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Abstract. We believe it is important to be able to analyze and ver-
ify negotiation protocols as first class entities because they embody the
reasoning mechanism responsible for agent interaction.

The underlying idea of our approach to self-stabuilization is a reset of the
negotiation protocols once the negotiating agents either reach an invalid
state or recognize the inevitability of reaching an invalid state.

By an invalid state we mean such a state where the combined utility
of the actions of the negotiating agents decreases below a reasonable
threshold making it impossible to accomplish the combined goal of the
agents. Thus, the definition of an invalid state is dynamic in the sense
that states can become valid or invalid based on the actions of other
agents and on the environment state that affects the combined utility.
We use the formalization of a multi-agent system as a Markov decision
process that separates the modeling of local action reasoning and the
negotiation reasoning as in [19]. We extend the model with features that
enable the detection of cases when a protocol results in an invalid state.
Self-stabilization is then achieved either by resetting the initial states of
the agents or by modifying the negotiation reasoning policy.

1 Introduction

Many multi-agent systems (MAS) rely on negotiation protocols as a mechanism
for increasing the combined utility of agents’ actions. The majority of verifi-
cation techniques for the MAS suggested so far do not focus on verification
of protocols. As a matter of fact, the majority of work on modeling, analysis,
and verification of multi-agent systems do not distinguish between local action
and negotiation reasoning. We believe it is important to be able to analyze and
to verify negotiation protocols as first class entities because they embody the
reasoning mechanism responsible for agent interactions. Joining the negotiation
reasoning with local action reasoning in the analysis models can lead to unrea-
sonable increase of the model’s size and complicated specifications of desirable
properties that pertain to the negotiation reasoning.

Our approach formalizes a multi-agent system as a Markov decision process
that separates the modeling of local action reasoning and of negotiation reasoning



as in [19]. We extend the model with features that enable the detection of cases
when a protocol results in an invalid state. Self-stabilization is then achieved
either by resetting the initial states of the agents or by modifying the negotiation
reasoning policy.

2 Research Context

Multi-agent systems have been increasingly recognized as an efficient approach
to the design of robust systems that can provide nearly optimal solutions under
the conditions of uncertainty and limited resources.

While there are multiple definitions of an agent, there seems to be an agree-
ment that the following main attributes define an agent: it is intelligent in the
sense that it can optimize its actions; it is interacting in the sense that its actions
are affected by actions of other agents; it is autonomous as the agent can choose
to refuse execution of a requested task or it can choose a hard to predict solution
from a great variety of options [17].

The notion of utility is quite often used as a measure of the “goodness”
of a solution provided by a set of agents. The kind of interaction between the
agents is a major contributor to an increase of the utility of agents’ actions.
While the interaction can be implicit we focus on explicit interaction reasoning
which is quite often found in cooperative multi-agent systems. Thus we focus
on the cooperative MAS even though our method for analysis, verification, and
self-stabilization can be applied to competitive systems too.

Negotiation protocols are used so that agents can evaluate another agent’s
situation to find a solution that increases their combined utility. The negoti-
ation may be initiated to arrive at a mutually acceptable agreement between
agents on such issues as strong dependence between their activities (“enables”
relationship), weak dependence (“facilitate” relationship), task allocation, and
redundancy of activities [3].

A number of negotiation protocols and multi-agent systems that rely on
negotiation have been suggested so far ( [15], [13], [3], [16], [11], [2], [5] )-

It is recognized that any multi-agent system is likely to use some negotiation
techniques to increase the utility of their combined actions ([8]). While benefits
of the multi-agent systems such as being able to effectively reason under un-
certainty, being able to increase robustness, are recognized ,and the multi-agent
approach gains popularity and becomes widespread, there is a growing need to
be able to verify these multi-agent systems.

There is on-going work on the application of model-checking for the veri-
fication of multi-agent systems ([18], [7], [1]). Also, other approaches such as
the application of situation logics ([4]) are used for the multi-agent systems ver-
ification. The vast majority of this work though does not address the issue of
multi-agent negotiation as a first class entity. The models of multi-agent systems
are quite often represented as a product of models of individual agents in the
mentioned approaches. It is likely that for practical reasons, considering a wide
range of protocol-based multi-agent systems, it is also important to be able to



verify the properties of the negotiation protocols. There has also been some work
on the application of Petri-nets for modeling and analyzing multi-agent systems
([10).

There has been on-going work in application of reinforcement learning tech-
niques for agents’ learning ([9], [14], [6]). These techniques focus on learning
local action strategies by agents, omitting the explicit representation of interac-
tion reasoning between the agents.

Some of the work that recognize the negotiation reasoning as a first class
entity include [19] and [12]. Their work is primarily focused on the evaluation
of negotiation policies that decide whether an agent should communicate at a
certain point in time. The work by Ping Xuan uses the modeling of multi-agent
systems as decentralized Markov decision processes, introduces a separate repre-
sentation for the local action reasoning and negotiation reasoning, and suggests
approximations for optimal control of agent’s interactions. The work by Pyna-
dath evaluates a number of models based on Markov-decision processes,including
the ones that treat negotiation explicitly, provides complexity analysis for the
problem of finding optimal control (termed as Communicative Multi-agent Team
Decision Problem or COM-MTDP), and provides a well-grounded characteriza-
tion of the complexity-optimality trade-off among various means of team coor-
dination.

The models for interaction reasoning in these approaches focus on the decision
whether an agent should send a message, while a possible relation between the
content, the size of the message and the frequency of communication is not
taken into account. Neither do the models capture the possibility of improper
negotiation - there is an assumption that negotiation reasoning will lead to a
solution of the requested task by the agents with some non-zero utility. Thus
there is no ground for reasoning about correctness of the negotiation protocols.

We propose to extend the Markov decision process-based model for multi-
agent systems to accommodate the cases of improper negotiation and suggest a
self-stabilization modification to the protocol that implements the negotiation.

3 Approach

In our discussion we will assume that the “goodness” of actions of all the agents
is measured by the notion of utility that is a function of cost, duration, and qual-
ity of results of performing individual actions by the agents. Thus, the global
utility is GU = f(e,d, q). We assume that the greater the GU, the higher the
“goodness” of combined actions by the agents. While the particular function
for GU would depend on the needs of optimization (different ratios of emphasis
between the contributions of cost, duration, quality) there is an underlying as-
sumption that the GU is positively affected by quality and negatively affected
by cost and duration !. Regardless of the particular problem domain, we assume
that a successful operation of the MAS system is characterized by some non-zero

! For those problem domains where the duration might also be considered as a positive
contribution, e.g. the actions of learning, we note that the quality would be a function



current utility. If the utility goes below a certain threshold ( GU < GU,y;,, ) then
the system enters an invalid state and the goal of the whole multi-agent system
is considered unachievable.

In this work we propose the creation of methods that let us construct multi-
agent systems capable of detecting and avoiding the possibility of entering such
a state, thus ensuring that the system does accomplish its goal.

By definition agents interact in the sense that their actions are influenced
by actions of other agents. If agents do not negotiate at all then it is very
likely that they will not achieve their combined goal. On the contrary, if they
either negotiate two frequently or they exchange all the available information
about their states and policies of achieving the individual goals then they can
incur unacceptable costs that would bring the GU below G_min. The action of
negotiation can be treated as any other action, thus the GU will be negatively
affected by the cost and duration of the negotiation action.

Let us now consider possible reasons for a failure in a multi-agent system (
GU < GUpin ). To keep this work focused on the reasons due to negotiation
reasoning we make the following assumptions: there is no loss of messages due to
unreliable communication; and agents are not malicious (i.e. they conscientiously
attempt to increase the combined utility). We are not considering the cases of
multiple parallel negotiations, neither do we consider possible complications due
to different levels of autonomy among the agents. None of the agents possesses
a global view (i.e. the knowledge of states of the rest of the agents and the
knowledge of optimal policies) to accomplish the task at hand.

Thus the primary reason for a failure in an MAS is partial knowledge of
agents about the environment and the optimal policies of achieving a combined
goal. We propose a self-stabilizing MAS (SSMAS) by way of exchanging partial
information about their previous experiences that capture policies that increase
the combined utility. The example given below is illustrated using a model based
on partially observable Markov decision processes (POMDPs) as introduced in
(Ping Xuan et al.).

We assume that the reasoning of agents is divided into two categories: local
action reasoning and negotiation reasoning. Local action reasoning is responsi-
ble for choosing a certain action that transitions the agents to another state.
Negotiation reasoning is responsible for deciding whether to initiate negotiation
and what kind of information to pass. In this model the agents reason about
local actions and negotiation in turn. Thus an episode of agent’s reasoning is
represented as

X X X..X_ X X X X X . .X
sy ,Mmy ,ay 581 ,My ,07 5...87_1,Mp_1,07_1; ST,
where T is the number of cycles in an episode, s;X(i = 0,1,...,T) are the states
for agent X, m¥ (i = 0,1,...,T) are the negotiation reasoning actions for agent
X, aX(i=0,1,...,T) are the local reasoning actions for agent X.

of the duration, thus the quality would still remain a positive contribution while the
duration would be negative. That is doing the action of learning faster receives a
higher reward.



The policy for local action of agent X is denoted as 7%¢, the policy for
negotiation reasoning for agent X is denoted as 7X™. Thus %% (s;) determines
the next state s;1 that agent X takes after performing action a; while in state
s; based on the policy captured by weights w(s;,ar) where k = 0,1,..K — 1
covers the K actions possible at state s;.

Similarly 7™ (s;) would determine the next message m; while the agent
is in state s;. The message m; can be null corresponding to no message sent.
The negotiation action does not change the agent’s states in this model. If an
agent determines that its next local action according to its policy %% (s;)
would make GU < G, then it resets, moving to its local state sg. A more
reasonable solution would be to reset the agent whose anticipated action brings
GU below the threshold to a previous state that is recognized as the last valid
state from which some other route via the state space can still bring the agent
to the accomplishement of the goal without damaging the GU. Finding such a
state for a reset can be done based on “checkpoints” and the reevaluations of
the weights for actions leading out of the “checkpoints”. For the initial version
of the approach we suggest resetting the agent to state s;. The rest of the agents
can still continue operation. The reset is done only by the agent that recognized
individually that its next action will inevitably bring the combined utility below
the desired threshold.

4 Motivating example

For a motivating example let us suppose a multi-agent system whose goal is
to increase the savings while buying products. Each agent has a limited view
in that it cannot know the sets of products available at all the stores. The
states correspond to sets of products, while each agent has a task to buy a
certain subset of the products prodList® C products. Let us assume that the
product lists of agents are not intersecting, i.e. they do not have to compete
with each other. The local actions correspond to buying a product or returning
a product. On buying a product the money amount of an agent taking this action
is reduced by the price of the product bought and its savings are increased by
the savings associated with the product at the store. On returning a product
the money amount is increased by the price of the product returned and the
savings are decreased by the savings associated with the product at the store.
The negotiation reasoning decides whether to communicate and it communicates
the prices and savings of products available at a store local to a specific agent.
Every instance of negotiation has a communication cost associated with it: ¢y, .
Every product [ out of the whole set of products has savings associated with it:
saveP™°%  Each agent has a limited amount of money to spend. There is a certain
threshold of the money amount below which an agent cannot go - it corresponds
to the price of a ride home. Let us say, for an agent X the price of a ride home
is retHomeX ;. . The global utility is expressed as a sum of savings achieved by

all the agents.



Deciding whether to communicate influences the trade-off between the in-
crease of the combined utility and the cost of an agents’ actions. The reasoning
approach to this decision that we envision is based on the level of confidence in
the estimate of the GU (LC" for agent i) and the level of constraints on agents’
actions. If agents had known each others policies at any state throughout an
episode then there would have been no need to communicate. Each agent could
predict the actions of other agents, which would let them arrive at a very accu-
rate estimate of the GU. That, in turn, would let them predict and avoid invalid
states (i.e. such states that would bring the GU below the predefined threshold).
Such a situation is not likely, especially for large state spaces. Even if the agents
start with the same knowledge of the policies (7% and 7™ are the same for
any agent ¢ out the set of agents A) they would learn more information about
the subsets of states in which they operate which would lead to different levels
of knowledge of individual agents about different subsets of states. If the level
of confidence in the estimate of the GU by an agent is based on the time passed
since the previous communication then the timings for communication would be
periodical. If the level of confidence in the estimate of the GU by an agent is
based on the level of constraints on an agent’s actions then the timings would de-
pend on the characteristics of the state space and the paths of individual agents
through the state space governed by their policies.

A prediction is attributed with a confidence level that is based on the number
of cycles (modeled amount time) passed since the previous communication be-
tween the agents: (tcur —tiastComm)- Let us assume the confidence level decreases
with time according to a certain time decay function. There is a certain threshold
for the confidence level (LC;,) below which the agent decides to communicate,
requesting the information about sets of products and savings available at the
stores known to other agents.

Thus the self-stabilization of a multi-agent system can be described as making
a decision about the communication and exchanging information about the states
and policies of other agents. In the case of this example, the maximum save?”*%
associated with buying product prod; (I = 0,1,...|P;| — 1, where P; is a set of
products available at state s;) is a deciding factor for performing the buying
action a.

When deciding on a negotiation action m; an agent chooses one of the fol-
lowing options:

— if LC < LC)ipn then m; is a request ForOther Prices
— otherwise m; is a null

When deciding on a local action a; an agent chooses whether to reset or do
the action:

— if LC < LCyn then move to state sg
— otherwise perform the action a; and move to the state to which the transition
by a; leads



5 Future work

We have introduced an approach to self-stabilization of cooperative multi-agent
systems by a reset. Also, we provided a model and an example that illustrate
our approach.

We still need to evaluate the self-stabilization by a reset using a testbed. The
problems to be solved include

— finding a method for determination of a state to reset to (other than sg),

— evaluating various assessment methods for the level of confidence in the
individual agent’s estimate of the global utility (GU)

— evaluating various time decay functions for the estimate of the GU and

— striking a trade-off between the communcation cost and the accuracy of the
assessment.

We envision creation of a method for updating existing protocols with reset
capability to make them more robust. A long term goal of this line of work is
to arrive at an underlying model for an optimal reset, such that helps to choose
agents to be reset and optimal states they need to reset to.
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