and Technology, chapter 9,

pages 223-248. Research Studies Press, Ltd., Taunton, Somerset, England, 1994.
A.°G. Cass, B. S. Lerner, E. K. McCall, L."J. Osterweil, S. M.’ Sutfon, Jr., and

A. Wise. Little-JIL/Juliette: A Process Definition Language and Interpreter. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000), Limerick, Ireland, pages 754-757, June 2000.

. C.Nentwich, L.Capra, W.Emmerich, and A.Finkelstein. xlinkit: a consistency

checking and smart link generation service. In ACM Transactions on Internet

Technologg{,_?ﬁ?) pages 151-185, May 2002. o)
J. M. Cobléigh, .. " A7 Clarke, and L."J. Osterweil. Verifying Properties of Process

Definitions. In Proceedings of the ACM Sigsoft 2000 International Symposium on
Software Testing and Analysis (ISSTA 2000), pages 96-101. Portland, OR, August

2000.
J. E. Cook, L. G. Votta, and A. L. Wolf. Cost-Effective Analysis of In-Place
Software Processes. IEEE Transactions on Software Engineering, SE-24(8):650-

663, August 1998. . .
J. K. C%ok and A. L. Wolf. Discovering Models of Software Processes from

Event-Based Data. ACM Transactions on Software Engineering and Methodol-

og%) 7(3):215-249, July 1998. o o)
J.E. Cook and A. L. Wolf. Software Process Validation: Quantitatively Measuring

the Correspondence of a Process to a Model. ACM Transactions on Software

En&ineering and Methodolo b, 8(2):147-176, April 1999. .))
S. B. Geert van den Goor, Sg uguang Hong. A gomparlson of Six Object-Oriented

Analysis and Design Methods. Technical report, University of Twente, Enschede,

the Netherlands, 1992.) L)
T. Kistler and M. Franz. Continuous Program Optimization: Design and Evalua-

tion. IEEE Transactions on Computers, 50(6):549-566, June 2001. .
. Nentwich, W. Emmerich, and A. Finkelstein. Static Consistency Checking

for Distributed Specifications. In Proceedings of Automated Software Engineering

2001, San Diego, USA, 2001.)
L. J. Osterweil.” Software Processes are Software Too. In Proceedings of the

Ninth International Conference of Software Engineering, pages 2-13, Monterey

CA, March 1987.
X. Song and L. J. Osterweil. Engineering Software Design Processes to Guide

Process Execution,. Technical Report TR-94-23, University of Massachusetts,
Computer Science Department, Amherst, MA, February 1994. Appendix accepted
and published in Preprints of the Eighth International Software Proces Workshop.

14. X. S

15.
16.

. Song and L. J. Osterweil. Experience with an approach to comparing software
design methodologies. IEEE Transactions on Software Engineering, 20(5):364-384,

May 1994, .
A. ¥V1se. Little-JIL 1.0 Language Report. Technical report 98-24, Department of

Computer Science, Universit¥ of Massachusetts at Amherst, 1998.
A. L”Wolf and D. S. Rosenblum. A Study in Software Process Data Capture and

Analysis. In ICSP 2 - 2nd International Conference on Software Process, pages
115-124, February 1993.

